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Abstract 

The ability of additive manufacturing to develop parts with complex shapes has 
increased the bandwidth of product design. This has facilitated the use of Topology 
Optimisation (TO) techniques to optimise the distribution of material throughout the part, 
thereby obtaining minimum weight without compromising the mechanical performance of the 
component. In this study the Bi-directional Evolutionary Structural Optimisation (BESO) 
algorithm was used to generate topologically optimised lattice unit cells. A simple bending 
beam with 50% reduced volume was printed in two different unit cell arrangements using 
Selective Laser Melting (SLM) process. Prior to printing, the density of SLM-printed AlSi12 
samples was enhanced by using appropriate scanning strategy. The flexural properties of these 
topology optimised beams were compared with the solid beam. The topologically optimised 
beams absorbed about seven times more energy per unit volume till the displacement of 
maximum bending load when compared with the solid beam at the same displacement.  

Keywords:  BESO method, Selective laser melting (SLM), scanning strategy, flexural testing, 
energy absorption 

Introduction 

Manufacturing industries, like automobile and aerospace, are ever evolving in different 
technologies to improve component performance. One of the most desirable result for these 
industries is to reduce component weight by significant proportions. A prospective direction of 
reducing weight of any component is during its design phase. Topology Optimisation (TO) is 
a design solution which mathematically solves for optimal material distribution within the 
required design domain under a set of constraints. Application of TO for structural components 
would significantly lower the part cost. There are many topology optimisation approaches like 
homogenization method, Solid Isotropic Material with Penalization (SIMP), level-set method 
and Bi-directional Evolutionary Structural Optimisation (BESO), which have been widely 
discussed [1]. Due to their simplicity, SIMP and BESO methods are popular with regards to 
generating design suitable for practical applications [2].  

In the case of structural optimisation, SIMP method considers element density as a 
variable and assigns relative densities to each element based on the stiffness values [3]. The 
design solution of this approach leads to elements with intermediate relative densities between 
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0 and 1, which are difficult to manufacture without converting the intermediate density regions 
into solid regions.  This approach has been embedded in the commercial software like TOSCA 
for ABAQUS [4], GTAM for ANSYS [5] and Inspire for Altair Hyperworks [6]. Most 
commercial software use iso-surfacing techniques to convert the intermediate density elements 
(having relative densities between 0 and 1) into solid elements (relative density of 1). The 
conversion of elements with intermediate relative densities into solid elements would slightly 
increase the volume of the material in a topology optimised design. BESO method considers 
elemental densities as design variables for structural optimisation but only assigns elemental 
densities with discrete values, 0 or 1 [7]. As a result, the design solution obtained consists of 
void or solid elements, which could be easily manufactured with the help of Additive 
Manufacturing (AM) techniques.  

Lattice structures are an ideal weight reducing solution which have been widely studied. 
Structural members consisting of repetitive lattice units have found to have better structural 
properties [8]. Incorporating design solution with lattice units would find application in fields 
like biomedical, automotive and aerospace industries [9, 10]. Also, there is a need to 
incorporate lattice units which are optimised to undertake loads pertaining to specific design 
problems. Moreover, there are commercial softwares like nTopology and Autodesk Netfabb 
that have successfully incorporated lattice design optimisation.  

Topology optimised complex designs are successfully manufactured using plastic 3D 
printing and have performed as per design requirements [11-13]. Most studies have been 
directed towards manufacturing TO design products with AM processes like FDM and SLS. 
Very limited studies have been undertaken to apply methods to couple TO designs with metal 
additive technique like Selective Laser Melting (SLM) [14]. SLM is a metal powder-bed 
additive manufacturing technique, where the powder is melted with the help of laser source 
and is solidified quickly in an inert atmosphere. With precise control over the melting of the 
metal powder, this process creates part with high dimensional accuracy. However, the process 
is complex with several processing parameters affecting the relative density of the final part 
[15, Rashid, 2017 #153]. 

The objective of this study is to topologically optimise a simple beam for three point 
bend testing using lattice units and subsequently compare the flexural properties of 
topologically optimised beams with the solid beam. A modified BESO topology optimisation 
algorithm was used to generate two repetitive lattice units within the design region of the beam. 
The solid and topology optimised beams were printed using the SLM process with the machine 
specified processing parameters. 

