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Abstract

Design optimization of laser metal 3D printed structural components requires prediction of
build-process induced residual stresses that vary with part geometry and affect distortion and sup-
port requirements during the build. Finite element residual stress state evaluation is not feasible
within the computational constraints of iterative optimization. Alternatively, a simplified theoreti-
cal model is presented for predicting the residual stresses induced during Selective Laser Melting
of maraging steel. Furthermore, a Design of Experiments (DOE) approach is implemented to ver-
ify the theoretical model and develop a response surface suitable for design optimization. The DOE
uses cantilever geometry with length, thickness, and fillet radius as variables and shows overhang
length to have the greatest influence on residual stresses. Geometries with high stiffness lead to
lower deformations and tend to retain high stresses. The presented model can predict the trend of
residual stresses for different geometries and can be used in shape optimization.

1 Introduction

Selective Laser Melting (SLM) is a layer by layer additive manufacturing (AM) process which
produces high density parts with relatively good surface finish and has the capability to fabricate
intricate structures up to 0.1 mm thickness [1], [2]. However, parts produced by SLM retains
high residual stresses and could deform after separation from build plate, resulting in poor dimen-
sional accuracy [3]. To account for these factors in part design, computationally lightweight design
techniques are required which can precisely estimate the effect of part geometry on the resulting
stresses and deformations. Many authors have worked on the finite element modeling of the SLM
process and have successfully estimated induced residual stresses [4–6], however, these methods
are computationally expensive and cannot be used in an iterative design process such as topology
or shape optimization. Another approach is to experimentally develop a response surface for the
geometric features which are to be optimized for induced stresses and distortions, as suggested by
Taylor et al. [7].

To date, limited research has been performed on the stress characterization of maraging steel
fabricated by SLM. It is well known that additive manufacturing of Ti6AL4V and AlSi10Mg leads
to steep temperature gradients and high thermal shrinkage resulting in residual stresses which
are tensile near the top and bottom surfaces and compressive in between [8]. However, parts
made of maraging steel and H13 tool steel contain compressive stresses in top and bottom re-
gions and tensile stresses in middle which can be attributed to martensite phase transformation
resulting in volume expansion [9], [4]. AM fabricated maraging steel usually contains 90 to 95%
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martensite (α) owing to the chemical composition of maraging steel and thermal stresses in added
layers [10, 11]. High tensile stresses which are initially induced due to thermal shrinkage cause
deformation-induced martensite transformation which stimulates the phase transformation well
above martensite start temperature [12] and leads to high volume expansion [13].

This paper presents an analytical model for characterization of residual stress in additive manu-
facturing of Maraging Steel 300 by SLM. The model considers the layer-by-layer stress and strain
development and can predict the trend of residual stresses for different process parameters and
part geometries. Furthermore, resulting part deformation post base plate removal are evaluated by
importing residual stress profiles predicted by the model into the Ansys APDL solver for mechan-
ical analysis. Section 2 and 3 outlines the theoretical model and section 4 discusses the results of
the model and compares them with a DOE study [7]. Section 5 summarizes the conclusions and
discusses the future scope of this study.

2 Theoretical model

SLM is a powder bed fusion AM process where a blade or roller adds a layer of powdered
material on top of a base plate which is scanned by a high intensity laser beam, heat energy from
the laser melts the powder which rapidly solidifies owing to the high heat conductivity of the base
plate. This process is repeated until part fabrication is complete. Macelis and Kruth [8] presented
a simplified theoretical model for the SLM process assuming that thermal shrinkage of an added
layer induces tensile stresses equivalent to yield strength of the material and a linear strain profile
through the base plate-part combination. Force and moment equilibria are then used to calculate
residual stress profile of the part-base plate combination. However, in the case of maraging steel
as the added layer cools down and reaches martensite start temperature these tensile stresses aid
in the phase transformation which is accompanied by volume expansion as shown in Figure 1a
where the dilatometric loop for the cases when no load is applied and when tensile loads of 29
and 50 MPa are applied just before the martensite phase transformation [13]. This expansion is
substantial enough to negate the tensile strain due to thermal shrinkage and induces compressive
strain instead, as shown by Figure 1b.

