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Abstract 

In an attempt to realise next-generation lightweight parts and to fully utilize the inherent design 
freedom of AM, we propose a topology optimization based design procedure that includes the 
anisotropic considerations for continuous fibre printing of variable stiffness composites. In this 
paper, we aim to improve the normalized compliance of a beam in a three-point bending scenario, 
using a skeletal reinforcement for a topology in which the change in fibre orientation is derived 
from the medial axis information. FDM with a dual-nozzle system printing nylon and carbon fibre 
filaments were utilized for fabrication. The toolpath i.e. reinforcement strategy available from the 
commercial software Eiger® was chosen to imitate the proposed strategy. The numerical 
investigation is complemented with experimental tests and a general benchmarking is conducted 
using standard pedants. The results have shown improved specific flexural stiffness for samples 
with skeletal reinforcement. The skeletal information is therefore considered as important tool for 
the retrieval of fibre angles which align with the principle stresses and therefore allow for a more 
efficient fibre placement in AM parts for future lightweight end-use parts. 

1 Introduction 

Design and structural optimization for additive manufacturing is gaining immense traction in 
the research community and are key stones towards next generation manufacturing and lightweight 
structures [1–3]. Topology optimization (TO), a numerical tool which centres around the 
redistribution of material in a given design space based on the applied boundary and loading 
conditions, has meanwhile established itself as means of structural optimization for additively 
manufactured parts. In pursuit of improved structural performance and functionality in additively 
manufactured parts, we experience increased efforts in the research community to promote AM of 
composites. The authors believe, that the effective combination of both methods in AM will enable 
next generation light and polymer-based structures as well as generally providing a wider range of 
application as end-use parts. For the successful implementation however, design for AM (DfAM) 
will be playing pivotal role. 

DfAM becomes particularly important for the successful manufacturing of the complex 
freeform geometries created by TO. From one of the first definitions by Rosen [4] focusing on the 
AM-specific criteria affecting the performance (shape, microstructure, etc.) to the most recent 
heuristic definition and framework by Kumke et al. [5], which includes both design rules related 
to the manufacturing constraints and the vast design potential of AM.  
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1.1 Medial Axis Transformation (MAT) for structural enhancement 

MAT i.e. the extraction of the skeleton of an arbitrary shape has previously found application 
in both AM [6–8] and TO [9]. More recently however, studies have shown the great benefit of 
using it across the two fields to implement for instance manufacturing constraints in a level set TO 
[10] or circuitry into AM parts for enhanced functionality while preserving the structural
performance [11]. In the context of DfAM, the MAT has further proven as viable solution for a
gap-free toolpath generation [6,7]. As such it offers the possibility to adapt infills for fibre
reinforced AM (FRAM).

1.2 Fibre-reinforced Additive Manufacturing (FRAM) 

The majority of research into AM of composites employs FDM with either short or continuous 
fibre-reinforced filaments [12–17], although magnetically assisted STL [18],  electrically 
supported VAT [19] and jetting [20] were also used for this purpose. For further reading, Quan et 
al. [21] supply a summary of fibre reinforced AM with different processes. Generally FRAM can 
be divided into short fibre-reinforced AM (S-FRAM) and continuous fibre-reinforced AM 
(C-FRAM). With the increasing supply of hardware from companies like Markforged Inc. [22], 
Arevo Inc. [23] or Continuous Composites [24], this work focuses mainly on C-FRAM, as it 
provides maximum structural performance and the greatest potential for lightweight structures 
from AM. 

1.3 Topology Optimization with Anisotropic Considerations for Additive Manufacturing 

In polymer-based AM of composites, we can differentiate between the mixture of different 
polymers and the reinforcement of a polymers with a non-polymeric constituent. The former has 
been particularly attractive for the level set TO, as research has been conducted to investigate the 
effect of using two materials with dissimilar properties on the topology [25,26] and another work 
by Zhu et al. [27] has employed the method in conjunction with microstructures for printable 
structures. Subject of interest in this work is however FRAM which is a field of research  gaining 
momentum as is increasingly brought in context with TO [28–31]. Most recently, through the 
introduction of CFAO (Continuous Fibre Angle Optimization) i.e. TO with fibre reinforcement for 
2D structures by Hoglund et al. [29,32] and its further improvement by Jiang et al. [30,31]. Besides 
the density, the fibre angle represents hereby the second design variable for the TO, which is 
included into the elastic constitutive matrix. The adjoint method, used for the sensitivity analysis 
in their work [32] might generally be an effective way to realize TO with fibre angle optimization 
or any other constraints related to e.g DfAM.  

