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Abstract

Despite the widespread use of the electron beam powder bed fusion (EB-PBF) additive
manufacturing (AM) process in the fabrication of cellular structures, relatively little is known
about the microstructural and mechanical properties of the individual cellular struts of different
geometries fabricated by the EB-PBF. In this study, experimental investigation was carried out in
the attempt to establish preliminary understanding of the material characteristics of the Ti6Al4V
cellular struts using EB-PBF under various geometry design conditions (dimension and orientation
angle). It was found that there exist significant geometry effects for the material characteristics of
the Ti6Al4V cellular struts, which indicates that a non-uniform material model should be
considered in the future design of these cellular structures.

Introduction

The electron beam based powder bed fusion (EB-PBF) additive manufacturing (AM) processes
have been extensively utilized for the fabrication of cellular structures with highly fragmented
cross sectional patterns due to their capability of realizing rapid beam deflection control, which
enables more efficient cellular structure fabrication for EB-PBF compared to the laser based
powder bed fusion (L-PBF) systems [1, 2]. On the other hand, it has also been widely recognized
that the EB-PBF processes currently face various challenges. Some of these issues are associated
with the intrinsic characteristics of the powder bed fusion (PBF) processes, which originates from
the use of powder feedstock and the heat-based process principles. Due to the stochastic nature of
the powder particle morphology and sizes, the PBF processes generally exhibit various process
variability-related defects such as balling, lack of fusion and denudation, as shown in Fig.1 [3-5].
In addition, the thermal diffusion process that naturally occurs during the thermal cycles of the
PBF processes also causes the sintering of powder particles on the exterior surfaces of the
fabricated structures, which results in rough surface finish with the final parts [6-8]. For EB-PBF
processes, due to the use of relatively coarse powder feedstock, larger beam diameter and higher
preheating temperature, these intrinsic process variability issues are exacerbated compared to the
L-PBF.
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a. Balling of melt track [3] b. Lack of fusion [4] C. Denu/datlon in melt track [5]
Fig.1 Various process variability-related defects in PBF-AM

Literature has been shown that for the fabrication of bulk structures many of the defects generated
by individual tracks can be alleviated or eliminated [9, 10]. However, in the fabrication of cellular
structures, due to the small cross sectional areas and consequently fewer scan passes, much of the
process variability-induced defects remain in the structures after the process. As a result, the
cellular structures fabricated by PBF processes often exhibit more defects [11, 12]. Also, the small
numbers of scanning tracks within the cross sections also implies that the fabrication of the PBF
cellular structures is more sensitive to the selection of the scanning strategies and process
parameters [11-14]. For example, the distributions of the porosities in the cellular struts fabricated
via EB-PBF could exhibit concentric patterns that follow the boundaries between the hatch and
contour regions [11]. Also, both the external geometry and the microstructure of the PBF cellular
struts exhibit certain levels of defects even under optimized process parameters [11, 13, 15, 16].
Furthermore, it has also been demonstrated that the staircase effect resulted from the layerwise
process becomes a significant quality factor for the PBF cellular structures [17, 18]. Such intrinsic
property variability not only poses challenges to the performance design of the cellular structures
but also their applicability in real-life applications, especially with load-critical structures where
the defect-induced part failure can be of catastrophic consequence.

Relatively limited works have been carried out in the investigation of the unique microstructural
and mechanical properties of the PBF cellular struts/materials and especially their dependencies
on both the cross sectional geometries. In most of the previous literature the microstructural
investigation focuses on the process setting (e.g. energy densities, beam energies), and the
mechanical property evaluations were carried out at the cellular structure levels [11-16]. Such
approach can become inefficient as the material properties of individual cellular struts are often
coupled with the geometry effects, which could introduce infinite design variables into the analysis
due through cellular geometry designs. In order to establish comprehensive understanding with the
material characteristics of the PBF cellular structures, investigation that focuses on the individual
strut level is needed. One earlier study along this direction has revealed that even for struts with
relatively large cross sectional dimensions (1-2mm), the cellular material still exhibits significant
process-geometry dependency [19]. It was shown that both the strut diameter and strut build
orientation are significant factors for the mechanical properties of the fabricated cellular struts. In
[19] the studies were carried out with the L-PBF process, whereas in many cases the EB-PBF is
the preferred process choice for cellular structure fabrication due to its higher productivity as
previously mentioned. Therefore in the current work an experimental study was carried out to
characterize both the microstructure and the mechanical properties of cellular struts fabricated via
EB-PBF to provide quantitative information into the process-geometry-property relationships of
the Ti6Al4V EB-PBF cellular materials.
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Experimental Procedures
The AM system and material used in this study are the Arcam S400 and Ti6Al4V-ELI

