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Abstract 

Selective laser melting (SLM) is a powder-bed fusion (PBF) process that bonds successive layers 

of powder with a laser to create components directly from computer-aided design (CAD) files. The 

additive nature of the SLM process in addition to the use of fine powders facilitates the 

construction of complex geometries, which has captured the attention of those involved in the 

design of bandpass filters for radar applications. However, a significant drawback of SLM is its 

difficulty in fabricating parts with overhangs necessitating the use of support structures, which, if 

not removed, can greatly impact the performance of bandpass filters. Therefore, in this study 

bandpass filters are manufactured in two stages with 304L stainless steel where each builds only a 

portion of the part to improve the reliability in manufacturing the overhangs present. The results 

show that the versatility of SLM can produce difficult-to-manufacture bandpass filters with high 

dimensional accuracy. This work was funded by Honeywell Federal Manufacturing & 

Technologies under Contract No. DE-NA0002839 with the U.S. Department of Energy. 

1. Introduction

Powder-bed fusion (PBF) is a class of additive manufacturing (AM) techniques that refer 

to the selective consolidation of particles in a layer-by-layer fashion to create three-dimensional 

components. Among the PBF methods is the selective laser melting (SLM) process where a laser 

is used to weld regions of a powder-bed to construct parts additively. With the number of 

increasing applications of SLM in industries including aerospace and medical fields, the amount 

of research being directed towards improving the process regarding manufacturability of 

geometrically complicated components has increased dramatically in the previous 10 years. 

Moreover, the types of materials manufacturable by SLM has increased to encompass primarily 

aluminum, titanium, nickel, and steel alloys so that the parts fabricated may be used in service.  

Figure 1. Illustration of overhang and dross formation [1] 
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Although SLM has enabled more freedom in the design process due to its ability for 

constructing complex geometry, this method still suffers from the difficulty in printing 

overhanging structures, often necessitating the use of supports that may be difficult to remove. 

During the SLM process, high temperatures exist above the melting point of the metal material 

being processed [2]. Subsequent rapid solidification occurs which causes the formation of residual 

stresses, which can distort parts. Therefore, supports in SLM serve two main purposes: anchoring 

the solidified material to the substrate to eliminate part distortion due to residual stresses, and heat 

dissipation. If parts are not properly supported, the concentrated heat cannot be sufficiently 

dissipated through the powder bed due to its low conductivity [3], causing thermo-elastic distortion 

[1]. This problem is exacerbated for components that are built less than 45 degrees relative to the 

substrate, requiring support material to be inserted to ensure that the parts can be built [4]. Under 

this critical angle the melt pool increases and flows into the powder bed because of gravity and 

both the capillary forces and thermal energy cause the underlying powder to adhere to the part 

surface causing warping and drastically increasing the surface roughness leading to what is more 

commonly known as dross formation [1], as shown in Figure 1. Many times, dross formation can 

cause harm to the recoater jeopardizing an entire build and the dimensional accuracy of the part. 

Thus, these support structures become almost essential to parts built at low angles, thereby forcing 

geometric constraints to be applied to parts during the design process so that they may be correctly 

manufactured by SLM. 

In the case of bandpass filters for use in radar applications, these geometric constraints can 

greatly inhibit the applicability of SLM for their construction. However, as SLM can produce 

complicated geometry, the process has the potential to manufacture unique designs that are 

difficult to produce by conventional means. The bandpass filters of interest for this study are an 

interdigitated design, which are shown in Figure 2. The bandpass filters on the left and right in 

Figure 2 are hereby referred to as bandpass filter A and B, respectively. It should be noted that 

such both geometries are difficult to produce by conventional means as the small cantilevers can 

become distorted during the milling process influencing the performance of the bandpass filter, 

which can be avoided using SLM. Yet, the interdigitated cantilevers are still difficult to 

manufacture with SLM as they produce overhangs regardless of the orientation at which the parts 

are built. Thus, the parts pose a serious challenge in the SLM process, which serves as the basis of 

this paper. 

Figure 2. CAD models of two bandpass filter designs (not to scale). 
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The goal of this research is to explore and evaluate methods implementable in the SLM 

process for fabrication of the given parts with a Renishaw AM250 and assess each in terms of their 

success with respect to dimensional accuracy and overall manufacturability. The most popular 

method for building these overhang structures is using supports. However, support structures can 

affect the SLM process in undesirable ways. The need for support structures increases the laser 

exposure time during the process and the removal of these structures can take a significant amount 

time and energy ultimately increasing the cost. Therefore, in addition to building each of the parts 

with supports, an alternative method is presented where only a portion of each part is built at a 

time to bypass the manufacture of overhanging structures, hereby referred to as “flip and fixture.” 