BESO Topology Optimised Lattice Units 

A case study of a simple bending beam was studied, which could be extended to 
complex designs in later studies. A beam simply supported between a span of 70 mm, having 
a total length of 90 mm and a square cross section of 22.5 mm side, with a mid-point load was 
considered for topology optimisation. The beam dimensions and span length were selected 
based on published work by Rahman Rashid et. al. [16]. The considered condition for topology 
optimisation of the beam was to maximise stiffness of the beam with a 50% reduction in 

636



volume. The design and non-design region for the beam is shown in Figure 1 (a). When the 
structural BESO algorithm [17] is applied to the non-design region, a design solution is 
obtained as shown in Figure 1 (b). 

Figure 1. a) Solid beam (not topologically optimised); b) topology optimised beam without 
periodic constraints. 

Topology optimisation could be used for this problem to generate homogeneous, 
symmetric or periodic material distributed designs with the help of optimised lattice units. 
Huang and Xie [18] reported that a modified BESO algorithm could be used to obtain unique 
topology optimised lattice units. The algorithm divides the design region into A×B lattice units, 
with A as number of lattice units in the X-direction and B as number of lattice units in Y as 
direction. The number of lattice units along the X and Y direction are selected by the designer. 
As an illustration, the design region shown in Figure 2 is divided into lattice units with 4 and 3 
lattice units along X and Y direction, respectively. Therefore, the algorithm allows designers 
to select different periodic lattice units within the design region leading to unique designs.  

Figure 2. Design space divided into 4×3 lattice units, with grey region representing the 
elements which are linked to each other. 

The conventional BESO method allows the addition or removal of elements from the 
entire design space based on their stiffness values. On the other hand, in this algorithm, the 
elements are added or removed from each lattice unit design region simultaneously. For 
example, the elements in grey colour, as shown in Figure 2, are linked to each other due to their 
similar location within the lattice units. Removal (or addition) of one such element in one lattice 
unit based on its stiffness value, would correspond to removal (or addition) of similarly located 
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elements in other lattice units. This leads to same lattice unit design within the design region. 
The algorithm could also be used to vary the design of the lattice units by controlling the 
number of units along the X and Y axes directions. 

Based on this algorithm (explained in detail in [18]), an ABAQUS subroutine was 
developed to obtain topologically optimised beam with lattice units.  A 2D beam with boundary 
conditions shown in Figure 1 (a) was considered for implementation of the algorithm in order 
to significantly reduce computation costs. The beam material considered for optimisation was 
isotropic in nature with Young’s Modulus of 1GPa and Poisson’s ratio of 0.33 as per the 
algorithm developed by [18]. The optimisation was done to minimise stiffness of the beam 
while reducing the volume of the beam to 50% while having periodic lattice units within the 
design region.    

Two different variations of the optimised lattice units were considered for this study 
such that the design space was divided into 8×3 and 12×3 topology optimised lattice units. 
Specifically, the two design solutions had eight and twelve lattice units, respectively, along the 
length of the beam and three lattice unit along the height of the beam as shown in Figure 3 (a) 
and (b). Due to the removal/addition of elements in the optimised lattice units, the boundaries 
tend to have jagged boundaries as shown in Figure 4 (a) which are prominent in topology 
optimised design solutions. Therefore, a further boundary smoothening program (code 
presented in [19]) was applied to the optimised lattice unit design to obtain smooth boundaries, 
as shown in Figure 4 (b). The BESO lattice unit beam designs were too complex for fabrication 
using conventional machining. Hence, the beams were manufactured using Selective Laser 
Melting (SLM) additive manufacturing process. 

Figure 3. a) 8×3 periodic lattice topology optimisation design; b) 12×3 periodic lattice 
topology optimisation design. 

Figure 4. a) Optimised lattice units with jagged boundaries; b) optimised lattice units post 
boundary smoothening process (LU – lattice unit). 

SLM Process Parameters 

The solid beam (shown in Figure 1 (a)) and BESO optimised lattice unit beams (shown 
in Figure 3 (a) and (b)) were printed using 3D Systems ProX 200 SLM machine. The samples 

638



were printed using pre-alloyed AlSi12 powder which was acquired from 3D Systems. The 
obtained powder was then sieved to less than 45 µm. The powder particles were found to be 
pre-dominantly spherical in shape, which enhances the compactness of the powder layer for 
high density SLM parts. The samples were printed using machine specified process parameters 
presented in Table 1. The machine specified scanning strategy, referred as Scan H, was 
explained in detail elsewhere [20].  

