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Abstract 

Laser metal deposition with wire (LMD-w) is one of the emerging additive 
manufacturing (AM) technologies for large-scale aerospace components due to high deposition 
rates and material efficiency. However, it often results in undesired stresses and distortions due 
to non-uniform expansion and contraction of material during printing. Controlling inter-layer 
time, preheating, and clamping are the effective methods to mitigate the thermally induced stress 
and deformation. In this study, the effect of inter-layer cooling time on part distortion is 
investigated using a finite element method (FEM). The model accounts for actual tool paths, 
power, and cooling conditions. The results show that the model effectively captures the 
fluctuation of the Ti-6Al-4V plate during printing. Also, it shows an asymmetric distortion on the 
plate edges. Ultimately, the sequentially coupled thermal-stress simulation provided a 
quantitative understanding of the inter-layer cooling time on titanium plate distortion for the 
large-scale LMD-w process. 
 
1. Introduction 

Laser metal deposition with wire (LMD-w) is one of the promising Direct Energy 
Deposition (DED) technologies. It is known as an ideal process for large component fabrication 
with moderate complexity since the wire-feeding method offers high productivity due to high 
deposition rates, material efficiency, and a less costly system. However, a few production 
challenges have not been fully resolved in large-scale LMD-w process [1].  

 
A LMD-w system generally consists of a laser heat source equipped on a robotic arm, 

wire feeder, and accessorial systems (e.g., tables, shielding gas, and recording tools such as 
cameras and thermocouples). The laser and wire feeder are moved using an automatically 
controlled robotic arm. The laser heat source melts the substrate, and the metal wire feeder forms 
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a new deposit on the substrate. During printing, the material experiences multiple heating and 
cooling cycles. This induces thermal stress and distortion due to non-uniform expansion and 
contraction of the material because of the repeated heating and cooling. It also contributes to 
form residual stress, resulting in significant distortion after the part is unclamped. 

  
Many researches have studied to find out an optimum control strategy for thermally 

induced stress, residual stress, and resultant distortion in the large part [2, 3]. Mughal et al. [4] 
investigated the effect of inter-layer time on the thermal stress and deformation using 2-D 
thermo-mechanical model. It was found that employing inter-layer cooling can reduce the part’s 
deformation. Zhao [5] et al. also showed that both inter-layer stress and residual stress can be 
reduced by controlling inter-layer cooling time. Aggarangsi and Beuth [6] reported that uniform 
preheating reduces residual stress by a maximum of 18%. However, the inter-layer cooling time 
decreases the production rate, while preheating delivers excessive heat to the deposit particularly 
in continuous printing, resulting in undesirable remelting and poor surface finish. This indicates 
that a compromise should be made to find optimum process parameters.  

 
Numerical simulations have been reported for large-scale AM processes. Ding [7, 8] 

developed a steady state Finite Element (FE) simulation to increase computational efficiency for 
the metal Big Area Additive Manufacturing (mBAAM) process. They showed that stress across 
thedeposit is uniform, but the significant residual stress develops after unclamping, which leads 
to large distortion. Montevecchi et al. [9] developed an FE simulation for mBAAM accounting 
for actual power distribution between filler wire and substrate material. They calculated the 
optimal inter-layer time to achieve constant inter-layer temperature and constant melt pool 
volume. Denlinger [10] developed an FE model using an adaptive coarsening method combined 
with an element birth and death technique to predict the distortion of large-scale part in electron 
mBAAM. Simunovic et al. [11] showed a simulation to predict a part’s distortion for mBAAM 
considering actual tool path and energy information using finite element method (FEM). They 
successfully demonstrated a feasibility of the numerical modeling for a complex large excavator 
arm. Hence, an emphasis on AM process control has been required to mitigate (or eliminate) part 
distortion in large-scale titanium components including inter-layer time.  

 
The aim of the study presented below is to demonstrate part scale heat transfer simulation 

in an LMD-w system and structural corresponds to large-scale part distortion. One of the key 
aspects of this work is to account for the actual tool path, power, and cooling conditions. The 
thermo-mechanical model is validated with in-situ temperature and layer by layer distortion 
measurement. 
 