Lastly, an additional technique is used, which involved the use of non-contact supports, a common 

technique employed in electron beam additive manufacturing. With non-contact supports, supports 

are offset a certain distance from the parts to provide heat dissipation without adhering to the part 

surface for ease of removal. 

2. Method 1: Optimization of Supports (Unsuccessful) 

A common choice for difficult-to-manufacture parts in SLM is to build supporting material 

that will assist in fabrication. This procedure is often coupled with orienting the parts in an 

optimized manner that will minimize the amount of support material needed and facilitate the ease 

of their removal to retain the final part. Other concerns when using support material include 

minimization of surface roughness and dimensional accuracy, both of which are greater in SLM 

for overhanging surfaces due to dross formation. Thus, optimizing the support structures to 

mitigate all these negative effects is crucial.  

In the support optimization process performed in Materialise Magics, the goal was to 

produce structures with limited volume, small areas of connection to the part (to make the removal 

process easy and time-efficient) while orienting the part optimally for a good surface finish and 

limit down-facing surfaces. In this study there were five different parts on the support optimization 

build plate, each with a different set of support and orientation combinations. Elements that varied 

Figure 3. Method of support plate overhead view 

502



with each part were the orientation and the type of support used, either a line support or a point 

(e) 

(a) (b) 

(c) (d) 

Figure 4. Support optimization as performed in Materialise Magics for the two bandpass 

filters in this study: (a) line supports with orientation pertaining to minimal support surface, 

(b) point supports at 60 degrees from the horizontal, (c) line supports at 45 degrees from the 

horizontal, (d) point supports with minimal support surface and z-height, and (e) point 

supports with minimal support surface. 
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support. A line support is a wall of support material with perpendicular struts, while a point support 

simply attaches to the part at a single location. When using point supports, many were generated 

to simulate a “wire brush” for ease of removal. To further enhance the ease of removal, each type 

of support was only welded with one laser pass making them weak due to the porosity present 

without remelting. To attempt different orientations for each part, the optimization tool in 

Materialise Magics software was utilized. This tool optimizes the orientation based off the 

geometry and down facing surfaces to create an orientation that will limit supports and laser 

exposure time. The other orientations (besides the Materialise Magics optimized orientation) used 

were 45 and 60 degrees. On all the parts the teeth of the supports (the very top and bottom of the 

supports that connect to the substrate and the component being supported) were designed to be 

easily removed and quick to build as was found by Calignano [5]. Also, on each cantilever there 

were two line supports added to support each downfacing edge of the cantilever. The supports 

generated for each part can be seen in Figure 4. 

Part 1 was built with all line supports and the orientation was optimized to minimize the 

amount of support surface needed on the part (Figure 5a). This was the most successful part built. 

It finished building to completion and is recognizable as the part it is supposed to be. 

Unfortunately, the down-facing surfaces have a less than optimal surface finish and low 

dimensional accuracy.  

Part 2 was built with point supports, and the orientation was 60 degrees vertically from the 

horizontal build plate. This part failed early on due to the cross teeth in supports for the cantilevers 

overlapping. Due to this overlapping, the laser beam passed multiple times over the same section 

of each cantilever causing distortion. So as not to interfere with the recoater, this meant the part 

had to be suppressed early in the build.  

Part 3 was built with line supports and the orientation was 45 degrees vertically from the 

horizontal build plate. This part failed as soon as the sections with a 45-degree angle without 

supports started building. When this occurred the part had to be suppressed. 

Part 4 was built with the point supports, and the orientation was optimized in the 

Materialise Magics surface to optimize supports and the build height. This part failed to build to 

completion (Figure 5b). As it was building the angle was close to the critical angle and was close 

to failing but the machine would correct itself before the part failed. When it reached the top, it 

did not correct itself therefore it had to be suppressed before completion. Even with most of the 

part that did complete, the surface finish on the down facing surfaces was not optimal. 

Part 5 was built with point supports, and orientation was optimized in the Materialise 

Magics surface to minimize the amount of support surface on the part. This part failed to build to 

completion. Just as Part 3 on this build plate did, it failed when it started building the opposite 

angled non-supported parts. 

3. Method 2: Non-Contact Supports (Unsuccessful) 

Another method that was examined in this research was the non-contact support method. 

