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Abstract 
In this study multiple cellular structures, including the re-entrant auxetic, the octet-truss, 

and the BCC lattice, were evaluated for their relative performance of fatigue strength under 
compression-compression cyclic loading. Various design variations with different dimensions 
were fabricated via electron beam powder bed fusion (EB-PBF) additive manufacturing (AM) 
process and experimentally tested. Initial S-N based fatigue strength characterization with the BCC 
lattice shows significantly decreased fatigue strength of the cellular parts compared to the solid 
samples. Cross-design comparison were consequently carried out using constant maximum stress 
ratio level. The results indicate that the fatigue characteristics of the EB-PBF cellular structures 
are not only dependent on their topology types but also their geometry dimensions. 

Introduction 
Direct fabrication of metallic cellular structures using additive manufacturing (AM) has been 
extensively demonstrated in various research works and case studies [1-6]. It is widely expected 
that these structures have vast potentials in a broad range of applications by providing outstanding 
mechanical properties per unit mass [7-9]. On the other hand, for many applications the reliability 
of the components over the entire service life is of critical importance, which imposes significant 
challenges to the design and manufacturing of the lightweight structures due to their generally 
reduced design redundancy. For many AM-fabricated structures, this issue could be further 
aggravated by the tendency of developing both surface and internal defects during the fabrication 
processes [4, 6, 10, 11]. For example, for powder bed fusion (PBF) AM processes, due to the use 
of powder feedstock with random particle size distributions, the resulting parts generally exhibit 
certain levels of surface roughness and internal porosities, which can become detrimental to 
various performance characteristics of the fabricated cellular structures such as the fatigue 
endurance. 

In previous literature, the fatigue properties of the cellular structures fabricated by the PBF-AM 
processes was briefly investigated [12-15]. The results generally suggest that the PBF-AM cellular 
structures exhibit significantly lower fatigue strength compared to both the traditional foam 
structures and the solid PBF-AM parts of the same materials [16-19]. For the solid PBF-AM parts, 
the two primary source of defects that contribute to the reduced fatigue strength are the internal 
pores/defects and the surface roughness [19, 20]. On the other hand, while it was suggested that 
fatigue strength comparable to that of traditional materials can be achieved for PBF-AM structures 
via adequate surface finish treatment such as machining [19], such treatment is generally infeasible 
for the cellular structures that exhibit complex geometries, which result in the high possibility for 
crack initiation from surfaces for these structures [13-15]. In addition to the aforementioned two 
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sources of defects, the PBF-AM cellular structures also exhibit intrinsic quality variability that 
could introduce further performance fluctuation [12].  

The reported fatigue strength of the Ti6Al4V cellular structures fabricated by electron beam 
melting AM (EBM-AM) is generally in the range of 0.15-0.25σYS for the 106 cycle life criteria, 
where σYS is the yield strength of the solid material [12-14]. Multiple cellular structure designs 
were used for the experimental studies, including the dodecahedron [12], the BCC lattice [13], and 
the hexagonal/diamond lattice [14] as shown in Fig.1, and although the fatigue strength of these 
structures show consistently low values, it was also suggested that the geometry factor might 
potentially play a role in the fatigue performance of the structures [12]. As there currently exist 
very little knowledge in identifying the potential impact of geometry designs of cellular structures 
on their fatigue performance, the objective of this work is to provide preliminary experimental 
insights into this area. 

   
a. Dodecahedron [12] b. BCC lattice [13] c. Hexagonal/diamond lattice [14] 

Fig.1 Cellular structure designs previously evaluated for fatigue performance 

Sample design, fabrication and testing procedure 
There exist infinite possibilities of geometry designs for the cellular structures, and it is infeasible 
to establish a comprehensive experimental database for the cellular “materials”. Therefore in the 
current study multiple cellular designs with distinct design mechanisms were investigated in the 
attempt to improve the representativeness of the results. Fig.2 shows the four designs used in the 
current study, which are octet-truss, BCC lattice, octahedral and re-entrant auxetic structures. The 
octet-truss is a stretch-dominated design with high degrees of structural symmetry, the BCC lattice 
is a bending-dominated design also with high degrees of structural symmetry, the octahedral lattice 
is a stretch-dominated design with lower degrees of symmetry, and lastly the re-entrant auxetic 
structure is a bending-dominated design with negative Poisson’s ratio [21]. The geometrical design 
variables for each types of unit cell designs are also shown in Fig.2, and for the current study the 
setting of these parameters are listed in Table 1. One of the basic criteria used in the design of the 
unit cell geometrical parameters is the relative density (RD). For all four types of unit cell designs, 
two levels of RD, ~0.1 and ~0.2, were introduced into the designs by varying geometry parameters. 
In addition, for the unit cell structures that exhibit low degrees of symmetry (BCC and re-entrant 
auxetic), additional design variations were introduced to evaluate the effects of unit cell height to 
lateral width aspect ratios at the same level of RD (Aux-1 vs. Aux-3, BCC-1 vs. BCC-3). The RD 
values were calculated from the CAD models with each of the unit cell designs. The patterns used 
for the RD calculations were 4x4x4 patterns for all the designs, which were also used for the 
fabrication of the actual samples. It is noted that even though the pattern size of the cellular 
structures are relatively small, from the previous studies it can be argued that the boundary effect 
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is stabilized by the adoption of the same numbers of repetition (4) in all principal directions of the 
designs [22].  

