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Abstract 

 

 This paper addresses two issues: 1. Topology optimization (TO) yields designs that may 

require support structures if additively manufactured, which increase material and clean-up costs. 

2. Material anisotropy is induced during additive manufacturing, which results in inaccurate TO 

results if such material properties are not included in the algorithm. This paper, based on a 

moving morphable components (MMC) approach where structure is composed of several 

building blocks, introduces constraints for minimum build angle, as well as a penalty constraint 

for building blocks with no support material below, so that the TO output is completely 

printable. Additionally, orthotropic material properties are integrated in the optimization. In a 

separate optimization algorithm, each building block is assumed to have its own fiber 

orientation. 

 

Introduction 

 

 Additive manufacturing (AM) refers to processes in which 3D objects are built layer by 

layer under computer control. Compared to traditional manufacturing processes, where material 

is “subtracted” from a block of material, AM fabricates highly complex parts more easily. 

 

 Topology optimization (TO) redistributes material in a design space, by providing 

sensitivity analysis to an optimization algorithm. After the topology optimization, the structure 

usually needs to go through a series of post-processing, for example, smoothing and/or a 

subsequent shape optimization, because topology optimization results usually cannot be used as 

is for design purposes.   

 

 There is significant interest today in integrating additive manufacturing and topology 

optimization, for several reasons, a major one being that topology optimization puts material 

only where it’s needed, which produces light-weight results that help save weight a great deal in 

AM. Weight saving is a benefit during the product's useful life. For example, weight savings for 

a part in an aircraft can save thousands of gallons of fuel, millions of dollars, and greatly reduce 

pollution. Secondly, topologically optimized designs are geometrically complex, which are hard 

to manufacture using traditional processes, but could often be easily additively manufactured.  

 

 Though AM gives much freedom in the designs, making proper use of topology 

optimization to render additively manufacturable designs remains a challenging and vibrant 

research area for the past decade.  
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 One of the most common challenges to additively manufacture certain TO structures is 

building designs with overhangs requires support structures, which directly increase build time 

and material cost; and machines have minimum allowable feature size limitations which TO 

results may not meet. Also, topologically optimized designs often consist of discretized geometry 

and implicit boundary, which makes subsequent design difficult due to the lack of parametric 

surfaces and dimensions. Another issue we want to address in this work is that, due to the layer 

by layer nature of most 3D printing processes, the printed parts would exhibit anisotropic 

material properties, where they frequently fail more easily when loaded along the build direction 

due to weak interlayer bonding. 

 

 Driven by the above challenges, we propose an optimization method based on a moving 

morphable component model developed by Dr. Xu Guo’s research group from Dalian University 

of Technology in China. This approach uses explicit level set method for boundary 

representation, but at the same time its concept is similar to density-based method. 

 

 The proposed TO method represents the optimized structure using parameterized 

structural components.  Hence, the TO result is a geometric model with explicit boundary 

elements that is readily importable into mechanical CAD systems for subsequent design and 

engineering work. A second objective is to remove overhangs from the designs. A third objective 

is to take into account 2D orthotropic material properties. 

 

Literature Review 

 

Topology optimization 

 In the literature, one can find a multitude of approaches for solving topology optimization 

problems. The following is a brief review of some of the key approaches. 

 

 One popular approach called homogenization method was firstly proposed by Bendsøe 

and Kikuchi (1988) [1]. The main idea of the homogenization method is to introduce periodically 

distributed micro-scale voids in a given homogeneous material. The effective material properties 

of the composite are then computed using homogenization theory. In this way, the material 

layout problem could be treated as an easier sizing problem, the sizing variable being the density 

of the perforated composite (i.e. sizes of holes). However, homogenization method often 

produces designs with infinitesimal pores that make the structure non-manufacturable. 

 

 One variation of the homogenization method later investigated was the SIMP approach 

(Solid Isotropic Material with Penalization), firstly by Bendsøe (1989) [2]. In SIMP, elements’ 

relative densities are the design variables, which could be updated using several updating 

schemes, such as OC (Optimality Criteria), SLP (Sequential Linear Programming) methods, and 

MMA (Method of Moving Asymptotes). To penalize the intermediate densities, material 

properties are modeled to be proportional to the relative density raised to some power [3].  