The main purpose in evaluating this method an alternative means of building simple cantilever 
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overhangs in the SLM process. Unlike conventional support structures, non-contact supports are 

completely separated from the overhang by some gap distance. The idea is that the support will 

act as a heat sink and help with thermal dissipation via heat conduction. Ideally, this would lead to 

the overhang building without the usual distortion of the overhang occurring such as when there 

is no support at all. Related previous research consists of one study examining the feasibility of 

non-contact supports in the electron beam melting process [6]. Figure 6 illustrates the concept of 

the non-contact support. Note that the overhang is completely horizontal. This is the orientation of 

the overhangs tested throughout the method of non-contact supports.  

 

 

 

(a) 

(b) 

Figure 5. Fabricated bandpass filters with (a) line supports and minimal support surface, and 

(b) point supports with minimal support surface and z-height. 
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The experimental approach for testing the method of non-contact supports consists of the 

following: design the test setup, build the test setup, and observe the result of each test. Each test 

is essentially a set of cantilever overhang structures. Each test structure contains an overhang with 

a base and a block under the overhang. The block is separated by some gap distance from the 

overhang. After each test was examined, observations were drawn, and a new test was designed to 

make more observations. 

For the first test setup, the questions to consider include: the required gap distance that 

would be successful, if any, and whether the thickness of the non-contact support carries any effect. 

This led to a test setup that was used to evaluate multiple variables. The set of tests consisted of 

three different heights of overhang test structures, each having a gap distance from 0.05mm to 

0.35mm (0.05mm interval jumps). These results are shown in Figure 7a. All the test structures 

from the previous test bonded between the overhang and the non-contact support. The second set 

of tests consisted of five iterations of each gap distance of 0.5mm, 1.0mm, 1.5mm, and 2.0mm. 

The five iterations made it possible to see any consistency or lack thereof within each gap testing 

and the larger gap intervals allowed for more rapid locating of a precise range for building 

overhangs. The test results are shown in Figure 7b. 

The third and final test was that of a more specific range of gap distance. Given that the 

largest three gaps of the previous test failed to build, and the smallest gap caused bonding between 

the overhang and the support, it appeared that the range was between 0.5mm and 1.0mm. Staying 

close to the smaller end of the range, and including some overlap, the next setup consisted of a 

similar outline. Again, five iterations of each gap distance were tested: 0.4mm, 0.5mm, 0.6mm, 

0.7mm. The results are shown in Figure 7c. 

Three different outcomes occurred from these tests, as illustrated in Figure 8. For this 

method to be feasible, there needs to be another outcome between bonding and curling: building 

successfully without curling. Unfortunately, the non-contact supports simply do not disperse fast 

enough for a successful build of an overhang. While the quality is better than the case where the 

horizontal overhang has no support whatsoever, it is not sufficient enough to build with 

dimensional accuracy and quality surface finish. 

 

Figure 6. Non-contact support with overhang CAD model. 
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Table 1 shows that 0.6 mm and 0.7 mm converge to a single curling result for each. The 

0.6 mm test overhangs had four that bonded, while the 0.7 mm test overhangs had four that failed 

(a) 

(b) 

(c) 

Figure 7. Non-contact support builds where (a) is the first set of tests, (b) is the second set of 

tests, and (c) is the third set of tests; the gap used is labeled next to each set of overhangs. 
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to build. This hints at a gap distance between 0.6 mm and 0.7 mm, where the test overhangs would 

curl as depicted in Table 2. Curling is still not desirable, but an outcome that is closer to 

successfully building. Further testing would be needed to investigate the effect of gap distance on 

the build quality. 

 

      Table 1: Test Observations with frequency in the test. 

  Observation 

Test # Gap (mm) Bonded Curled Failed 

1 

0.05 3   

0.10 3   

0.15 3   

0.20 3   

0.25 3   

0.30 3   

0.35 3   

2 

0.5 5   

1.0   5 

1.5   5 

2.0   5 

3 

0.4 5   

0.5 5   

0.6 4 1  

0.7  1 4 
 

 

 

 

 

 

 

Figure 8. Three observed outcomes exhibited by the test overhangs: (a) bonding, (b) curling, 

and (c) failure to build. 

0.35mm 
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          Table 2: Fabrication results for different gap distances. 

