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Abstract 

Laser metal deposition (LMD) has become a popular choice for the fabrication of near-net 
shape complex parts. Plastic deformation and residual stresses are common phenomena that are 
generated from the intrinsic large thermal gradients and high cooling rates in the process. Finite 
element analysis (FEA) is often used to predict the transient thermal cycle and optimize processing 
parameters; however, the process of predicting the thermal history in the LMD process with the 
FEA method is usually time-consuming, especially for large-scale parts. Herein, multiple 3D FEA 
models with simple assumptions on the heat source and its loading methods are compared and 
validated with experimental thermocouple data. 

Introduction 

In the laser metal deposition (LMD) process, a description of the transient temperature 
fields is important for subsequent analyses such as microstructure evolution, residual stress, and 
distortion. Many efforts have been put on the temperature field analysis and are mainly based on 
the finite element analysis (FEA) method [1-5]. In literature, a commonly used method to mimic 
the material addition process is called the “dummy material method” [3] or the “element birth and 
death method” [5], which use active elements in the finite element model according to a predefined 
deposition strategy. The aforementioned methods usually include a computational intensive model 
as not only do the minimum required time increments in transient heat transfer analysis need to be 
met [6], but also a mesh convergence needs to be achieved, which requires a minimum element 
size relative to the laser beam diameter [5]. When applied, the conventional methods to predict 
transient temperature history in a large-scale part fabrication process increase the model size 
tremendously. In some cases, a precise description of the thermal history in the laser deposition 
process is not necessary and only a fast prediction of the peak temperature will be needed for the 
process plan. Herein, two methods called track-heat-source and layer-heat-source are proposed for 
fast prediction of transient thermal history in large-scale part fabrication via the LMD process. 

Experimental Set-up and Methods 

A Ti-6Al-4V block was built on a DMG-Mori Lasertec 4300 3D hybrid machine with the 
following processing parameters: laser power 1680 W, laser beam spot size 4 mm, powder feed 
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rate 29.7 g/min, and travel speed 1000 mm/min. The experimental set-up is shown in Fig. 1. Fig. 
1 (a) shows the thermocouple locations on the substrate. The deposit was fabricated according to 
the path plan shown in Fig. 1 (b), where nine single-direction laser scans were applied and a 
perimeter pass was performed on every layer. To provide a flat deposition on all corner walls, the 
perimeter pass was doubled every other layer based on trial-and-error. Fig. 1 (c) shows the 
thermocouples were fixed on the substrate with high temperature thermally conductive paste and 
temperature was recorded with a data acquisition instrument. Two holes shown in Fig. 1 (c) were 
used for mounting the substrate on a base plate. The final product is shown in Fig. 1 (d). Due to 
the working condition differences among varies LMD systems, there is no comparison with other 
groups’ work and only focused on the experimental data obtained from our LMD system. To 
quickly predict the transient thermal history of a large-scale part build on this machine, an FEA 
model suitable for this process was developed and the predicted temperature fields will be used 
for subsequent analyses such as oxidation, residual stress, and distortion in the future. 
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Fig. 1 Experimental set-up. (a) thermocouple locations, (b) laser scanning pattern, (c) 
thermocouples on the substrate before deposition, (d) final deposit. 

Modeling Procedures 

In our previous work of simulating the LMD process, the heat source was modeled with a 
conventional method as thermal flux density (watt/m2) or heat generation rate (watt/m3) that moves 
place to place according to a scanning strategy [5,7], which requires a minimum element size (<1/6 
laser beam diameter) to meet the requirement of mesh convergence assessment. This criteria 
results in a large number of elements and nodes in the meshed model and results in a long 
simulation time. To reduce the model size and computational time, and make it feasible for fast 
prediction of the temperature in the LMD process, especially for large-scale parts, some 
assumptions and simplifications were proposed and implemented in the model: 

1. In the finite element model, the thermal load in both track- and layer-heat-source scenarios 
are applied sequentially in the form of thermal flux density and volume heat generation 
rates. 