(a) (b)

Figure 1: (a) Dilatometric loop under applied stress [13], and (b) estimated strain development in
added layer
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The model presented here assumes a compressive strain εT in the added layer. Furthermore,
supports are usually preferred to facilitate easy removal of the part from base plate and for overhang
features and are thus added in the theoretical model. The model is based on strain energy, force,
and torque equilibria along with the following assumptions to evaluate the stress and strain profiles
within the part,

• Longitudinal stress (σxx) is independent of y coordinate,
• The general beam theory is valid,
• Added layers have a compressive strain (εT ),
• No external forces are applied to the combination base plate-support-part, and
• A linear strain profile throughout the base plate, supports, and part.

Strain in added layer: K. Nagayama et al. [13] suggested that total strain due to martensite
phase transformation at any given temperature is,

εT (T ) = εMs + εtrip + (δ/3)ζ − (Ms− T )(αA(1 − ζ) + αMζ) (1)

where, εT (T ) is the total strain at temperature T, εMs is strain at martensite-start temperature,
εtrip is strain due to transformation induced plasticity, ζ is volume fraction of martensite, δ/3 is
eigen strain due to transformation where δ is transformation expansion, and αA and αM are coeffi-
cients of thermal expansion for austenite (parent) and martensite phase respectively. Furthermore,
the magnitude of εT (T ) considerably depends on the applied stress and net volume expansion is
higher for when tensile load is applied [13]. In the case of laser melting of maraging steel applied
load at marteniste start temperature is equivalent to yield stress and drops rapidly once phase trans-
formation begins. Hence a precise estimation of εT (T ) for the current study is not feasible. An
initial estimate of εT (T ) = σy/3Ep is used for the theoretical model and is later calibrated from
the results of a DOE study [7].

Support structure (Es)

Base plate (Eb)

Feature 1 (Ep)Feature 2
(Ep)z

x

hp

hs

hb

Figure 2: Part geometry

Strain profile: Figure 2 shows the part geometry, support structure orientation, and base plate
dimensions used for the current study. A linear strain profile, az + b over the base plate and
a2(z − hb) + b2 over the support structure and part combination is assumed, where a2 is given
by a (Eb/Es) and b2 is simply ahb + b, where hb is height of the base plate, and Eb and Es are
effective elastic moduli of base plate and support structure respectively,

εb = az + b (2)

εs = a

(
Eb

Es

)
(z − hb) + ahb + b (3)
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and strain in part (εp) is evaluated from equation 4 and 5 layer by layer.

Strain energy conservation: newly added layers will induce a compressive strain (εT ) which
will lead to a very small deformation of the whole structure, as layer thickness is usually less than
100µm. Since the resulting deformation are very small it is assumed that strain energy of the base
plate, support structure, part, and added layer is conserved before and after layer addition because
conservation of strain energy requires that applied loads (strain in added layer) must be equivalent
to the strain energy developed in a body as it deforms.
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where, Ep and Eb are Young’s Moduli of part and base plate respectively, Es is effective Young’s
Modulus of support structure in longitudinal (x) direction, εT is strain in added layer, εb, εs and εp
are strains in base plate, support structure and part respectively, ε′b, ε′s and ε′p are strains in base
plate, supports structure and part after adding of new layer, and hb, hs, hp, and t are height of base
plate, supports, part and the added layer respectively.

Force and torque balance: since no external forces are applied to the whole structure, force
and torque balance will always be maintained, as given by equation 5,
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dz = 0 (5)

3 Model implementation

Theoretical model discussed in previous section is used to predict the stress profile of the part
shown in Figure 2. The part is divided in two features because the overhang (feature 1) is built
on supports and has a uniform layer length whereas the radius (feature 2) is built directly on the
base plate and its layer length changes with height. Stress evaluation for both features is carried
out separately, this is possible as according to the model strain in any layer depends only on the
stresses and stiffness of underlying material.