(Arcam/AP&C). The powder feedstock was characterized by Microtrac S3000 particle size
analyzer, which yield mean particle size Din=57.23um with D1¢=48.68um, Dso=64.23um and
Do9o=102.3um. The Arcam EB-PBF systems utilize preconfigured process setting specifically for
the fabrication of cellular structures, which was used as the default process setting in this study.
The decision of not adjusting the process setting was due to the facts that it was controlled by a
large set of process variables that are highly interactive to each other and that the process utilizes
in-situ variable-parameter control driven by internal algorithms that are not accessible to users. In
addition, it should be noted that as the system was calibrated manually by the users prior to this
study, the quality of the electron beam might not be as optimized compared to the systems that are
maintained by the OEM service team.

Micro-tensile coupons as shown in Fig.la were designed with varying cross sectional thickness
d=0.7mm, 0.9mm, 1.lmm, 1.3mm and 1.5mm, and fixed gauge length L=15mm. The coupons
were fabricated in the Arcam S400 systems with the longitudinal axis orienting at 15°, 45° and 90°
in relation to the build plane. Fig.1b shows the example of samples oriented at 15° angle. All the
micro-tensile coupon samples were placed on substrates (Fig.1b) that were also fabricated by the
process in order to facilitate the consequent coupon separation process.

a. Micro-tensile coupon design b. Coupon arrays at 15° orientation
Fig.1 Experimental sample designs

After fabrication, the samples were cut off from the substrates using a band saw. The cross
sectional dimensions of each samples were measured using a digital optical microscope (Olympus
MXS51). For each sample, the measurements were taken at 6 different locations along the two sides
of the samples as shown in Fig.1a. The approximate regions of the measurements are also shown
in Fig.1a, although accurate control of measurement locations were not deemed necessary. For
each region, The measurement of the cross sections followed the method described by Suard et al.
[15] by taking both the inscribed diameter D; and circumscribed diameter D as shown in Fig.2a.
Fig.2b shows an example of the measurement results for a sample. In the attempt to evaluate the
porosities of the samples, the other dimensions of the samples were also measured by using a
caliper, and the weight of the samples were measured by a digital scale with resolution of 0.001g.
The densities of each samples were calculated by dividing the weights by volumes, and the results
were compared to the reference solid density of Ti6Al4V (4.33g/cm?) to determine the porosities.
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Strut profile

a. Measurement method b. Sample being measured
Fig.2 Dimensional evaluation of the samples

For the microhardness testing, one arbitrarily selected sample from each group were cut along the
longitudinal xz or yz plane and mounted, and three random locations in the cross sections were
selected from each samples for microharndess testing (Shimadzu HMV-G). The testing locations
were selected in such a way that no obvious porosity was present in the testing area. For the micro-
tensile testing, a custom testing fixture was made to accommodate the small sizes of the samples.
As shown in Fig.3, a wrap-around testing fixture was designed and machined using 6061-T6
aluminum as material. During the testing, the two halves of the fixture were fixed on the tensile
testing machine (Instron 5569A) using the default grips, and the samples were carefully inserted
into one of the openings of the custom fixture. The spacing between the two halves of the custom
fixture was then adjusted carefully to enable the other gripping end of the sample to be inserted
into the other fixture opening. The sample was also aligned carefully to ensure that it was gripped
vertically. A 5-10N pre-tension force was applied after the sample was fully inserted in order to
retain the sample alignment. The tensile testing was carried out at 0.lmm/min constant
displacement rate for all the samples.

Machine
grips
Tensile
testing

adapter

Specimen

a. Test fixture design b. Actual setup
Fig.3 Micro-tensile testing fixture

Lastly, the microstructure of the samples was characterized using optical microscopy. The
mounted samples for the micro-hardness testing were polished and etched before being
characterized for microstructural phases as well as the dimensions of the grains. Previous studies
have identified that the microstructure of the PB-EBF cellular struts exhibits columnar grain
morphology oriented towards the build direction (i.e. Z-direction), with microstructural phases
consist of both a-phase and a’-phase within the prior B grains [20-23]. In this study, the width of
the columnar grains was measured from randomly selected grains within the micrographs for each
types of sample.