  Gap Range (mm)  

 d < ~0.6 0.6 < d < 0.7 d > ~0.7 

Result: Bonding Curling Failure to build 

          d = Gap distance 

4. Method: Flipping and Fixturing (Successful) 

The next method attempted was one that is termed as “flipping and fixturing,” as shown in 

Figure 9. The general idea is to divide the part with a horizontal cut into two sections that are both 

void of any problematic overhang. The first step in the fabrication would be to print out the larger 

of the two sections on a build plate as how normally a part would be printed, and when it is 

completed the built section would be flipped over, fixtured back onto the build plate where the 

other section would then be printed on top of it. While a novel idea this potential method came 

with potential issues and concerns that had to be overcome before the theory could be tested. For 

testing purposes, the bandpass filters were modified by removal of the holes to facilitate their 

manufacturability in SLM, and is hereby referred to as the proof-of-concept pieces. 

The first problem needed to be solved was how the first section of the part will be fixtured 

to the substrate for the other section to build on top of it. Early ideas included adding a support 

structure on top of the part similar to the one on the bottom of it so when flipped it would be 

possible to align the location of the builds. Another idea contemplated was using an adhesive such 

as soldering or an epoxy. Past the issue of fixturing it to the plate is making sure the fixture is 

Figure 9. Illustration of flipping and fixturing method 
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centered and is exactly even in the z-direction as well. Ideas for this problem include coordinate 

mapping the build plate and centering on the previous build plate. One way to do that would be to 

create no build zones (parts in Materialise Magics that cannot be built over) with geometry of cut 

parts on top of where the old builds were as to keep the same alignment and centering. The latest 

and most executable ideas center around using guiding blocks to center the part. Other ideas have 

been investigated but not yet experimented such as the “hole” and “screw” methods. The last 

concern is the quality of bond that will be created after fixturing and flipping. In the study only 

one method has been attempted, i.e., use of guiding blocks. 

4.1 Guiding Block Approach 

Under the flipping and fixturing technique, the cut part is built regularly first. Then a 

second build plate with the guiding blocks outlining the part is built. The cut part is then flipped 

over and placed into the blocks that act as guiding blocks to center the part. Then using the same 

coordinates from the guiding block build plate, the rest of the build is completed on top. 

4.2 Part Measurements 

Before using the guiding block method to fixture the parts to the build plate it was necessary 

to determine the distance between the blocks and the part that should be allowed. As the parts’ 

melt pools expand the components slightly it is necessary to put some distance between the part 

and the block. Measurements were taken using stainless steel calipers corresponding to the 

dimensions depicted in Figure 10. Each part was measured in five spots for the total width, four 

spots the total length, four spots each for the width of the bottom and top, and two spots each for 

the width of the left and right. 

The measured results are given in Table 3. The numbers in the table indicate that the widths 

of the sides are on average 0.0052 mm larger than the CAD dimensions and all the differences 

were positive, meaning all the sides were wider than the CAD dimensions. The total lengths and 

widths are on average only 0.0059 mm larger than the CAD dimensions. 

 

Figure 10. Locations of the measurements taken of the printed part 

using the flipping and fixturing method. 
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Table 3: Measurements of bandpass filters compared to the CAD dimensions. 

Bandpass Filter A 

 CAD Dimensions (mm) Avg. of Meas. (mm) Differences(mm) 

Length 86.58 86.5852 0.0052 

Width 30.15 30.1564 0.0064 

Bandpass Filter B 

Length 73.46 73.4653 0.0053 

Width 18.84 18.8468 0.0068 

 

4.3 Proof of Concept Trial  

Using the guiding block method on the proof of concept part with trial distances between 

the part and guiding block of 0.005 mm, 0.05mm, and 0.1 mm, the proof of concept part was able 

to be flipped and fit into each set of guiding blocks. To fit the part into the 0.005 mm guiding block 

the top of the part (before flipped) needed to be sanded and hammered to fit inside. The 0.1mm 

guiding block was too loose and no part was attempted in that guiding block. 

To level the parts vertically, minor sanding was done to ensure there were no errors when 

printing. An artificial powder bed was made by lowering the elevator and pouring in powder 

manually then slowly (0.05 mm at a time) raising the elevator until the part was detected visually. 

Then ensured the wiper would be able to distribute the powder evenly over the flipped parts. In 

this trial a build of 2 mm (Figure 11) was printed on top of the cut parts.  

The trial part was built to completion and the bond evaluated. To evaluate the bond a 5 mm 

section of the side wall was removed by EDM. Then the removed sample piece was mounted and 

polished to a 1 µm finish. At this point the sample piece was evaluated under a microscope. Before 

another microscopic evaluation the sample piece was etched using a 60% HNO3, 40%H2O 

solution. After microscopic evaluation, Vickers hardness tests were completed. 