Stress profile for feature 1: to obtain the stress profile in the base plate-support-part combina-
tion, equation 2 to 5 are solved numerically for the following process parameters: Eb = 200 GPa,
Es = 70 GPa, Ep = 160 GPa, hb = 20 mm, hs = 5 mm, hp = 2 mm, t = 40µm, and
εT = −0.001875. Furthermore, residual stress in the part after support removal is calculated by
adding a relaxation stress (pz + q) to the stress profile of the part. Since force and torque balance
have to be maintained post part separation, Equation 5 is solved again to evaluate the relaxation
stress [8]. Figure 3a shows compressive stresses in the part which increase with the part height,
tensile stresses in supports, and a linear profile of stress in the base plate, being compressive at
bottom and tensile at the top. There is a sudden drop in residual stress magnitude from base plate
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to support structure as the elastic modulus of supports is much lower than base plate. Figure 3b
shows the residual stress profile in the part post separation from support structures. The part re-
tains very low residual stresses owing to stress relaxation due to deformation of the part such that
resulting stress profile is compressive at the top and bottom regions and tensile in between.
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Figure 3: Residual stress profile (a) before support removal and (b) after support removal

Stress profile for feature 2: to use the same theoretical model for this feature, we need to
account for the increase of layer length in Equation 4 and 5 as the part grows in height. As shown
in Figure 4b, ∆L part of added layer is free to deform and does not contribute to the strain profile
of the part, to accommodate that, stiffness (Eb(n)) of layer n is changed to Eb(Ln−1/L0), where
Ln−1 is the length of layer n− 1 and L0 is the initial length of the part as shown in Figure 4a. The
length of layer n at any height h is given as,

Ln = L0 + (R−
√
R2 − (h− h1)2) (6)

where, R is the radius of the fillet and h1 is the part height at which the fillet begins. However,
once this layer solidifies and another layer is added on top, the stiffness of the whole layer has to
be considered i.e. Eb(n) should be Eb(Ln/L0) .
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Figure 4: Mathematical modeling of fillet (feature 2)

627



Figure 5 shows the residual stress profile with in the part and base plate. Process parameters
similar to that of previous case were used except for part height of 7 mm, fillet radius of 4 mm,
h1 = 1 mm, and L0 = 5 mm were taken as geometric dimensions.
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Figure 5: Residual stress profile for feature 2 before part separation

4 Results

The Influence of certain process parameters on AM induced residual stresses were evaluated
from the theoretical model. The stress profiles obtained from the model were used to estimate part
deformations which were then compared with the results obtained from a DOE study conducted
by Taylor et al. [7].

4.1 Theoretical model

Figures 6 to 12 shows the stress profiles obtained from the model. Process parameters used:
Eb = 200 GPa, Es = 70 GPa, Ep = 160 GPa, hb = 20 mm, hs = 5 mm, hp = 2 mm, t = 50µm,
εT = −0.001875.

Figure 6a shows the residual stress profiles of the part, support, and base plate and Figure 6b
shows the residual stress profile of part post support removal for effective support stiffness of 40,
80, and 120 GPa. It can be observed that longitudinal stiffness of support structure has a significant
effect on the residual stress profile of the part and would consequently affect the part distortion after
support removal. Figure 7 shows the influence of base plate stiffness. However, if supports are used
then base plate stiffness has a minimal influence of the stress profiles as shown in Figure 8. Figure
9 shows the influence of part height, as the part grows in thickness, residual stresses retained post
part removal increases and so does the stresses in base plate and support structure. As the part
grows in height, supports and base plate could deform plastically making it difficult to analyze the
stress profile for overhang geometries with height greater than 4 mm. Figure 12 shows the effect
of fillet radius used in feature 2 (shown in Figure 2). For the stress evaluation of feature 2 similar
process parameters as before were used except for the total part height of 7 mm and part height of
2 mm above the fillet were used.
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Figure 6: Stress profiles for effective support structure stiffness of 40, 80, and 120 GPa
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Figure 7: Stress profiles for base plate stiffness of 100, 200, and 300 GPa (without supports)
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Figure 8: Stress profiles for base plate stiffness of 100, 200, and 300 GPa (with supports)
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Figure 9: Stress profiles for part height of 2, 4, and 6 mm
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Figure 10: Stress profiles for support structure height of 2.5, 5, and 7.5 mm
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Figure 11: Influence of induced stress ( εT × Ep ) in added layer
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Figure 12: Stress profiles for fillet radii of 2, 3, and 4 mm