 

 An alternative class of methods to the above density-based approaches is the boundary-

based methods for structural optimization [4], a major approach of which is to use level set 

method to represent implicit, moving boundaries for topology optimization. 
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 The level set method was first used by Osher and Sethian (1988) [5] as a method to 

implicitly represent the moving interfaces. In such analyses, the equations of motion of 

propagating fronts were approximated by the Hamilton-Jacobi equation. It was later applied in 

topology optimization to track the structural boundary, using an appropriate velocity normal to 

the boundary interface. Design variables are usually level set function values at the nodes.  

 

MMC 

 With the aim of doing topology optimization in a more explicit and geometrical manner, 

a so-called moving morphable components (MMC) based topology optimization framework, 

which is quite different from the existing ones, was established by Guo (2014) [6]. The 

distinctive feature of this approach is that a set of morphable components are used as building 

blocks of topology optimization and the optimal structural topologies are found by optimizing 

the shapes, lengths, thicknesses, orientations and layout (connectivity) of these components.  

 

Overhang Angle Constraints 

 

 Each 3D printer has its minimum build angle as one of its machine specifications. If part 

of a structure has an angle (with horizontal plane) below the minimum build angle, the structure 

would not be printed without support material.  

 

 To integrate AM-specific manufacturing constraints into optimization formulations, we 

added angle constraints into the original moving morphable components approach. More 

specifically, these angle constraints ensure that the centerline (i.e. local x-axis) of each building 

block forms an angle (with the print plane) that is larger or equal to the predefined minimum 

build angle. 

 

 The problem formulation is as follows: 

 

• For a building block k, the design vector is: 𝑫𝑘 =

(𝑥0𝑘,   𝑦0𝑘,   𝐿𝑘,   𝑡𝑘
1,   𝑡𝑘

2,   𝑡𝑘
3,   𝑠𝑡𝑘).    𝑠𝑡𝑘 ≡ 𝑠𝑖𝑛𝜃𝑘. 

• Find 𝑫 = (𝑫1, . . , 𝑫𝑛) 
• Minimize 𝐶 = 𝑓𝑇𝑈 

• Such that ∫𝐻(𝜙𝑠(𝑥;𝑫))𝑑𝑉 ≤ �̅� (volume constraint), 

• and 𝑓𝑘(𝑥) = (𝑠𝑖𝑛�̅�)
2 − (𝑠𝑖𝑛𝜃𝑘)

2 ≤ 0, 𝑘 = 1,2, … 𝑛 (angle constraints). 

• �̅�,  �̅� are the maximum volume fraction and minimum build angle prescribed by designer. 

 

 Each building block has seven design variables,  𝑫𝑘 =

(𝑥0𝑘,   𝑦0𝑘,   𝐿𝑘,   𝑡𝑘
1,   𝑡𝑘

2,   𝑡𝑘
3,   𝑠𝑖𝑛𝜃𝑘), [7]: block center, half length, 3 half thicknesses, and block 

orientation. As illustrated in Figure 1, each block is completely parameterized by the variables.  
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 An angle constraint is imposed upon each building block [8]. Sensitivity of the angle 

constraint of building block k is:  

𝜕𝑓𝑘
𝜕𝑠𝑡𝑘

=
𝜕−(𝑠𝑖𝑛𝜃𝑘)

2

𝜕𝑠𝑖𝑛𝜃𝑘
= −2 ∗ 𝑠𝑖𝑛𝜃𝑘 ,  𝑘 = 1,… ,𝑁. 

 

 The method of moving asymptotes (MMA) is used as the numerical optimizer, and the 

Matlab code GCMMA is provided by Dr. Krister Svanberg of KTH. 

 

A design problem 

 The above problem formulation was investigated using a classic case of a compliance 

minimization problem with a volume constraint of 0.4.  

 

 Figure 2 shows the design domain and boundary conditions of the problem. Displacement 

is fixed at the left boundary, and a downward force is applied at the center of the right boundary. 

The design domain is discretized using quadrilateral elements.  

 

 Figure 3 shows some known optimized configurations of this design problem from the 

literature [9], with various dimension ratios of the design boundary.  

 

         

 

Fig 2. Design domain and boundary 

conditions of a TO problem. 

Fig 1. A building block is parameterized 

with seven design variables. 
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 (a)                                                                       (b)                          

 

 

 

 

 Using certain parameters for the optimization, the output structure with a minimum build 

angle of 40° is shown below in Figure 4: 

 

     
 

 We observe two issues with this output. Firstly, during iterations, the building blocks at 

the bottom of the structure were trying to form a horizontal bar that resembles the horizontal part 

at the bottom of the structure without build angle constraints, as shown in Figure 5. This is 

because a horizontal bottom apparently yields more stiffness to the structure under the specific 

loading and boundary conditions. 