1.4 Scope of this paper 

This work aims to demonstrate how the medial axis transformation (MAT) on topologically 
optimized structures can function as a tool to introduce anisotropy for additively manufactured 
parts. Besides a theoretical simulation of a topologically optimized structure enhanced by the 
skeletal information, this paper intents to illustrate further methodologies that can be obtained from 
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TO-based MAT for the realization of light, anisotropic structures with minimized compliance. 
With the aid and within the capabilities of current commercially available printers, an indication 
of correspondingly achievable mechanical properties is presented. In this context additional 
workflows describing ways to obtain physical specimens that resemble the proposed designs are 
disclosed.  

2 Methodology – Approaches Considering Anisotropy in Topology Optimization 

Three different approaches to obtain lightweight structures for AM with anisotropic 
considerations are proposed and detailed in Figure 1. TO and MAT represent the core concepts 
while aspects of DfAM are considered on the premise of an implementation with C-FRAM. The 
overarching methodology for all three approaches can be clustered into the following 4 consecutive 
process steps: 

• Isotropic TO – Solid Isotropic Material with Penalization (SIMP) is conducted upon a
given design domain and boundary conditions. A pre-selected criteria (e.g. premature
termination of iterative process) determines whether to proceed or not. Finally a greyscale
image of the topology is obtained.

• MAT – A binarization of the greyscale density matrix is a prerequisite for the subsequent
MAT. Information on the end-point, branch-points, links, etc. of the resultant skeleton can
then be used for further updates such as segmentation, dilation, etc. This skeletonisation
provides beneficial information (slope of links, nodal connectivity, etc.) for the
implementation of fibre reinforcement into additively manufactured parts.

• Selection of approach – For the incorporation of anisotropy we propose the following
three approaches shown in Figure 1, which will be described in more detail in the
subsequent sections.

• Update scheme – Each individual approach includes some sort of update scheme which
post-processes the MAT information. The individual schemes will be described in the
following and will be illustrated in workflows.

Methods pertinent to realisation of the approaches discussed in Figure 1 are detailed in the 
subsections below. 
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Figure 1: Flowchart of the presented methodology. 

2.1 Solid Isotropic Material with Penalization (SIMP) 

 Approach I. – Isotropic topology with skeletal reinforcement. In this work, a beam under 
Three-Point Bending (3PB) was considered for the optimization. The SIMP method was utilized 
in pursuit of minimizing compliance (increased stiffness). The loading scenario is based on the 
ASTM D7264 /D7264M – 15 [33] standard, however alterations where made to the aspect ratio of 
the specimen and the roller diameters. The former was reduced to 4:1 in order to ensure good 
comparability with the common MBB-beam examples in the field of TO and the latter was 
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increased to mitigate the indentation of the rather soft AM-parts. Following the Matlab 
implementation of the density-based SIMP method of previous works [34–36], we obtained the 
two-dimensional TO solution with 0.5 volume fraction for isotropic material using a penalization 
factor of 3 and a filter size of 2 (see Figure 2). Subsequently, the greyscale image was transformed 
into a binary image based on a threshold value of 0.5 to enable the medial axis transformation. 

Figure 2: Initial design domain for the 3PB with 4:1 ratio of length to height as well as the final 
binarized TO solution obtained using SIMP. 

Approach II. – Truss-like structure based on MAT. Similarly, the SIMP method was also 
employed for the truss approach, however, since it only serves as a feasibility study for a FEA in 
this work, the authors chose the classical cantilever example with an aspect ratio of 5:3 i.e a total 
of 1500 pixels. Hereby a volume fraction of 0.55 was applied and the resultant matrix was 
subsequently binarized. 

2.2 Medial Axis Transformation (MAT) 

A skeletonisation i.e. MAT of the TO solution represents the starting point for the three 
proposed methodologies. The method is based on the thinning algorithm introduced by 
Kerschnitzki et al. [37] and builds upon the work of Panesar et al. [8], however the computational 
efficiency of the MAT was improved in this work by utilizing the in-build Matlab function 
bwmorph, while still obtaining the skeletal information from the original code. Individual links 
were then further discretized using a step-size of 5 and a threshold angle of 12° to create sub-links. 
This segmentation is vital for the FEA, since it allows for a more representative assignment of 
fibre angles (for individual elements) based on the local tangent values.  