Design H (mm) L/L1 (mm) θ (deg)/L2 (mm) t (mm) RD 
Aux-1 5 3.5 70 1 0.205 
Aux-2 7 5.5 70 1 0.104 
Aux-3 7 3.5 60 1 0.193 
Octet-1  6  1 0.198 
Octet-2  8.8  1 0.101 
BCC-1 2.7 5.4 5.4 1 0.192 
BCC-2 3.5 7 7 1 0.105 
BCC-3 2 6.2 6.2 1 0.197 
Oct-1  5.4  1 0.187 
Oct-2  7.6  1 0.104 

Table 1 Design parameters for the cellular structures 

    
a. Octet-truss b. BCC c. Octahedral d. Re-entrant auxetic 

Fig.2 Cellular unit cell designs investigated 

All the samples were fabricated by an Arcam electron beam melting (EBM) S400 system using 
Ti6Al4V-ELI as material. Fig.3 shows some of the fabricated samples. As the study mainly 
focused on the investigation of geometry effects, no attempt was made to specifically characterize 
the powder feedstock characteristics or optimize the process parameters. The default canned 
process parameters for the cellular structures (Ti6Al4V-Net) was adopted for the setting. 5-10 
samples of each design variation were fabricated. The overall dimensions and weights of the 
samples were measured using a caliper in order to calculate the actual RD of each samples. Table 
2 shows the measurement and calculation results for the samples. The densities of the actual 
samples of all designs were significantly lower than the designed values while exhibiting high 
consistency. In addition, for each type of design, one arbitrary sample was selected for strut 
dimension measurement using digital optical microscope. The maximum inscribed diameter Di as 
shown in Fig.4 was taken as the diameter of the struts from the digital images, and the results are 
shown in Table 3 (results from 3 arbitrarily struts of an arbitrarily sample). Some of the 
measurements were incorrectly taken by the operator and thus became unavailable. The auxetic 
and octahedral samples exhibit relatively significant strut dimensional deviations from the nominal 
designs (1mm), which does not agree well with the observations from similar studies in previous 
literature [23, 24]. On the other hand, such dimensional deviations do not fully account for the 
reduced densities as shown in the CAD relative density values in Table 2 calculated from the 
updated models using measured strut dimensions. Therefore, it was speculated that the struts of all 
the cellular structures exhibit additional internal porosities, possibly due to the beam quality issues 
such as calibration or astigmatic errors.  
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Fig.3 Some fabricated Ti6Al4V samples 

Design 
CAD model Actual sample 

RD 
CAD 
RD D1 (mm) D2 (mm) D3 (mm) D1 (mm) D2 (mm) D3 (mm) 

Aux-1 27.31 27.31 30.42 27.46±0.19 27.65±0.27 30.22±0.06 0.154±0.000 0.169 
Aux-2 42.35 42.35 40.95 42.50±0.12 42.52±0.12 40.65±0.31 0.072±0.001 0.083 
Aux-3 25.25 25.25 42.00 25.37±0.11 25.37±0.09 41.59±0.29 0.139±0.001 0.144 
Octet-1 34.94 34.94 34.94 35.17±0.23 35.13±0.17 34.65±0.22 0.141±0.004 - 
Octet-2 50.78 50.78 50.78 50.81±0.08 50.88±0.02 50.29±0.05 0.072±0.003 - 
BCC-1 21.60 21.60 22.12 21.65±0.09 21.72±0.13 21.70±0.22 0.138±0.007 0.182 
BCC-2 28.00 28.00 36.44 28.12±0.27 28.06±0.14 35.90±0.30 0.075±0.003 0.114 
BCC-3 24.80 24.80 16.64 24.35±0.56 24.94±0.12 16.55±0.16 0.146±0.004 0.168 
Oct-1 23.40 23.40 32.09 23.49±0.08 23.49±0.11 31.75±0.11 0.128±0.005 0.157 
Oct-2 31.40 31.40 43.41 31.42±0.09 31.46±0.07 42.78±0.09 0.074±0.002 - 