 

 However, the building blocks failed to form a solid horizontal bar due to the definitions 

of our angle constraints where all building blocks must form an angle larger than the minimum 

build angle of the machine. The constraints are unnecessary to the building blocks at the bottom 

of the structure, since they don’t need support material at any angle. In other words, the building 

blocks at the bottom of the design space were over-constrained. We would call it the “over-

constraining” issue. 

 

Fig 3. Known optimized configurations of the design problem, with 

dimension ratio length/width: (a) 5:4, (b) 2:1. 

Fig 4. Output structure of 

the design problem with an 

overhang angle constraint. 
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 Secondly, we can see that this structure is not entirely printable even with minimum 

angle constraints imposed upon it. Here, building blocks with a red number (1, 4, 5, 7, 16) cannot 

be printed without support material. 

 

 This is because when printing direction is fixed, in addition to the condition that any part 

of the structure has an angle larger than the minimum build angle, there needs to be material 

below it, otherwise it would be a piece of material “floating” in the air, such as building blocks 1 

and 4, which cannot be printed in a layer by layer fashion. We would call it the “hanging blocks” 

issue. 

 

Over-Constraining Issue 

 

 We used a smoothed Heaviside function 𝐻𝜖(𝑥) to release the bottom band of design 

space from the original angle constraints. The new angle constraints are as follows: 𝑓𝑘(𝑥) =
(𝑠𝑖𝑛�̅�)2 ∗ 𝐻𝜖(�̅� − 𝑡̅) − (𝑠𝑖𝑛𝜃𝑘)

2 ≤ 0, 𝑘 = 1,2, … 𝑛, where for any block k, �̅� is the mean height 

of the part of block that is inside the design boundary, and 𝑡̅ the average thickness of the block.  

 

 The smoothed Heaviside function is illustrated in Figure 6 and Equation (1). Its two 

parameters, ε and α, control the width of the smoothed region, and the constant value of H if x is 

negative. 

 

 In the new angle constraints: When the building block is not at the bottom (�̅� > 𝑡̅), the 

Heaviside function value is 1 and the angle constraint remains. When building block is close to 

the bottom design boundary, however, Heaviside function value gradually decreases from 1 to 0, 

thus the angle constraint becomes relaxed (less strict). This allows building blocks to form 

smaller angles, or even lie horizontally. 

 

Fig 5. Output structure of 

the design problem 

without overhang angle 

constraint. 
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                                                                                                                                      (1) 

 

 

 

 Figure 7 shows some random intermediate optimization configurations after the new 

angle constraints were implemented, demonstrating that almost horizontal rods were formed at 

the bottom to give a stiffer structure. 

 

     
 

 

 

 

“Hanging Blocks” Issue 
 

Idea: Penalty on nodal densities 

 

 To avoid the “floating in the air” situation, our idea is to add a soft constraint: End points 

of each building block should overlap with at least another building block. End points that are 

outside of the design boundary are excluded from this constraint. We express it mathematically 

using the concept of nodal density. 

 

𝐻𝜖(𝑥) =

{
 
 

 
 1,  𝑥 > 𝜖

3(1 − 𝛼)

4
(
𝑥

𝜖
−
𝑥3

3𝜖3
) +

(1 + 𝛼)

2
,  − 𝜖 ≤ 𝑥 ≤ 𝜖

𝛼,  𝑥 < −𝜖

 

Fig 6. Smoothed Heaviside 

function. 

Fig 7. Intermediate configurations with the relaxed version 

of angle constraints at the bottom layer. 
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 We denote all the end points within the design boundary that are “floating” in the air, 

thus should be overlapping with other blocks (no matter if they are actually overlapping or not), 

to be “relevant end points”. All relevant end points should satisfy the soft constraint stated above 

to render a completely printable design. 

 

Procedure 

 

• Identify the relevant end points. 

• Calculate the total nodal density Htot at each point. 

• Set lower bounds to the total nodal density at each point. 

• Define the penalty function and add it in the objective function. 

• Compute the sensitivity of the penalty function with respect to design variables. 

 

Step 1. Identify relevant end points 

 

 Recall that relevant end points should be within the design boundary and belong to 

building blocks that do not have material region below. 

 

 We divided various scenarios of building blocks’ positions and orientations into five 

categories, shown in Figures 8-12. In each figure, the box represents the design boundary, the 

line segment is a building block, points E1, E2 indicate its end points, and Pint is its intersection 

point with the boundary. 