Table 1.SLM process parameters used to build AlSi12 samples 

Laser Power 
(W) 

Scan speed 
(mm/s) 

Layer 
thickness 

(µm) 

Hatch 
distance 

(µm) 

Defocus 
Distance 

(mm) 

Scanning 
Strategy 

285 2500 40 100 -4 Scan H 

In order to ascertain the relative density of the samples, analysis of the optical images 
were carried out. The microscopic analysis of SLM-printed samples was found to determine 
relative density with acceptable accuracy when compared to density measurement using X-Ray 
CT scan method [21, Rashid, 2017 #158]. The sample with square cross-section of 15mm edge 
and build height of 5mm was cut from substrate plate, mounted in epoxy resin and polished to 
observe under the optical microscope. The relative density was measured using Olympus 
Stream Motion software from optical microscope images of the polished surfaces as shown in 
Figure 5.  It was found that the average relative density of the SLM-printed sample measured 
at three random surfaces along the build direction was 97.3 ± 1.0 %. 

Figure 5. Macroscopic image of sample taken using optical microscope to measure relative 
density. 

Using the SLM processing parameters mentioned in Table 1, the solid beam and 8×3 
and 12×3 topology optimised lattice unit beams were printed in three separate batches. The 
SLM-printed samples were built with solid support structures of 3mm, making the entire build 
height of samples as 25.5mm. Subsequently, the SLM-printed beams were cut off the substrate 
and machined to a height of 22.5 mm.  Figure 6 shows five samples each of the two topology 
optimised lattice units. Furthermore, prior to cutting the samples off the substrate plate, stresses 
in the SLM built samples were minimised by applying stress relief heat treatment. 
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Figure 6. AlSi12 SLM-printed 8×3 lattice unit beams (left) and 12×3 lattice unit beams 
(right). 

Flexural Bending Test 

The bending tests were carried out on the MTS 50 kN machine with the test setup as 
shown in Figure 7. A quasi-static velocity of 3.33 mm/s was arbitrarily used in the bending 
tests. The force values were recorded with the help of the machine dynamometer and the 
deflection at the centre of the beam was recorded with the help of laser video extensometer. 
The span between the two circular rollers was set to 70 mm. 

Figure 7. Bending test setup. 

The experimental results were analysed and the graph between force and displacement 
was plotted as shown in Figure 8. The average maximum bending load, average deflection of 
the beam at maximum load and average deflection of the beam at complete failure1 of three 

1 ‘Complete failure’ was considered to have been achieved when the load bearing capacity of the test specimen 
was reduced to 0. 
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samples each of solid, 8×3 and 12×3 beams are tabulated in Table 2. All beams failed in a 
brittle manner. It was observed that the lattice unit beam’s initial fracture occurred at smaller 
displacements and the magnitude of maximum bending load was lower when compared to the 
solid beam. Since, the 8×3 and 12×3 lattice beam had multiple connecting links due to which 
the early failure occurred followed by total failure in a disrupted fashion. Similar observations 
were also reported in the previous publication [16] where structures containing triangular and 
hexagonal lattices showed disruptive failures. Moreover, fracture pattern of the optimised 
lattice unit beams are shown in Figure 9. It was observed that the bottom horizontal link had 
the first point of failure, followed by the failure in the links as shown in Figure 9. 

Figure 8. Load vs. displacement behaviour of the SLM-printed AlSi12 samples under 
bending load. 

Table 2. Bending test results for solid and two TO beam types 

Beam Type 
Maximum 

Bending Load 
(kN) 

Deflection at 
maximum 

bending load 
(mm) 

Deflection 
at complete 

failure 
(mm) 

Solid 31.45 ± 2.82 1.39 ± 0.03 1.39 ± 0.03 
8×3 14.97 ± 0.83 0.89 ± 0.10 1.68 ± 0.11 

12×3 11.03 ± 1.07 0.73 ± 0.16 1.84 ± 0.63 
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Figure 9. Failure pattern of the optimised lattice unit beams with direction of crack 
propogation; top – 8×3 lattice unit beam, bottom – 12×3 lattice unit beam. 