2. Experimentation 
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2.1. Laser metal deposition with wire 
The experiment was carried out with a six-axis KUKA robot system. A fiber laser with a 

maximum power of 20.0 kW was used as the heat source for the LMD-w system. The laser was 
delivered to the work piece through an optical fiber. The laser spot diameter was 7.4 mm. The 
deposited material was fed from 1.6 mm Ti-6Al-4V wire with an Abicor Binzel wire feeder. The 
experiments were conducted in a closed argon environment with less than 250 ppm oxygen 
content. A laser line scanner was used to measure the bead height and plate distortion. 

2.2. Experimental configuration and observation of the process 
 Configuration of LMD-w experiment consisted of a Ti wall, Ti plate, ceramic washer, 
steel plate, and Al plate as seen in Fig. 1(a). The wall height is11.0 mm for ten-layers of deposit. 
The Ti build plate was mounted on the ceramic washer with 2.54 mm thickness and fastened 
with the steel plate using medium carbon steel bolts with the washer. The bead width was 11.5 
mm, and the double bead deposit was 9 mm center to center as seen in Fig. 1(b). The Ti plate’s 
dimensions were 500 mm (length) x 155 mm (width) x 6.4 mm (thickness) as seen in Fig. 1(c). 
The thermocouples were placed with 100 mm spacing from each other on the Ti build plate 
marked as red spots in Fig. 1(c). The plate scan was implemented in every layer to measure the 
variation of the plate distortion. The measured plate distortion along A-B in Fig. 1(c) was used to 
validate simulation. Unidirectional scan strategy was used to create the 200 mm long deposits. 
The LMD-w station is shown in Fig. 1(d). 

 
Figure 1. Build geometry: the LMD-w station consisted of Ti wall, Ti build plate, ceramic washer, steel plate, 
and Al plate. A bolt clamp was used to fix the Ti build plate to the steel plate. 
 

Figure 2 shows the variation of laser power as a function of time during the build. The 
power surges as the laser beam is powered on and is maintained for approximately 42s to create 
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the first bead. Then, it returns to the start position for about 8s. While the robot head moves to 
the start position, the laser power surges instantaneously at after 2,330s and cuts the wire to 
maintain the constant wire length. The velocity of laser deaccelerates to zero as it approaches the 
edge where the first deposit occurs. Meanwhile, the wire keeps stretching even at zero velocity. 
Consequently, the wire length becomes longer than desired. Then, the beam is turned on for the 
second bead. The inter-layer time is estimated from the time interval between the second beam-
off and third beam-on as illustrated in Fig. 2.  

 
Figure 2. Estimation of inter-layer and bead time from the measurement of laser power. 

 
Three different experimental settings were explored to investigate the relationship 

between inter-layer time and temperature profile. Build 1 was built with clamps attached all 
around the substrate with no pause time between layers. Build 2 was built with clamps attached 
all around the substrate, but a pause for about 30 minutes was taken after the fifth layer. Build 3 
was built with only center clamps attached to the substrate and without pausing the laser. The 
estimated inter-layer time is plotted in Fig. 3 for the builds 1-3. The inter-layer time significantly 
varies with the number of layers and the build settings. The inter-layer time is set in the range of 
91 to 200s. Generally, the inter-layer time is shorter at layers 1-5 and becomes longer at layers 6-
10. This occurs because the temperature increases as the deposit builds up due to a characteristic 
thermal feature of thin walls. In other words, the direction of heat dissipation becomes dominant 
along the build direction, which causes the build temperature to increase as more layers are 
deposited on the plate. Therefore, longer inter-layer time is recommended for constant layer 
temperature. 
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Figure 3 Estimated inter-layer time at (a) build 1 (=all clamps & no pause) (b) build 2 (=all clamps & a pause)  
(c) build 3 (=center clamps & no pause). 

In Fig. 4, the temperature profile is measured at TC-10, 15, and 18 in builds 1-3. 
Temperature at the center (=TC-15) is approximately 100~130 oC higher than that at the left 
(=TC-18) and right (=TC-10) regions. In Fig. 4(d)-(f), there are two peak temperatures observed. 
These peak temperatures occur because there is about a 30-minute pause right after the 5th layer 
is deposited. The pause seems to significantly decrease overall temperature at the TCs. The peak 
temperature at the center of build 2 in Fig. 4(e) is about 80 oC lower than the peak temperatures 
of the same center region in Fig. 4(b) and (h). It was observed that the temperature profile is not 
symmetric on the left and right side of the plate. The salient, non-uniformity was found at the 
center clamped condition in Fig. (g) and (i). The difference in temperature is about 30 oC in build 
3, whereas it is about 18 oC in the builds of 1 and 2. This implies that the bolt clamp leads to 
improved uniformity in temperature on the plate. 
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Figure 4. Measured temperature profile at TC-18, TC-15 and TC-10 in Fig. 1(c), (a)-(c): build 1 (=all clamp & 
no pause), (d)-(f): build 2 (center clamp & a pause) and (g)-(i) build 3 (=center clamp & no pause). 
 