2. Thermal flux density is applied in the first seconds 

(���� �������� ����� ���������� �����⁄ ) with the maximum energy intensity value of 
the corresponding Gaussian beam. 

3. Volume heat generation rate is applied in the rest of the time within each track or each 
layer with an average value calculated by absorbed energy divided by the deposited volume. 

The finite element model was implemented by solving the following heat transfer equations. 
The governing equation of 3D heat transfer is given in (1): 
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where � is temperature, � is time, �� is specific heat at constant pressure, � is density, � is thermal 

conductivity, and ∇ is the Hamilton operator which is equal to(
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). There was no internal 

heat generation, so the �̇ was set to zero. Density, thermal conductivity, and specific heat were all 
implemented as temperature-dependent parameters. Latent heat effects were modeled using (2) 
[8]. 
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where ��
∗(�) is the modified specific heat, ��(�) is the temperature-dependent specific heat, � is 

the latent heat of fusion, �� is the melting temperature, and �� is the ambient temperature. The 
temperature-dependent property values of the Ti-6Al-4V substrate and deposit were taken from 
[9].  

Fixtures play an important role as heat sinks in the laser deposition process [5]. In the 
current model, two bolts were simplified as two blocks at two ends of the substrate, and the base 
plate underneath the substrate was also modeled as a block, as shown in Fig. 2 (a), where their 
material properties were assigned using the equivalent mass method as proposed in [5]; mass, 
thermal conductivity, and specific heat were kept the same, but density was modified according to 
the modeled fixture volume. As shown in Fig. 2 (a), the model was meshed with a non-uniform 
distributed element size and only used fine mesh at volumes of interest to reduce the model size 
and computational time. The final model contains total 14922 elements and 17150 nodes.  

The initial condition for the numerical simulation domain was set to a uniform temperature 
field equal to ambient temperature (300 K), which is defined as shown in (3). 
 0 0 1 2 3|  0 ,0 ,0tT T x L y L z L          (3) 

The boundary conditions for all surfaces (both substrate and deposit) were set to have 
convection and radiation losses (4) [7]: 

 4 4( ) | ( ) | ( ) | |a e r Laserk T n h T T T T Q         


, (4) 

where ℎwas convective heat transfer coefficient, ��was the ambient temperature, ε was emission 
coefficient, σ was the Stefan-Boltzmann constant ( 5.67 × 10���/����) , ��  was the wall 
temperature of the sealed chamber and set equal to ��, and Q� the is the heat input from the laser 
beam. As new elements changed from death to birth status, the outer surfaces related to boundary 
conditions were updated.  

In this case, forced convection needs to be considered as reported in [10], where the 
decrease of h  as the distance from the top edge of the wall increases was assumed to be linear as 
provided in (5): 
 

ℎ = −1.4� + 80,     (5) 
 

where � is the distance from the top edge of the wall to the point of interest. The convective heat 
transfer coefficient distribution at the last step is shown in Fig. 2 (b), where the substrate and 

fixture were set to free convection when � was beyond the deposit height and the convective heat 
transfer coefficient was equal to 30 W/m2/°C. 
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Fig. 2 FEA model set-up. (a) meshed mode with the simplified fixture (red), the substrate 
(white) and deposit (white), (b) convection coefficient distribution, (c) temperature distribution 
at 11th layer with track heat source, (d) temperature distribution at 11th layer with layer heat 
source. 