Discussions 

The performance of the beams in bending is evaluated by comparing energy absorbed 
per unit volume 2 during the flexural tests prior to complete failure. It was found that the total 
energy absorbed per unit volume by the BESO-optimised (TO) lattice unit beams were higher 
than that of the solid beam as shown in Figure 9. Also, the energy absorbed per unit volume 
till maximum load of 8×3 beams were superior than that of solid and 12×3 beams. This 
indicates that the optimised beams with adequate periodicity of lattice units performs better 
than the solid beam in energy absorbing applications. Similarly, lattice units with excellent 
energy absorbing ability were observed by du Plessis et. al. [22] in a recent publication. Further, 
the reason for the higher energy absorption is that fracture occurs in links along the loading 
direction one after another. This allows sufficient energy absorption by links prior to complete 
failure. But in the case of solid beam, initial crack in the beam causes instantaneous failure. It 
was also found that the BESO lattice unit beams reached maximum bending loads at very small 
displacement when compared to the solid beam. This implies that the application of BESO 
lattice units printed using SLM, in this case, could be restricted to applications where the 
deflection is not higher than 0.7 mm. Also, these attributes are generally related to structural 
members designed using lattice units.  

The performance of the beams was also compared with the help of ratio of energy 
absorbed per unit volume at the point of maximum bending load (i.e. where the fracture 

2Energy absorbed per unit volume by the beam is the ratio of the area under the force vs displacement plot to the 
material volume of the beam under consideration. 
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occurred). ‘Rs’ is the ratio of average energy absorbed per unit volume by BESO lattice unit 
beam till the deflection at maximum bending load to average energy absorbed per unit volume 
by the solid beam at the same deflection. The ratio is calculated and tabulated in Table 3 for 
8×3 and 12×3 beams. It could be concluded that the BESO lattice unit beams could absorb 
more energy per unit volume i.e. around seven times, when compare to energy absorbed per 
unit by the solid beam. 

Figure 10. Comparison of the total energy absorbed per unit volume and energy absorbed per 
unit volume till maximum load by three different beams. 

Table 3. Ratio ‘Rs’ calculated for beam 8×3 and 12×3 

BESO lattice 
unit beam 

Deflection at 
Maximum load 

(mm) 

Energy absorbed per unit 
volume at this deflection 

(kJ/mm3)  Rs 
BESO lattice 

unit beam Solid 

8×3 0.89 ± 0.10 1.05 ± 0.07 0.14 ± 0.05 7.50 
12×3 0.73 ± 0.16 0.62 ± 0.16 0.09 ± 0.06 6.90 

The BESO lattice unit beams considered for this study, i.e. 8×3 and 12×3 beams, 
showed similar bending behaviour as reported in [16]. The SLM-printed lattice unit beams 
failed in steps along the loading plane. The total energy absorbed per unit volume for complete 
failure for the two BESO-optimised beams was higher than the solid counterpart. However, the 
12×3 beam type showed reduced maximum bending load caused by early failure. This could 
be due to the presence of variable cross-section along the plane of bending load, which resulted 
in stress concentration. However, in the case of the 8×3 beam, there is vertical link along the 
plane of bending load, which provides resistance to bending load, resulting in higher maximum 
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bending loads. Therefore, based on the application, periodicity of the lattice units could be 
varied to suit the loads applied.  

Conclusion 

A study was carried out to obtain an optimised design solution of a bending beam with 
the help of topology optimised lattice units. The samples were printed using Selective Laser 
Melting (SLM) process and a comparison of the flexural properties of solid beam to topology 
optimised lattice unit beams was made. Some key findings of the study are as follows.  

• An ABAQUS subroutine was used for topology optimisation of a beam with BESO
optimised lattice unit.

• Two unique lattice units (namely 8×3 lattice unit and 12×3 lattice unit) were obtained using
the subroutine.

• The BESO lattice unit beams were found to absorb more energy per volume till complete
failure when compared to solid beam.

• The BESO lattice unit beams also showed about seven times more energy absorption per
unit volume at the same deflection of solid beam till the maximum load.

Importantly, the performance of BESO lattice unit beams were hampered by the brittle 
failure of SLM-printed parts. With improvement in the ductility of metal additive manufactured 
parts, the BESO lattice units could sustain higher bending loads. This opens up an avenue to 
reduce the weight of components by replacing solid material with tailored and topologically 
optimised lattice unit units depending upon the requirements of the application. 
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