3. Model Development 

The 3-D simulation was implemented based on the numerical solution of heat transfer 
equations. The governing equation was discretized and solved using commercial software, 
Abaqus [12], for heat transfer and stress analyses. The model was sequentially coupled with heat 
transfer-stress analysis such that it assumed that the temperature field was not influenced by 
phase transformation or mechanical deformation. The heat transfer simulation was first 
performed, and the transient temperature field obtained from the analysis was applied as a 
thermal load for the stress analysis. A progressive material activation method was used to 
describe the material addition of the wire. The Ti wall was inactive at the beginning of the 
simulation. Then, as the material deposition started, the elements were activated according to the 
actual path of the beam and wire. The laser power was integrated over time and beam travel 
distance in a specified time step, and then the integrated flux was incorporated into the active 
elements. The key and detailed features of the simulation were addressed in the earlier literature 
[11, 13]. 
 
3.1. Energy Balance in Laser, Wire, Deposit, and Substrate 
 The laser power and wire addition determine the amount of energy input into the process 
and consequently affect the bead geometry. For instance, the higher power results in the wider 
width of a deposited bead. Also, heating the wire affects the stability of the process. Therefore, a 
quantitative evaluation of the energy during the LMD-w process is necessary to determine the 

611



 

 
 

amount of energy coming from each wire (=ELaser) and laser (=EWire). The energy balance 
equations are given below. 

 
Figure 5. Schematic of laser metal deposition with wire (LMD-w) process. 

 
 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐸𝐸𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =  𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (1) 
 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅. + 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. (2) 

The input energy stems from laser and resistance heating at the wire. The generated 
energy is consumed to melt the substrate (=ESubstrate) and create a deposit (=EDeposit) on the 
substrate, as illustrated in Fig. 5. Some energy is lost (=ELoss) by convection (=EConv.) and 
radiation (=ERad.) through the air given in equation 2. Based on energy conservation, the energy 
generated from the wire can be calculated by equation 3. A temperature rise of wire is calculated 
by equation 4 [14]. The predicted value can be used as a simulation input parameter. In actual 
printing, the wire feed rate is actively controlled to maintain a constant deposit height. For 
computational simplicity, the heat generated by resistance heating is incorporated into the laser 
heat input. The beam efficiency value is approximated from the values in the literature [11, 15, 
16], and the efficiency of 70% is selected for the simulation. 
 

 
𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =  𝐼𝐼2 ∙ 𝑅𝑅 ∙ 𝑡𝑡 = �� 𝐶𝐶𝑝𝑝

𝑇𝑇1

𝑇𝑇0
𝑑𝑑𝑑𝑑� ∙ 𝑚𝑚 (3) 

 ∆𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = (𝜌𝜌𝑟𝑟 ∙ 𝐼𝐼2 ∙ 𝑙𝑙) / (𝑣𝑣𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∙ (𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)2 ∙ 𝐶𝐶𝑝𝑝 ∙ 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑) (4) 
  
where Ewire is the energy generated by the resistance heating of wire, I is current, R is the 
resistance of the wire, t is time, Cp is specific heat, T is temperature, 𝑙𝑙 is the wire heating 
extension, 𝑣𝑣𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, and 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑 is the feed rate, area, and density of the wire, respectively. 
 

During the LMD-w process, the laser beam is used as a thermal energy heat source to 
fuse the wire and substrate. The laser beam can be considered as a point-concentrated or 
volumetric ellipsoidal heat source model. In this study, to accelerate the computation speed, the 
point-concentrated heat source is used as a heat input. It is reported that the influence of the heat 
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source type was not strong on the part scale temperature distribution [11]. The mathematic 
equation of the laser heat source is expressed by a given equation 5. 
 