Approach I. – Isotropic topology with skeletal reinforcement. For this method (see Figure 3) 
each newly formed sub-link is radially dilated based on the minimum distance between any point 
of a link and the eroded perimeter of the TO solution (see Figure 2), which is inspired by the 
routing strategies for AM introduced in [8]. The erosion ensures that at least a layer of pure matrix 
in maintained on the perimeter so that the fibre domain (dilated skeleton) is entirely encapsulated. 
In order to ensure a reinforcement of very small struts in the topology (see Figure 4), some skeletal 
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elements were allowed to coincide with the elements of the perimeter. Slopes between the end-
nodes of each link served as principle fibre angle. The corresponding elements of each sub-link 
were subsequently assigned this angle (see Figure 4). The angle of the overlapping elements was 
updated by the consecutive sub-link adjoining at the rightmost node of the previous sub-link. 

Figure 3: Workflow describing the obtainment of an isotropic topology with a skeletal 
reinforcement (approach I.). 

Figure 4: Schematic drawing explaining the concept behind the segmentation, dilation and fibre 
angle determination and assignment. 
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Approach II. – Truss-like structure based on MAT. Alternatively, the MAT information can 
be utilized to create an optimized truss-like structure, which can serve as a means for fabrication 
with anisotropic material. Depending on how detailed the topology shall be represented, major 
nodes or sub-link nodes can be connected using beam or rod elements. A nodal sizing optimization 
and subsequent perturbation can be realized using a sensitivity analysis or a genetic algorithm 
(GA). A weight fraction constraint can ensure that the same amount of material is employed in the 
optimized truss compared to the topology it was derived from and may serve as performance 
indicator. 

Figure 5: Workflow describing the obtainment of a truss-like structure based on MAT of an 
isotropic topologically optimized structure (approach II.). 

Approach III. – Topology updated with MAT information. Although not further discussed in 
this work, the authors would like to present the idea of altering the topology based on the MAT 
information. Instead of a solution for an anisotropic reinforcement for an optimized topology 
(approach I. & II.), this could open up a way to realize an optimized topology with anisotropic 
considerations, which will be the subject of investigation in future work. 

2.3 Finite Element Analysis (FEA) 

FEA was conducted in parts within Matlab [38] and the CAE software Abaqus [39]. More 
precisely, FEA for the isotropic TO (step 1 in of the flowchart illustrated in Figure 1) was 
performed in Matlab, whereas Abaqus was used in analysing structures with anisotropic 
reinforcements. Linear static analyses were conducted for both approaches. 

670



Approach I. – Isotropic topology with skeletal reinforcement. The density matrices of the 
TO solution and the dilated skeleton were represented as hexahedral elements in order to assign 
directional material properties to individual elements. In order to ensure that a minimum of 3 
elements represent the slimmest member of the topology, the domain size was chosen as 400 
elements (length) by 100 elements (height). Since the physical specimens were produced by the 
Mark 2 printer (Markforged, Inc.), the theoretical material properties supplied by the manufacturer 
[40] were utilized. In order to comply with the larger loading rollers used and the indentation of
the material at the surface, concentrated forces were applied as shown in Figure 6 (1 % of total
area), whereby the load was linearly reduced from the mid-node towards the outermost nodes to
total a force of 1N.

Figure 6: Linearly distributed load totaling to 1N used in the FEA to resemble loading in the 
3PB test. 

Approach II. – Truss-like structure based on MAT. The truss structure is represented by 2D 
beam elements with circular cross-section connected by the skeletal nodes. Both nodal size 
optimization and nodal perturbation were conducted using GA subject to minimal global strain 
energy. In the former case this was normalized by the area in order to retain comparability with 
the initial topology. 

3 Methodology – From Design to Print 
Closed Source Implementation  

Approach I. – Isotropic topology with skeletal reinforcement. In an attempt to verify the 
primary methodology experimentally, Markforged’s continuous fibre printer Mark v 2 was 
employed. As illustrated by the workflow in Figure 7, a stl-file was created from the density matrix 
and uploaded to the corresponding enterprise software Eiger® [41], where the part, material and 
reinforcement setting were selected. This workflow is also applicable to the MAT-based truss 
structure, however was not implemented in this work. Each specimen was printed using 2 wall 
layers as well as roof and bottom layers. Within the capabilities of the Eiger® software, we have 
chosen to reinforce the topologically optimized samples with a concentric reinforcement in order 
to imitate the skeletal reinforcement proposed in approach I as close as possible. 
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Figure 7: Workflow illustrating the steps required to obtain specimens that imitate the skeletal 
reinforcement described in the third methodology (approach I.) using the commercial software 
and printer of Markforged Inc. 