4.2 Design of Experiments

Results of DOE study conducted by Taylor et al. [7] were used to validate the theoretical model
where an overhang geometry similar to Figure 2 was used to conduct a 3 factor 2 level, full factorial
DOE [7]. Figure 13 shows the overhang specimen used for the DOE study before and after support
removal. Table 1 lists the specimen dimensions and results of the study. Influence of all three
features on the end deflection of the overhang feature is given by Equation 7,

Def(A, B, C) = (−3.52 + 0.92A− 1.81B − 0.23C + 0.09AB + 0.29AC − 0.29BC

+0.23ABC) × 10−2 (7)

where, A is overhang thickness, B is overhang length, and C is fillet radius. To evaluate overhang
deflection residual stress profiles predicted by the model were imported into Ansys APDL as initial
state of the elements using the inistate command of the APDL solver. The theoretical model was
initially calibrated for the strain in added layer (εT ). The First specimen was used to evaluate εT
and the predictions of the end deflection for all the other specimens are listed in Table 1.

(a) (b)

Figure 13: Overhang feature specimen (a) as built and (b) post support removal [7]

DOE results for parts with a thickness of 4 mm show much lower distortion, it is likely due
to localized stress concentration in the support structures resulting in plastic strain which could
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lead to stress relaxation within the part. Since the model only considers longitudinal stresses and
does not account for variation in thermal conductivity with part geometry, precise estimation of the
resulting distortion and residual stresses is not feasible. However, qualitative effect of geometric
features on residual stresses and distortions can be predicted. If a uniform support geometry was
used in the DOE study, results from the theoretical model would be more comparable, as strain
profile over the support structure height would be consistent. Furthermore, cyclic thermal loading
of underlying layers as new layers are scanned by the laser could lead to stress relaxation which is
not considered in the theoretical model.

Table 1: Results from theoretical model and DOE

Overhang Fillet Thickness End Deflection (mm)
Length (mm) radius (mm) (mm)

DOE Theoretical model
20 3 2 -0.053 -0.053
15 3 2 -0.025 -0.027
20 5 2 -0.074 -0.057
15 5 2 -0.025 -0.029
20 3 4 -0.043 -0.060
15 3 4 -0.010 -0.030
20 5 4 -0.043 -0.068
15 5 4 -0.008 -0.035

5 Conclusions

A theoretical model has been presented that adds the effect of martensite phase transformation
in maraging 300 steel to previously developed residual stress predictive models. This model can
be effectively used to predict the influence of various process parameters and part geometry on
residual stress profiles within the part before and after separation from the base plate for additive
manufacturing of maraging steel.

The model suggests that stiffness of supports in longitudinal direction plays a vital role in the
resulting residual stresses and part distortions post support removal. Weaker support structures
are usually preferred for additive manufacturing to facilitate easy removal and to avoid material
wastage however, current study illustrates that such supports will lead to high residual stresses and
lower dimensional accuracy. Similar results were obtained by Hussein et al. [14] where different
lattice structures, their manufacturability, and effect on part distortion were studied.

Much future work remains and is planned to further develop this model to include the influence
of stress relaxation due to cyclic thermal loading as further layers are scanned on top. For the
residual stress experiment, factor levels will be refined to explore realistic limits. Support structure
configuration factors will be added to include the effect of support stiffness on residual stress
development. Further, residual stress in the, as-built and post support removal, DOE specimens
will be measured for the validation of proposed model.
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