Results and Discussions
Table 1 shows the dimensional and density measurement results for all the samples, and Fig.4
shows the relationships between the measurement results and the designed nominal dimensions
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for all strut types. For all types of struts the designed dimensions fall between the maximum and
minimum dimensions, i.e. between D¢ and Di. However, significant amount of dimensional
variation between 300-500pum was observed for all the struts, which accounts for as much as 50%
of the nominal dimensions for small-size struts (0.7mm and 0.9mm). From previous studies it was
suggested that the minimum inscribed diameters of the struts provide more close approximation
for the mechanical property estimation of these struts [15, 24]. Based on such observations, it can
be expected that all types of cellular struts fabricated by the EB-PBF process potentially exhibit

reduced mechanical properties.

M| Demm) Di(mm) | DeDi(mm) | (DeDYD | oite
s 07 0.05260.104 | 0.623+0.182 | 032950.172 | 0469 | 0.818+0.031
Is 09 1.196£0.061 | 0.78620.145 | 0.410x0.133 | 0455 | 0.846£0.077
Is Ll 1.287+0.082 | 0.880-0243 | 0.4060203 | _ 0370 | 0.915£0.069
Is 13 1.5050.073 | 10910223 | 0.414x0.199 | 0318 | 0.936+0.005
Is Ls 1.674+0.127 | 119950267 | 0.475:0307 | _ 0317 | 1.012%0.132
45 07 0.955:0.064 | 0.593%0.115 | 0.361£0.102 | 0.516 | 0.802+0.050
45 09 111740068 | 0.77650.142 | 0.34120.107 | 0379 | 0.856+0.027
45 Ll 1.268+0.096 | 0.9490.143 | 0.319:0.089 | 0290 | 0.905+0.034
45 13 1.4690.091 | 1.1610.132 | 0.308%0.103 | _ 0237 | 0.958£0.036
45 L5 1.676+0.085 | 129650.128 | 0.38020.110 | 0253 | 0.989+0.067
%0 07 1.007+0.056_| 0.679-0.064 | 0.328=0.009 | 0468 | 0.729%0.059
% 09 1.128+0.058 | 0.81050.063 | 0.31820.057 | _ 0354 | 0.802+0.062
% Ll 121740052 | 0.89220.091 | 0.324%0.057 | _ 0295 | 0.939%0.022
% 13 1.38150.080 | 1.06950.079 | 0.312:0.047 | _ 0240 | 0.991%0.023
% Ls 1.548+0.050 | 122520.087 | 0.321=0.079 | _ 0214 | 1.045£0.029

Table 1 Dimensional and density measurement results for different types of struts

c. Relative dimensional
variations
Fig.4 Dimensional characteristics of different types of struts

a. Max. and Min. dimensions b. Dimensional variations

Also, from the results the struts fabricated at 15° orientation angle appear to exhibit the highest
dimensional variability, whereas the 90° strut samples exhibit relatively consistent dimensional
variability of around 320pum. It is also noted that the 15° struts also exhibit largest variability of
dimensional variations among multiple samples (Table 1), which clearly suggest that the
dimensional quality of the low-angle struts is significantly compromised. This might be attributed
to the oblique cross sectional areas of these struts that increases the tendency of defect generation
when using the default network scanning strategy. On the other hand, the relative dimensional
variation, which is defined as the ratio between the actual dimensional variation and the nominal
dimension, steadily reduces as the nominal strut dimension increases.
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The porosity measurement results show that in general there exist some porosities within the
fabricated thin struts. There exist multiple measurement values that were larger than 1 that were
obviously inaccurate, and this could be largely attributed by the use of overall dimensions for the
estimation of the volumes of the parts, which could introduce some errors into the results.
Regardless, the results still show that there exists clear trends between the geometrical type of the
struts and their porosities. As shown in Fig.5, with increasing nominal strut dimensions the relative
densities of the struts also increases. This agrees with the intuition that with smaller strut
dimensions the EB-PBF process is more prone to generate internal defects to the structures. Also,
it was observed that the 90° struts exhibit the highest relative density sensitivity relative to the
nominal strut sizes. With small nominal strut size designs, the 90° orientation tends to result in the
highest amount of internal porosities with the fabricated struts, which might be attributed to the
small effective cross sectional areas at such orientation.
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Fig.5 Relative density versus strut sizes and orientation angles