For comparison specimens representing the entire domain (160mm x 40mm x 15mm) were also 
printed with pure matrix, quasi-isotropic (QI) layup and as benchmark with an uni-directional 
(UD) layup. Table 1 summarizes the different specimens tested in 3PB for this study and Figure 8 
illustrates the build direction and reinforcement strategies i.e. fibre paths chosen for all specimens. 

Table 1: Specimen specifications and corresponding designations for the mechanical testing. 

Specimen type Matrix material Reinforcement Abbreviation 

Topologically 
optimized structure 

Nylon n.a. N 
Nylon + Continuous CF Concentric CFR 
Nylon + Short CF n.a. SFR 
Nylon + Continuous and short CF Concentric S/C-FR 

Reference structure 
(design domain) 

Nylon n.a. Nref 
Nylon + Continuous CF UD CFRrefUD 
Nylon + Continuous CF QI CFRrefQI 
Nylon + Short CF n.a. SFRref 
Nylon + Continuous and short CF UD S/C-FRrefUD 
Nylon + Continuous and short CF QI S/C-FRrefQI 
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Figure 8: a) Build direction of specimens and b/c) the fibre paths (blue lines) generated by 
Eiger® [41] within the b) reference specimen with a typical QI-layup and the c) topologically 
optimized solution. Note: The white lines in b/c) represent pure polymer filament paths. 

4 Methodology – Assessing Structural Response 
Experimental Assessment in Three-Point-Bending 

Three-point bending test were conducted on a 50kN Instron machine at 2mm/min following the 
ASTM D7264 /D7264M – 15 [33] standard. The test rig consisted of support rollers with 19mm 
and a loading roller with 10mm diameters. Buckling guards were mounted with a total clearance 
of 1mm (see Figure 9).  

Figure 9: 3PB test setup with mounted buckling guards. 
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5 Results and Discussion 
5.1 Numerical Investigation 

Approach I. – Isotropic topology with skeletal reinforcement. Figure 10 displays the 
topologically optimized beam with the skeletal reinforcement subject to different threshold angles 
at a constant step size of 5 voxels. It is to note, that the iterative process of the MAT causes 
asymmetry in the skeleton even for a symmetric shape, as the medial axis is established from one 
end or branch point successively from left to right. Consequently, we observe different skeletal 
topologies for dissimilar threshold angles. Therefore, we have chosen an angle of 12° for all further 
analyses, which resulted in the most symmetric skeletal topology while being reasonably detailed. 

Figure 10: Dilated skeleton for threshold angles of a) 10°, b) 12°, c) 15° and d) 20°. 

As expected, the structural response is non-symmetric as shown in the strain energy and strain 
distribution within the topology (see Figure 11 & Figure 12). Besides the loading and support 
points, increased strain energy can be located in the radii of the outermost branching points (also 
point of fracture in mechanical tests) and the horizontal strut which curves into the opposite 
direction compared to the loading direction. The distribution of strain along the fibre direction 
reveals a similar trend, since the highest values can again be located around the inner radii of the 
outermost branch. 

Figure 11: Strain energy distribution in the topology optimized beam with skeletal 
reinforcement. 
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Figure 12: Strain distribution in the topology optimized beam with skeletal reinforcement in 
fibre direction (EE11 aligned with fibre direction).  

These preliminary results highlight the need for robustly dealing with MAT information. 
Moreover, this might also include the requirement for a more homogenous update scheme of the 
fibre angles for overlapping region of the skeleton, such as a vector sum between multiple angles 
of neighbouring areas.  

Approach II. – Truss-like structure based on MAT. A discretization of the skeleton with a step 
size of 6 and a threshold angle of 30° was conducted to obtain the medial axis. The nodal size 
optimization within the range of 1 to 3 (increments of 0.5) and the subsequent nodal perturbation 
yields the following trusses illustrated in Figure 13. The analyses of this particular example shows 
that size optimization alone results in a lower performance compared to the pure TO solution 
(decrease in strain energy over area from 2.25 to 1.86), however improved results were obtained 
with the subsequent nodal perturbation (performance increase from 1.86 to 3.23).  

Figure 13: a) Topologically optimized cantilever and the corresponding skeleton with b) 
optimized nodal size and c) optimized size and location (perturbation) of nodes. 
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An advantage of converting the topology into a truss structure is the immediate retrieval of 
information on whether support is needed for AM. A limiting factor in the comparison between 
the topology and the truss structure is the performance measure which should be changed to a mass 
constraint when using anisotropic materials. Moreover, a more holistic approach i.e. a 
simultaneous nodal size optimization and perturbation could potentially lead to a more optimal 
result. 