 

 To identify the end points that would need the overlapping constraint, we analyzed all 

these different cases which are categorized by positions of the building blocks and their 

intersections with design boundary. We fixed the print direction to be from bottom up. 

       
 

 

 

 

 
 

 

 

 

Fig 8. Both end points E1, 

E2 are relevant end points. Fig 9. The building blocks do not need 

support material, so only the end point at 

the top (i.e. E1 for left block, E2 for 

right) is relevant end point. 

Fig 10. Left block: E2 and P
int

 are 

relevant end points. 

Right block: E1 and P
int

 are relevant end 

points. 

Fig 11. Left block: E2 and P
int

 are 

relevant end points. 

Right block: E1 and P
int

 are relevant 

end points. 
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Step 2. Level set value -> Nodal density 

 

 In brief, nodal density is calculated on each “relevant end point”, and is used to express 

the soft constraints mathematically: Htot ≥ Hmin. The number of density values generated at any 

point equals the number of building blocks. Summing all the density values at a point gives a 

total density value, or Htot. We would use Htot in the soft constraint. 

 

 Each building block generates a 3D level set field across the entire design space that is 

explicitly described by the following equation (W. Zhang et al.):  

 

 

                                                                                                                                      (2) 

                                                                            

 

 

 

 

 

 An example of the level set contours produced by one building block is shown in Figure 

13. Its zero level set contour, i.e. the boundary of the building block, is in red shade. 

 

 The morphable components approach then proposes that each building block generates a 

nodal density field as a function of the level set field. If there are N building blocks, then there 

are N density values at any point P in the design space, each block producing its own density 

respectively at point P. 

 

 The mathematical relation between the level set value and the density at any point uses 

again the smoothed Heaviside function (refer to Figure 6): 

 

 

                                                                                                                                      (3) 

 

 

 

 

𝐻𝜖(𝜙) =

{
 
 

 
 1,  𝜙 > 𝜖

3(1 − 𝛼)

4
(
𝜙

𝜖
−
𝜙3

3𝜖3
) +

(1 + 𝛼)

2
,  − 𝜖 ≤ 𝜙 ≤ 𝜖

𝛼,  𝜙 < −𝜖

 

Fig 12. Left block: E2 and P
int

 are relevant end points. 

Right block: E1 and P
int

 are relevant end points. 
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 In particular, end points of a building block, located on its boundary, have a level set 

value of zero, i.e. 𝜙 = 0. Using the above equations, we know that the point density generated by 

building block k, at the end points of building block k, is (1+α)/2. 

 

 
 

 

Step 3. Determine the lower bounds of the soft constraint. 

 

 For an end point of building block A, there are three possible situations illustrated in 

Figure 14. 

 

i. It happens to be an end point of building block B as well. In this case, the nodal densities 

H generated by block A and B on the end point are both (1+α)/2. Then the total 

density at this point is Htot = 1+α. 

ii. It is inside another building block B. From Equation (3), nodal density at this point 

produced by block B is higher than produced by block A, since it’s inside the 

boundary of B: HB > (1+α)/2. Then the total density at this point is such that: Htot > 

1+α. 

iii. It is not overlapped with any other building block. In this case, nodal density at this point 

produced by block B is α, a near-zero value. The total density would be Htot = 

(1+α)/2. 

 

 

Fig 13. Level set 

field generated by 

a building block 

(in red shade). 

(i) End point “*” of block A is also 

an end point of block B. 
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 Recall that the soft constraint states that end points of each building block overlap with at 

least another building block. This means case (i) and (ii) are acceptable, case (iii) is not. Thus we 

have the soft constraint on any relevant end point to be: Htot ≥ 1+α. 

 

Step 4. Adding penalty to objective function 

  

 One of the ways of solving constrained optimization problems, at least approximately, is 

by adding a penalty function to the objective function. The idea is to minimize a sequence of 

unconstrained minimization problems where the infeasibility of the constraints is minimized 

together with the objective function.  

 

 Essentially, we need a penalty term for constraint violation to be a continuous function 

with the following properties: 

 

 The original problem was to minimize 𝐶 = 𝑓𝑇𝑈. 

 The new objective adding the penalty would be: F = 𝐶 + 𝜌 ∗ 𝑓𝑝𝑒𝑛𝑎𝑙(𝑥) , where 

𝑓𝑝𝑒𝑛𝑎𝑙(𝑥) = 0 if 𝑥 is feasible, 𝑓𝑝𝑒𝑛𝑎𝑙(𝑥) > 0 otherwise. 