The microhardness and tensile strength of different types of struts are listed in Table 2, and the
relationships between the mechanical properties and nominal strut sizes are shown in Fig.6. The
microhardness of different types of struts exhibit relatively consistent hardness values of VHN350-
380, which is slightly higher than the typical hardness from commercial Ti6Al4V materials [25-
27], which might be contributed by the presence of the o’ phase resulted from enhanced rapid
cooling process. The tensile strength of different types of struts exhibit large differences as well as
variabilities. While orientation angle appears to play less consistent role, the 15° struts exhibit
significantly lower tensile strength of around 350-500MPa compared to the other two orientation
types. The 45° struts exhibit slightly higher overall tensile strength as well as smaller strength
variations across the entire dimensional ranges investigated, which might be due to their
combinational characteristics of relatively small dimensional variability and porosities. Such
observation is further illustrated in Fig.7, in which the tensile strength of all different types of struts
are mapped against the relative densities of the struts. It is also noted that the lack of correlations
between the relative density and the tensile strength of the struts is likely a result of the inaccurate
calculation of relative density values, which does not adequately account for the large dimensional
variability of the struts as previously discussed. With small-size struts, the strength variability of
both 15° and 90° struts can exceed 250MPa, which would cause significant challenges with the
reliable use of cellular structures with such strut dimensions. In addition, the tensile strength for
all the struts are significantly lower than the solid Ti6Al4V fabricated via the same process
previously reported [28], which again is attributed to the extensive presence of defects.
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Strut angle (Deg) Strut dim. D (mm) Microhardness (VHN) Max. strength (MPa)
15 0.7 382.62+18.36 464.04+267.94
15 0.9 370.75+10.35 479.84+149.91
15 1.1 357.41+£7.24 354.99+51.50
15 1.3 376.304+28.57 341.14+82.21
15 1.5 368.75+£27.72 483.60+108.69
45 0.7 386.9748.58 852.80+91.00
45 0.9 376.89+15.04 689.35+38.36
45 1.1 376.18£12.49 649.54+143.95
45 1.3 367.88£11.29 767.74+£26.48
45 1.5 355.134+17.35 748.70+54.01
90 0.7 376.0848.61 752.80+262.04
90 0.9 376.89+10.36 740.76+119.33
90 1.1 367.7243.38 540.14+35.28
90 1.3 377.05+15.07 550.16£11.25
90 1.5 379.52+18.75 640.56+24.50

Table 2 Microhardness and tensile strength of different types of struts

c. Tensile strength variability vs.

a. Microhardness vs. strut size .
strut size

b. Tensile strength vs. strut size

Fig.6 Mechanical properties of different types of struts
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Fig.7 Tensile strength vs. relative density for different types of struts

Lastly, the microstructural characteristics of the strut samples are shown in Fig.8. The
microstructure of the fabricated struts exhibit predominantly o phase with small amount of o’
presence found in sporadic regions. The average grain width of the struts show clear dependency
on the strut orientation, which 15° struts exhibit largest average grain width and 90° struts exhibit
smallest average grain width. As the width of the grains is closely associated with the cooling rate
during the solidification process, it was speculated that the smallest effective cross sectional areas
of the 90° samples contributed to the more enhanced cooling rates during the fabrication process,
which results in more refined microstructure. Despite the microstructural refinement, it was
believed that both the in-process annealing effect and the presence of more extensive internal
defects contributed to the lack of mechanical property enhancement from the 90° struts.
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a. Micrograph of samples b. Average grain size vs. nominal strut size
Fig.8 Microstructural characteristics of the struts

Conclusions

In this work the potential effects of geometry parameters including cross sectional dimensions and
orientations on the quality characteristics of the Ti6Al4V cellular struts fabricated via EB-PBF
process were evaluated. Despite the potential energy beam quality issues, the results revealed that
there exist significant correlations between the geometry parameters and various geometrical,
microstructural and mechanical characteristics of the cellular struts. For struts with very small
cross sectional dimensions (<0.9mm), both the dimensional and mechanical qualities are
significantly affected, which could impose significant challenges to the high-fidelity designs of
these structures. This challenge could be further aggravated considering the fact that many
lightweight cellular structures require the use of small-dimension struts. The low-orientation angle
struts (i.e. struts that are more aligned towards the build substrate plane) exhibit larger dimensional
variability and lowest overall mechanical strength, whereas the high-orientation angle struts (i.e.
struts that are more aligned towards the build direction) exhibit highest dimensional qualities. On
the other hand, likely due to the small effective cross sectional area, the high-orientation angle
struts exhibit higher tendency of internal defect (porosity) generation with the increase of nominal
strut dimensions, which negatively impacts their mechanical strength. With the anticipation that
such process will be increasingly utilized for the design optimization with lightweight structures,
the adequate understanding of the quality characteristics of the cellular struts becomes critical. The
current study only provides a preliminary view into the problem, and more studies are needed
towards the establishment of a comprehensive material database for PBF-AM cellular structures.
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