The finite element model uses a fixed mesh size for all the substrates, deposits, and fixtures 
during simulation. To simulate the addition of material in the laser deposition process, a method 
called element birth and death in ANSYS was employed. The element death function was used to 
deactivate an element by setting its stiffness to zero, while the element birth function was used to 
activate an element by setting the right stiffness value. At the start of the simulation, the substrate 
elements were all activated. However, the deposit elements were activated sequentially to simulate 
material addition. The element birth and death method application in track-heat-source and layer-
heat-source are demonstrated in Fig. 2 (c) and 2 (d), respectively. Fig. 2 (c) shows the tracked heat 
source process where the heat flux was applied to the last track of the 11th layer, followed by the 
volume heat generation rate. The perimeter scan was simulated after the last track was added, 
following the same heat source application sequence as the last track. In Fig. 2 (d), the layered heat 
source process is shown, with the only difference from the track-heat-source method being the 
material was added layer by layer instead of track by track.  

Results and Discussions 

The predicted transient thermal history from the FEA model was validated with the 
thermocouple data and the comparison results are shown in Fig. 3. TC1 was caught in the laser 
path during deposition and its measured data was peaked out. Only TC0, TC2, and TC3 measured 
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data were used in the model validation process. The comparison between TC0, TC2, and TC3 is 
plotted in Fig. 3 (a), which shows some variance from 0 to approximately 150 seconds and aligns 
well after that until the end of deposition. The mismatch around 150 seconds is attributed to the 
difference in loading method in simulation and reality. In simulation, the heat source was applied 
track by track, but in reality the heat source (laser beam) started from one end and moved to the 
other end of each track, which led to the locations where the thermocouples were attached to be 
heated up gradually and reached a peak temperature every time the laser beam passed over. After 
certain layers, the substrate was heated up and the temperature difference caused by the loading 
methods was reduced. Heat input and heat loss at evaluated locations on the substrate attained 
equilibrium for a period of time.  As the simulation progressed, equilibrium was broken as heat 
loss was larger than the heat input, which resulted in a temperature decrease. This phenomenon 
has been observed in both experimental and simulation data. Based on this validated model, the 
temperature history of the first track’s middle point from the first, ninth, and 18th layers were 
predicted and plotted in Fig. 3 (b), which shows the peak temperature is around 3600 K and close 
to the evaporation temperature of titanium. The layer heat source method validation results are 
shown in Fig. 3 (c), where the same trend is captured after about 150 seconds, meaning the 
simulation and experimental data are well matched. The temperature difference at about 150 
seconds also comes from the difference in simulation and experimental loading methods. The 
predicted middle point peak temperature from the first track of the first, ninth, and 18th layers is 
close to 4200 K using the layer heat source model and exceeds the evaporation temperature of 
titanium. The peak temperature overestimation comes from the lack of cooling time between each 
track or layer compared to the real experiments. 

Comparing these two methods, the track-heat-source method has a better resolution than 
the layer-heat-source method, where the former can capture more thermal details better than the 
latter method. However, compared to the conventional method which applies the heat source spot 
by spot, both methods have a lower resolution.  

Considering the computational time, the track-heat-source method took about 55 minutes 
and the layer-heat-source method took about 5 minutes on a computer with an AMD Phenom™ II 
X6 1090T Processor 3.2 GHz and 16.0 GB RAM hardware. The rougher the prediction model 
implemented, the less computational time is needed and sacrifices accuracy of the results. 
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Fig. 3 Model validation results. (a) temperature comparison with track heat source method, (b) 
prediction of temperature at first, ninth, and 18th layers with track heat source method, (c) 
temperature comparison with layer heat source method, (d) prediction of temperature at first, 
ninth, and 18th layers with layer heat source method. 
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Conclusions 

To conclude, the current work extends the modeling method for fast temperature prediction 
in large-scale part fabrication using the LMD process. The following are the salient conclusions in 
the paper: 

1. Track- and layer-heat-source methods have the capability for fast temperature prediction 
in the LMD process. 

2. Deposit peak temperature was overestimated in both methods and came from sacrificing 
modeling details for the computational time-saving purpose. 

3. The track-heat-source method has a higher resolution than the layer-heat-source method, 
but is relatively slower, taking about 11 times longer computational time. 
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