 
𝑄̇𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) =  

2𝑃𝑃𝑃𝑃
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎√𝜋𝜋

exp (−
(𝑥𝑥 + 𝑣𝑣𝑥𝑥𝑡𝑡)2

𝑎𝑎
+
𝑦𝑦2

𝑏𝑏
+
𝑧𝑧2

𝑐𝑐
) (5) 

 
where P is the laser power, 𝜑𝜑 is the beam absorptance, and a, b, and c are the dimensions of heat 
source along x, y, and z axis, respectively. 𝑣𝑣𝑥𝑥 is the velocity of moving the heat source. 
 
3.2. Boundary Conditions and Build Geometry 

The build geometry shown in Fig. 1 was discretized and meshed for the FEM simulation. 
The computation domain was created using mesh and a geometry generation toolkit CUBIT by 
Sandia National Laboratory. Fig. 6 shows the geometry used in the simulation. A different mesh 
size of 1.1 mm for the Ti plate and wall, and 5.6 mm for steel plate were used in the model for 
computational efficiency. Hexahedral elements with DC3D8 and C3D8R types were used for 
thermal and structural simulation. Since two ceramic washers were used to clamp the plates, the 
top and bottom surface of the washer were fully constrained in the x-, y-, and z-directions during 
the simulation. 

 
Although a ceramic washer was used to minimize heat loss by conduction through the 

steel plate, heat conduction still occurred through the contact of the washer and the gap between 
the Ti-plate and steel plate. The close thermal contact is accounted for as a gap conductance 
condition in the simulation. The extent of this region relies on the build constraint conditions, 
temperature, and evolving deformation of the plate [11, 17, 18]. The values of 0.4~0.8 
mW/mm2·oC at the area around the washers and 0.02~0.09 mW/mm2·oC at the other regions 
were used as calibration parameters in this study. 

 
A combined heat transfer coefficient of convection and radiation was used for heat loss 

through the surrounding environment [19]. This equation is expressed below 

 ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜀𝜀 ∙ 24.1 × 10−4 ∙ 𝑇𝑇1.61 (6) 

where ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the combined heat transfer coefficient and 𝜀𝜀 is emissivity. 
 
A simple isotropic plasticity model was used for the mechanical response. The thermo-

mechanical properties were obtained from a material simulation tool called JMatPro [20] and 
additional literature [21, 22]. Homogeneous and temperature-dependent material properties used 
in the simulation are given in the appendix. The values are listed in Table 1-3 for Ti-6Al-4V, 
SS416, and a ceramic washer, respectively. 
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Figure 6. Build geometry of center clamped part, build 3. 

 
4. Results 

An accurate prediction of temperature profile results in better prediction in distortion 
since the structural analysis is sequentially coupled with the heat transfer analysis. Figure 7 
shows a comparison of the predicted temperature profiles with the measured ones. The 
temperature values were extracted from the model time histories at the monitoring locations of 
T10, 15, and 18 as shown in Fig. 1(c). Generally, a higher temperature is observed at the center 
region (=TC15) than the temperature at the left region (=TC18) and right region (=TC10). The 
peak temperatures at the center of Fig. 7(b) continuously increase as the build is deposited, while 
the peaks at the left in Fig. 7(a) and right in Fig. 7(c) are saturated at around 1,700s~2,000s of 
build time. It seems that the rate of heat dissipation by conduction through the center and the 
sides is not identical due to the different contact conditions between the Ti plate, ceramic washer, 
and steel plate. Notice that the Ti plate is tied with the steel plate using steel bolts. The heat 
conduction rate is significantly higher at the bolts. Also, the bolts give an additional pressure to 
the Ti plate, washer, and steel plate. It reduces an air gap between the components and 
consequently leads to an increase of heat transfer through the washers. More energy is extracted 
from the deposit to the plate through the center, but the plate conductivity is the same. Therefore, 
more heat accumulated at the center plate resulting in higher temperatures. The non-uniform 
cooling rate between the center and side regions leads to plate distortion or warping as seen in 
Fig. 8. 
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Figure 7. Validation of the predicted temperature profile with the measured data at the (a) left (=TC18), (b) 
center (=TC15) and (c) right (=TC10) region of the part. 

The total displacement (=U) is shown in Fig. 8 at the tenth layer during cooling. It clearly 
shows that the Ti plate undergoes overall upward bending at the edges. The distortion features in 
Fig. 8 have been exaggerated by three times for visual clarity. 