Table 2 Dimensional measurements with fabricated Ti6Al4V samples 

 

D
i

Strut profile

 

Design Strut type Actual sizes (mm) 

Aux-1 
Vertical 1.04±0.03 

Re-entrant 0.86±0.10 

Aux-2 
Vertical 0.75±0.04 

Re-entrant 0.98±0.02 

Aux-3 
Vertical 0.77±0.00 

Re-entrant 0.95±0.02 
BCC-1  0.97±0.02 
BCC-2  0.97±0.05 
BCC-3  0.91±0.02 

Oct-1 
Horizontal 1.05±0.05 

Vertical 0.86±0.05 
Fig.4 Inscribed strut diameter measurement  Table 3 Strut diameter  

One arbitrarily selected sample of each design were subjected to quasi-static compressive testing 
under an Intron 5569A with a loading rate of 1mm/min. The sample size of one was largely due to 
the limitation of resource availability but was also considered to be acceptable due to the observed 
consistency with the qualities of the parts as well as the conclusions from previous literatures with 
Ti6Al4V fabricated by EB-PBF [23, 25, 26]. The ultimate strength (σm) of each types of cellular 
structures were taken as the references for the configuration of the compression-compression 
fatigue testing. The use of ultimate strength was note expected to affect the interpretation of the 
fatigue strength as the Ti6Al4V struts fabricated by EB-PBF generally exhibit little yield and was 
therefore considered “brittle” for the purpose of initial failure strength estimation [23].  

For the fatigue testing, firstly the compression-compression cyclic testing with varying maximum 
stress level σmax/σm = 0.1, 0.2, 0.4 and 0.5 and stress ratio R=σpeak/σvalley=0.1 was carried out with 
the BCC-1 samples, where σmax is the maximum stress levels applied to the sample, and σpeak and 
σvalley are the maximum and minimum compressive stress levels within a single compression-
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compression cycle, respectively. The purpose of such study was to establish a reference S-N curve 
in attempt to determine a proper value of σmax/σm for all the designs so that sufficiently slow crack 
growth could be ensured while limiting the total testing time. The BCC-1 structure was selected 
for the S-N curve study as most samples of this design were fabricated. Following the S-N curve 
study, a fixed level σmax/σm value was selected, and samples of the other designs were subjected to 
the compressive-compressive cyclic testing with the same R=0.1 configuration. All the fatigue 
testing was carried out on an Instron Electroplus E10000 system with samples compressed between 
two steel platens. The waveform for the cyclic loading was sinusoidal, and all the testing was 
executed under the force-controlled mode at 50Hz cycle frequency.  

Results and analysis 
The static compressive testing results for each type of the structures are listed in Table 4. In order 
to estimate the potential impact of the strut dimension deviations, additional finite element 
simulations with each designs were carried out using the measured strut dimensions results for 
each corresponding designs. The samples generally exhibit significantly lower strength compared 
to the CAD models even after the strut dimension compensation, which clearly indicates the 
existences of internal porosities. Although the density deviation issue was previously reported for 
EB-PBF cellular parts [26], many literature have shown that the EB-PBF process using Arcam 
systems is capable of producing generally high-quality cellular parts [5, 24, 25]. Therefore it is 
likely that the system used to fabricate the samples was not tuned to the optimal operation 
conditions. The S400 system used in this study utilizes a completely manual beam calibration 
protocol that heavily relies on the operator’s level of expertise, which in combination with the 
nonlinear nature of the electrical optics systems, makes it more problematic for these older 
generation systems to maintain consistent qualities over elongated service period.  

Design Maximum force (N) Comp. strength (MPa) FEA strength (MPa) Diff. (%) 
Aux-1 6417 8.30 9.52 12.8% 
Aux-2 2990 1.66 1.70 2.3% 
Aux-3 8812 13.66 10.91 25.2% 
Octet-1 13467 14.08 10.06 40.0% 
Octet-2 8022 3.05 4.08 25.2% 
BCC-1 5366 11.37 10.95 3.8% 
BCC-2 2812 3.40 4.36 22.1% 
BCC-3 3925 6.56 7.31 10.2% 
Oct-1 5209 9.27 21.48 56.84% 
Oct-2 3337 3.38 14.67 77.0% 