5.2 Experimental Investigation 

Approach I. – Isotropic topology with skeletal reinforcement. The experimental data 
obtained in the 3PB test is illustrated in the form of a stress-strain curve in Figure 12. The data was 
collected from the load-displacement curve and calculated based on the standard [33]. Optical 
strain gauges would not allow the same degree of comparability as dissimilar reference points for 
the strain measurement would be required due to the difference in topology between reference and 
optimized structure. Due to the excessive local indentation, the data was analysed only after a load 
of 20 N, to obtain more accurate data for the global stiffness. As expected, the stress-strain curves 
visually displays higher flexural stiffness values of the reinforced and the reference specimens 
over the unreinforced and topology optimized pendants, respectively. The flexural stiffness-to-
weight ratio for pure nylon and short fibre reinforced nylon favours the reference specimens (see 
Figure 15). 

Figure 14: Stress-strain curve for the topologically optimized and reference specimens with 
different reinforcement types (Note that the maximum stress for the S/C-FRrefUD could not be 
obtained). 
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Figure 15: Flexural stiffness-to-weight ratio for the unreinforced and short fibre reinforced 
specimens. 

Figure 16 summarize the strength and flexural stiffness values for the TO specimens tested. The 
continuous fibre reinforcement leads to greater flexural stiffness compared to the short fibre 
reinforcement and vice versa for the strength. The combination of both reinforcements (S/C-FR) 
displays the highest performance of all specimens for both strength and flexural stiffness and is 
almost equivalent to the sum of CFR and SFR. It is believed this may be due to the increased fibre 
volume fraction. 
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Figure 16: Results for flexural strength and stiffness of the topologically optimized specimens. 

A similar trend was found in the reference specimens (see Figure 17), whereby UD specimens 
demonstrate a higher flexural stiffness compared to the QI specimens. The difference however 
becomes smaller in the specimens with additional short fibre reinforcement. Conversely to the TO 
specimens, the sum of each strength and stiffness values of CFRref and SFRref does not equate to 
the performance of S/C-FRref, in fact the strength stays pretty much constant and the flexural 
stiffness exceeds the sum of both constituents. The extent to which the CFRref and S/C-FRref 
specimens vary is unexpected, since the only difference is restricted to the minor change of the 
wall layers of the specimen from pure nylon to short fibre reinforced nylon. This could be 
attributed to testing anomalies but requires further investigation.   
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Figure 17: Results for flexural strength and stiffness of the reference specimens. 

For the specimens with continuous fibre reinforcement, we chose to introduce a performance 
index, which represent the flexural stiffness over the fibre content (ratio between the polymer 
volume and the fibre volume) utilized for manufacturing. The latter was obtained by the Eiger® 
software [42]. Results show, that the topologically optimized structure performs slightly inferior 
to the UD reference specimens but significantly better compared to the QI reference specimen. 
The former is to be expected, as the UD reference specimen represent the optimal reinforcement 
for the maximum flexural stiffness, whereas the latter indicates that the geometrical change 
through TO has improved the performance, since the variation of fibre angle in the topologically 
optimized structure resembles that of a QI layup. Furthermore, it indicates that the placement of 
fibre based on the slopes of the skeletal links has been effective. This can be attributed to the fibre 
orientations aligned with the principle stresses.  
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Figure 18: Performance indices (Stiffness over fibre content) for continuous fibre reinforced 
specimens. 

6 Conclusion 

This work has outlined approaches on how to realize light and structurally optimized designs 
with anisotropic considerations for AM using TO and MAT. By postprocessing the MAT 
information, we have demonstrated a feasible way to create a skeletal domain within an isotropic 
topology and an optimized truss structure from the medial axis. For the former approach we have 
proposed to fill the skeletal domain with continuous fibre reinforcement based on the slopes of the 
links to effectively improve the stiffness, as fibres are naturally placed in the direction of principle 
stresses. The mechanical tests, with specimens that closely resemble the proposed approach of 
superimposing such a skeletal reinforcement onto an isotropic topology has resulted in improved 
specific stiffness while reducing the weight compared to reference specimen with QI layup. We 
believe that the combination of C-FRAM and TO can be an effective way to create lightweight 
and end-use parts. Future works will therefore explore ways into realizing MAT-derived truss-like 
structures with anisotropic material and update schemes which would allow for an iterative change 
of topology at every stage based on the MAT information. Control over fibre placement and 
subsequently DfAM will play a key role in a successful implementation and even more efficient 
structures. Overcoming current limitations in software and hardware related to the tailored fibre 
path steering will therefore play an important role. 
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