 

 There are two main types of penalization methods: exterior penalty functions, which 

impose a penalty for violation of constraints, and interior penalty functions, which impose a 

penalty for approaching the boundary of an inequality constraint. 

 

 Exterior penalty method: The modified objective function is defined as the original 

objective plus a term for each constraint, which is positive when the current point violates the 

constraint, and zero otherwise. Thus, optimization needs to start outside the feasible region for 

the exterior penalty method to work properly, i.e. the initial point needs to be chosen in violation 

of the constraints. 

 

(ii) End point “*” of block A is 

inside block B. 

(iii) End point “*” of block A is not 

overlapped with any other block. 

Fig 14. Three possible situations to determine 

lower bound of the overlapping constraint. 
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 One of the widely used exterior penalty functions is the quadratic loss function. Recall 

that our constraint for each relevant end point k is: Hk
tot ≥ 1+α. Here, the quadratic loss function 

would be:  

𝐶 = 𝑈𝑇𝐾𝑈 + 𝜌 ∗ ∑ 𝑚𝑎𝑥[0, (1 + 𝛼) − 𝐻𝑡𝑜𝑡
𝑘 ]2 = {

(𝐻𝑡𝑜𝑡
𝑘 − (1 + 𝛼))2, 𝐻𝑡𝑜𝑡

𝑘 < (1 + 𝛼)

0, 𝐻𝑡𝑜𝑡
𝑘 ≥ (1 + 𝛼)

𝑛𝑢𝑚𝑝𝑡
𝑘=1 .   (4) 

 

 UTKU is the structure’s compliance, the original objective; ρ (or ρext) is the exterior 

penalty parameter, and numpt is the number of relevant end points. 

 

 If a relevant end point k violates the constraint Hk
tot ≥ 1+α, the penalty term related to 

point k equals [𝐻𝑡𝑜𝑡
𝑘 − (1 + 𝛼)]2 . If not, zero. 

 

 The sensitivity of the penalty term related to end point k that violates the constraint is: 𝜌 ∗

2 (𝐻𝑡𝑜𝑡
𝑘 − (1 + 𝛼)) ∗

𝜕𝐻𝑡𝑜𝑡
𝑘

𝜕𝑎
𝑖𝑖
𝑗 .  

 

 One concern about the quadratic loss function is continuity. We need to check if the max 

term in the quadratic loss function in Equation (4) is differentiable, i.e. C1 continuous, so that 

sensitivity of the penalty term can be computed. 

 

 Following is the penalty term related to any relevant end point: 

 

𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝐻𝑡𝑜𝑡
𝑘 ) ≡ 𝑓(𝑥) = {

(𝑥 − (1 + 𝛼))2, 𝑥 < (1 + 𝛼)
0, 𝑥 ≥ (1 + 𝛼)

 

 

 By differentiating both sides of the equation at x = 1+α (or Hk
tot = 1+α), we have: 

𝑓′(1 + 𝛼) = lim
𝑥→(1+𝛼)−

𝑓(𝑥) − 𝑓(1 + 𝛼)

𝑥 − (1 + 𝛼)
=
(𝑥 − (1 + 𝛼))2 − 0

𝑥 − (1 + 𝛼)
= 𝑥 − (1 + 𝛼) = 0. 

𝑓′(1 + 𝛼) = lim
𝑥→(1+𝛼)+

𝑓(𝑥) − 𝑓(1 + 𝛼)

𝑥 − (1 + 𝛼)
=

0 − 0

𝑥 − (1 + 𝛼)
= 0. 

 

 We see that the max function is continuous at Hk
tot = 1+α, ∀k. This means the quadratic 

loss function is C1 continuous and could be used in the objective function. 

 

 Interior penalty method: A second type of penalty function begins with an initial point 

inside the feasible region, which is why these procedures are called interior penalty functions or 

“barrier methods”. This type of method would not work well once optimization falls out of the 

feasible region. 

 

 There exist several penalty functions of this type; we choose the inverse barrier function, 

which is as follows in our case: 

𝐶 = 𝑈𝑇𝐾𝑈 + 𝜇 ∗ ∑ [
1

𝐻𝑡𝑜𝑡
𝑘 −(1+𝛼)

]𝑛𝑢𝑚𝑝𝑡
𝑘=1 , where µ (or ρint) is the interior penalty parameter. 