 
Figure 8. Total displacement of center-clamped and no-pause build at the 10th layer during cooling 
(Exaggerated by three times for visual clarity). 
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 The predicted displacement is compared with the measured data at each layer in Fig 9. 
The plate scan was performed along the line of A-B as shown in Fig. 1(c). The red and blue lines 
indicate the predicted and measured data, respectively. Both experimental measurements and 
predicted results show asymmetric upward bending. For instance, in Figs. 9(g)-(h), the 
displacement value on the left is larger than the right by approximately 10%. Notice that the 
displacement surges by about 20% between 6th and 7th layer. The longest inter-layer time is found 
at the 6th layer. There are some off values observed in the prediction. However, the displacement 
versus distance is generally agreed to be well with the experiment, which proves the accuracy of 
the proposed FEM model approach. 

 
Figure 9. Validation of the predicted total displacement with the experimental data at (a) layer 1, (b) layer 2, 
(c) layer 3, (d) layer 4, (e) layer 5, (f) layer 6, (g) layer 7, (h) layer 8, (i) layer 9 and (j) layer 10, the 
displacement is measured along the scan line of A-B in Fig. 1. 
 

Figure 10 shows the plate distortion during a heating and cooling period. Initially, the Ti-
plate undergoes downward bending as the material is added onto the plate. The newly created 
deposit is hot and expands the volume due to large thermal expansion at the high temperatures 
[10, 23]. The expansion on the hot deposit wall is relatively larger than the expansion on the Ti 
plate such that the plate bends downward. As the part cools during the interval between layers 
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(i.e., inter-layer time), the expanded material shrinks and causes a strong contraction in the center 
region. Consequently, the plate edges are lifted upward, and this results in the plate warping. The 
features of upward and downward bending are repeated until the end of the process. The repeated 
warping feature are well captured by the structural simulation in Fig. 10(a)-(f). The magnitude of 
total displacement is relatively smaller at layer 1, Fig.10(b) than at layer 10, Fig. 10(f). As seen 
in Fig. 3(c), the inter-layer time varies with the number of layers. The magnitude of distortion 
seems to be closely related to the inter-layer time. 

 
Figure 10. Repeated upward and downward plate bending over the build, the downward bending occurs 
during heating (a), (c) and (e) while the upward bending occurs during the cooling (b), (d) and (f). 
  

Figure 11 shows the variation of total displacement at the 1st, 3rd, 6th, 7th, and 10th layer 
during cooling. At the center region, the displacement is minimal over the layers due to the 
clamping condition. The predicted maximum total displacement generally increases with 
increased build height. 
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Figure 11. Variation of max. total displacement at the (a) layers 1, (b) layers 3, (c) layers 6, (d) layers 7 and (e) 
layers 10, the displacement generally increases over the printing process. 
 
 The variation of total displacement was obtained at 100 mm (A’) and 400 mm (B’) on the 
line of A and B in Fig. 1(c) and compared with the predicted values for quantitative analysis. The 
blue and orange solid lines represent the predicted results at the monitoring locations. The red 
squares and green rhombuses indicate the corresponding measured values. Blue cross and black 
triangle denote simulation outliers, which are the maximum offset values from the experiment. 
Overall, the displacement increases as the more layers were deposited as shown in Fig. 12(a). It 
has been agreed that the trend in the simulation of this experiment has an accuracy of 90% at the 
left and 87% at the right on average (the outliers are not included for the calculation in Fig. 
12(b).). Notice that the displacement values are not identical on the A (=left) and B(=right) 
regions of the plate. This indicates that the distortion is asymmetric, and the plate bends more on 
the left side. It is likely attributed to the fact that the thermal conditions are not consistent due to 
the unidirectional scan direction. 
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Figure 12. Variation of total displacement at 100 mm (A’) and 400 mm (B’) on the line of A and B, upward 
trend in the prediction and experiment are well agreed. It shows that the distortion is not symmetric at the 
sides. The accuracy is approximately 90% and 87% at the left and right region. 
 
5. Summary and Conclusion 

In this paper, the sequentially coupled thermal-stress simulation was conducted for a 
large-scale LMD-w process to provide a quantitative understanding of the inter-layer cooling 
time on Ti plate distortion. Through the experimental and numerical investigation of the process, 
the following conclusions can be drawn: 

• The simulation effectively captures thermally induced part oscillation of the Ti-plate 
during the deposition of material. 

• The large-scale simulation shows about 90% accuracy in displacement prediction. It 
indicates that the proposed simulation provides reliable results for the LMD-w process. 

• The distortion is asymmetric at the Ti- plate edges due to different thermal conditions 
stemming from the unidirectional scan direction. 