The guiding block method produced the parts with acceptable geometric accuracy and 

surface finish. The alignment was off by a very slight amount and was more precise in the part 

with 0.005 mm distance between the guiding blocks than the part with 0.05 mm distance. 
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When evaluating the bond there was no noticeable faults when examining under the 

microscope at the bond before the etch was completed. After etching the part, the bond area was 

very distinguishable as the melt pools are visible under microscope and the bond is in the location 

where the melt pools flip because the part was flipped (Figure 12). Looking at this bond under 

microscope after etching gave no indication of fault or sign of a bond that was not viable. The 

Vickers Hardness test gave results indicating the bond was no different from the bonds in the 

standard SLM part (Figure 13). 

4.4 Guiding Blocks with Actual Parts 

With what was deemed as successful results with the proof of concept build the guiding 

block method was implemented with the actual bandpass filter designs. Considering the 

Figure 11. The proof of concept part after completion using the guiding block method. 

Figure 12. Both sides of bond area of sample piece observed under microscope (5X) after etching 
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measurements previously taken as well as the proof of concept results distances of 0.005 mm, 0.01 

mm, and .05mm between the part and the blocks were tested to find the best balance of efficiency 

and dimensional accuracy. While possible, positioning the edges was increasingly difficult with 

the smaller distances between the guiding block and part. To combat this problem a new guiding 

block design was implemented where the edges that line up with edges of the part were filleted as 

to make it easier to wedge the part into guiding blocks with smaller distances between the part and 

the blocks. With this newly designed block the bandpass filter designs are able to be fit inside very 

tight (0.01mm) guiding blocks in approximately three minutes with average human strength 

hammering of a rubber mallet. 

With the newly designed guiding blocks the same process as was trialed with the proof of 

concept was tested. The resulting parts were produced with visible acceptable geometric accuracy 

and surface finish. The alignment visibly was seemingly perfect and much more precise than the 

proof of concept. To test this alignment a CMM (Coordinate Measurement System) was used. This 

machine tracks the x, y, and z coordinates every time the sensor contacts the part being measured. 

Taking over 600 coordinate points with this machine and using a MATLAB script, a three-

dimensional rendering of the part can be made. To judge the surface finish and alignment a best 

fit line of all the points on each side is made and the coefficient of determination (R2) value is 

determined. This value calculates the how close the data are to the best fit line from zero to one-

hundred percent. The average of these value for the low frequency filter was 0.98, which indicates 

that the alignment is almost perfect. 

As with the proof-of-concept trial, the bond was evaluated by using an EDM to remove a 

sample piece to be mounted and polished to 1 µm finish. At this point the sample piece was looked 

at under microscope to be evaluated. Before another microscopic evaluation the sample piece was 

Figure 13. Graphic of sample with Vickers hardness values in the general area they were taken. 
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etched using a 60% HNO3/40%H2O solution. After microscopic evaluation Vickers hardness tests 

were completed. 

When evaluating the bond there were no noticeable faults when looking under the 

microscope at the bond before the etch was completed. After etching the part, the bond area was 

very distinguishable as the melt pools are visible under microscope and the bond is in the location 

where the melt pools flip because the part was flipped. Looking at this bond under microscope 

after etching gave no indication of fault or sign of a bond that was not viable (Figure 14). 

Differing from the proof of concept where Vickers hardness tests were only completed 

around the bond area, with the actual part the tests were completed evenly in a 500 by 500 grid 

throughout the whole cross-sectional area to test if any trends were evident. Creating a color map 

of the area it is evident there are no trends as the hardness values all fall within 40 units indicating 

again that bond is viable; see Figure 15. 

 

 

 

 

Figure 14.  Both dides of bond area of sample piece looked at under microscope (5X) 

after etching 
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5. Conclusions 

The work in this study proves that interdigital bandpass filters can be printed in the SLM 

process although they are difficult to manufacture due to the overhangs present. Generation of 

optimal support material to aid in the construction of the filters was found to be unsuccessful due 

to the undesirable part distortion during fabrication and the large surface roughness of the 

downfacing surfaces. While non-contact supports do appear to have potential in alleviating the 

distortion encountered, the surface roughness will undoubtedly be present on the downfacing 

surfaces greatly influencing the performance of the bandpass filters. The solution implemented in 

this work for overcoming the manufacturing challenges of building overhangs in SLM involved 

flipping and fixturing, where only a portion of the bandpass filters are printed at a time to bypass 

building the overhangs. This technique proved to be dimensionally accurate while still maintaining 

acceptable bond quality at the interface. 
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