 

 We can see that as long as the constraint Hk
tot ≥ 1+α stays satisfied, as total density Hk

tot 

approaches its lower bound (1+α), the penalty term becomes infinitely large. 
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 The sensitivity of the penalty term related to relevant end point k is: 

 −𝜇 ∗ (𝐻𝑡𝑜𝑡
𝑘 − (1 + 𝛼))

−2

∗
𝜕𝐻𝑡𝑜𝑡

𝑘

𝜕𝑎
𝑖𝑖
𝑗 .  

 

Results 

 

 We set the minimum build angle to be 30°, 35° and 40°; Figs. 15 and 16 show results for  

30° and 35°, respectively. 

 
 

 

 

  

 For an optimization with 40 degree overhang angle constraints, convergence usually 

takes about 500-600 iterations. 

 

 There are several parameters involved in the TO framework proposed in this work, for 

example, the smoothing parameters ε and α in the Heaviside function, and the penalty parameters 

ρext, ρint for exterior and interior penalty methods, etc. 

 

We observed that the output structure is sensitive to these parameter values. As shown in 

Figures 17 and 18, the value of ε being .1 and .15 gave these different results. This is something 

we’ll need to investigate further. 

 

 
 

 

 

 

 

Fig 17. Minimum build angle = 40° 

ε = 0.1 
Fig 18. Minimum build angle = 40° 

ε = 0.15 

Fig 15. An output structure, with 

minimum build angle of 30°. 

Fig 16. An output structure, with 

minimum build angle of 35°. 
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Adjusting the various parameters, the “best” result we got for a minimum build angle of 

30° is shown in Figure 19 (a). The convergence history is also shown, where we can see the 

objective value had a few jumps at the start of the calculation, but converged to a minimum value 

rather smoothly.  

 

 
 

 

  

 

 

 

 

 

 
 

Validation 

 

 A simple validation step was done where an output structure with a minimum build angle 

45° was built using a Stratasys F170 machine, of which the overhang angle and minimum wall 

thickness were determined using test parts. We observe from Figure 20 that the output structure 

was additively manufacturable, i.e. did not require any support material. This validated the first 

and second objective which are to remove overhangs and to give a geometrically explicit 

optimization result.  

 

 
 

 

 

 

 

Fig 19. (a) Output structure. 

             (b) Convergence history plot. 

Minimum build angle = 40°; 

ε = 0.1; After 200 iterations, 

if outeriter > 200 

    rho_int=.01*0.996^(outeriter-149-1); 

    rho_ext=2*1.003^(outeriter-149-1); 

end 

Fig 20. An optimization result. 

Minimum build angle = 45° 
Fig 21. The corresponding printed 

part, with no support material, 

sparse infill. 
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Conclusions / Future Work 

 

Future Work 

 

 We discuss material anisotropy in this section, for we have not completed it yet. 

 

 To incorporate 2D orthotropic material properties in topology optimization, we studied 2 

cases. In the first, fiber orientation of the entire material region aligns with the design boundary 

as illustrated in Figure 22. In this case, all we had to do computation wise was to change the 

element stiffness matrix. In the second case, shown in Figure 23, we assumed each building 

block has its own fiber orientation, in which case we rotated each element stiffness matrix 

according to the orientation of the building block it belongs to. We are currently still pursuing 

this work. 

 

          
 

 

 

 

For the first case (Fig. 22), a TO problem was performed with orthotropic properties and 

compared with results using isotropic properties.  Fig. 24 shows the optimized structure using a 

set of normalized 2D orthotropic material properties extracted from a Stratasys Fortus machine. 

We observe its difference from the optimization result using isotropic material shown in Fig. 25. 

 

     
 

 

 

 

 

Fig 24. An optimization result, 

incorporating orthotropic material whose 

fiber orientation aligns with design 

boundary. 

E1=1, E2=0.85, nu12=0.4, G12=0.25. 

Fig 25. Isotropic material, E=1. 

Same MMC approach, same 

optimization parameters as left. 

Fig 22. 2D orthotropic case 1: 

All fiber orientation aligns 

with design boundary. 

Fig 23. 2D orthotropic case 2: 

Each building block has its 

own fiber orientation. 
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Conclusions 

 

 We proposed in this work a moving morphable components-based optimization approach 

that incorporated additive manufacturing related constraints, such that the following objectives 

were met: 

 

1. The output structure has explicit boundary and could be easily used for 

subsequent engineering. 

2. Overhangs were removed. 

3. Material anisotropy of printed parts was taken into account during optimization. 
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