• The inter-layer time of a couple of minutes seems not to have a considerable influence on 
the distortion in the large-scale part. 

Although only a simple double track simulation is conducted, the modeling approach 
shows a potential to aid in understanding the distortion behavior during the large-scale process. 
Ongoing work includes an extension of the simple two beads to complex geometry, residual 
stress, and microstructure prediction. The heat transfer simulation needs to reduce the time step 
to precisely capture the temperature profiles at around the melting temperature of the material. 
Then, the model may be used to control microstructure and stress evolution to guarantee the 
desired mechanical properties in the LMD-w process. 
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8. Appendix 

 
Table 1. Material properties of Ti plate and wall used in the model [20, 21] 

Temp 
(oC) Density Cond. Specific 

Temp 
(oC) Exp. E 

Poisson 
Ratio 

Temp 
(oC) Yield 

Plastic 
Strain 

110 

4.42 

7.2 5.6 93 12.1 101 0.33 
20 1000 0.00 
20 1200 0.03 

210 8.8 5.8 205 12.5 94 0.33 20 1300 0.08 
310 10.4 6.0 315 12.9 88 0.33 20 1320 0.13 

410 11.9 6.2 425 13.3 82 0.33 
400 680 0.00 
400 850 0.03 

510 13.5 6.5 540 13.8 77 0.33 400 900 0.08 
610 15.1 6.7 650 14.2 72 0.33 400 910 0.13 

710 16.6 6.9 710 14.4 67 0.33 
600 700 0.00 
600 630 0.08 

810 18.2 7.1 870 15.0  62 0.33 600 620 0.18 
910 19.8 7.3 * Latent Heat: 2.86 e+11, 

1604 oC (S), 1650 oC (L) 
*DENSITY: e-9 tonne / mm3 
*SPECIFIC HEAT: e+8 mJ / 

(tonne.C) 
*CONDUCTIVITY: mW / 

(mm.C) 
*EXPANSION: e-6 /oC 
*ELASTIC: e+3 MPa 

*PLASTIC: MPa 
*Latent Heat: mJ / tonne 

600 610 0.28 
1010 

4.34 

21.4 7.5 800 200 0.00 
1110 22.9 7.8 800 210 0.08 
1210 24.5 8.0 800 200 0.18 
1310 23.6 6.9 800 195 0.28 
1410 24.8 7.1 1100 19 0.00 
1510 26.1 7.3 1100 18 0.08 

1610 27.4 7.5 
1100 18 0.18 

 1100 18 0.28 
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Table 2. Material properties of steel (SS416) plate used in the model [20] 

Temp (oC) Density Cond. Specific Temp(oC) Exp. E Poisson 
Ratio Yield 

110 

7.73 

18.4 4.8 93 12.1 210 0.33 354 
210 19.6 5.2 205 12.5 203 0.33 306 
310 21.0 5.7 315 12.9 194 0.33 279 
410 22.5 6.2 425 13.3 183 0.33 258 
510 23.8 7.0 540 13.8 169 0.33 246 
610 24.8 8.1 650 14.2 155 0.33 237 
710 25.6 10.1 710 14.4 146 0.33 167 
810 26.5 7.4 870 15.0 123 0.33 95 
910 27.5 7.0 

* Latent Heat: 2.72 e+11, 1265 oC (S), 1500 oC (L) 
*DENSITY: e-9 tonne / mm3 

*SPECIFIC HEAT: e+8 mJ / (tonne.C) 
*CONDUCTIVITY: mW / (mm.C) 

*EXPANSION: e-6 /oC, *ELASTIC: e+3 MPa 
*PLASTIC: MPa, *Latent Heat: mJ / tonne 

1010 28.6 6.9 
1110 29.8 7.0 
1210 30.9 7.1 
1310 32.0 7.4 
1410 33.1 8.5 
1510 32.5 - 

 
Table 3. Material properties of ceramic washer used in the model [22] 

Temp (oC) Density Cond. Specific Exp. E Poisson Ratio Yield 
25 0.24 2.5 4.50 12.17 207 0.33 345 

*DENSITY: e-9 tonne / mm3, *SPECIFIC HEAT: e+8 mJ / (tonne.C),  
*CONDUCTIVITY: mW / (mm.C), *EXPANSION: e-6 /oC  

*ELASTIC: e+3 MPa, *PLASTIC: MPa 
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