Table 4 Quasi-static mechanical strength of the fabricated samples 

The S-N curve for the BCC-1 design was obtained experimentally and shown in Fig.5. The dashed 
line with an arrow in Fig.5 indicates that the sample at 10% maximum stress level did not fail after 
2 million cycles, and therefore was taken as the fatigue limit of this structure. The results appear 
to agree well with the previous studies with EB-PBF cellular structures [12-14]. However, since 
only one sample was tested at each maximum stress levels, this S-N curve was not intended to 
provide accurate information of the fatigue characteristics of the structures. Based on the results, 
the 20% maximum stress level was selected for the rest of the designs since at this level the BCC-
1 structure appears to exhibit stable fatigue crack progression and that the duration of the cyclic 
testing was acceptable for the test schedule.  
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Fig.4 S-N curve of BCC-1 design based on single-sample testing 

3-5 samples of each designs were subjected to the compressive-compressive cyclic loading per the 
setting previously described. Due to the “tune-in” process with the tester during the beginning of 
each test, the maximum and minimum loading levels of each cycle curing this period tend to be 
significantly smaller than the set values. Therefore the results from the first 100 cycles were 
subsequently discarded during the processing of the results. Fig.5 shows the cumulative strains of 
all different types of designs, which were obtained by calculating the progressive 
shortening/crushing of the samples using the initial strains as references. In general there exist 
significant differences among the cumulative strains of different types of designs as well as among 
the same type of structures. For the traditional foam cellular structures, there typically exist three 
stages of strain accumulation, namely the incubation stage, the steady state stage, and the 
accelerated collapse stage [27-29]. The incubation stage is driven by the formation of the crack 
initiations, which is then followed by the progressive crack propagation during the steady state 
stage. During the final stage, due to the widespread presence of cracks and fractured struts, the 
cellular structure exhibits catastrophic failure by forming crushing bands across the entire 
structures. For many the cellular structures evaluated in the current study, the incubation stages 
appear to be very short or near absent, which might correspond to two types of mechanisms. For 
structures that exhibit very short incubation stages such as Aux-3, BCC-1 and BCC-2 structures, 
the shortened crack initiation period might be attributed to the extensive existence of defects with 
the fabricated structures. On the other hand, for structures that exhibit absence of the initial 
incubation stage such as Aux-1, Aux-2, BCC-1, BCC-2, Oct-1 and Oct-2, there might exist specific 
sites or locations that predominantly determine the initiation and propagation of the cracks. The 
later mechanism was also observed from previous studies with the EB-PBF cellular structures [12, 
13]. Compared to the typical behaviors of the stochastic cellular structures (e.g. foams), the stress 
and strain status of individual struts in the periodic cellular structures can be more readily 
determined, which is believed to be closely associated with the crack propagation characteristics 
observed from this study and could be potentially beneficial for applications where the fatigue 
failure of the structures needs to be designed. In comparison, the octet-truss structures exhibit the 
typical three-stage strain accumulation characteristics, which might be attributed by the relatively 
small stress gradients within the structures and consequently lack of dominant crack propagation 
patterns, as well as less sensitivity towards defects in individual struts. It is likely that further 
investigations will be needed to verify such speculation.  
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a. Aux-1 b. Aux-2 c. Aux-3 

  
d. Octet-1 e. Octet-2 

   
f. BCC-1 g. BCC-2 h. BCC-3 

  
i. Oct-1 j. Oct-2 

Fig.5 Cumulative strain under cyclic loading for each type of designs 

Towards the end of the cyclic testing, all the designs exhibited very high strain accumulation rate 
that cause rapid crushing of the structures within a few cycles. For octahedral structures 
catastrophic failure occurs within a single loading cycle. This is in agreement to the formation of 
distinct “layerwise” crush patterns or shear patterns, which is associated with the well-defined 
geometries of these structures and was previously observed with the cellular structures fabricated 
via PBF-AM [23].  
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a. Aux-1 b. Aux-2 c. Aux-3 

  
d. Octet-1 e. Octet-2 

  
 

f. BCC-1 g. BCC-2 h. BCC-3 

  
i. Oct-1 j. Oct-2 
Fig.6 Typical samples of each designs after the fatigue testing 

Fig.6 shows the typical samples of each designs at the end of the testing after the rapid strain 
accumulation stages. All the designs with positive Poisson’s ratios exhibit the diagonal “shear” 
fracture patterns, which were formed during the final catastrophic failure stages. Among these, the 
octet-truss structures appear to have sustained more extensive damages, with more macroscopic 
fracture bands clearly discernable throughout the samples. On the other hand, for the auxetic 
structures no apparent fracture planes were discernable, and upon closer check large numbers of 
fractured debris were found to be not completely detached from the structures. From previous 
studies with this structure it was concluded that the auxetic structures generally exhibit superior 
energy dissipation and reduced stress concentration upon loading, which might have contributed 
to the unique fatigue fracture characteristics of these structures.  

Based on the strain accumulation characteristics of all the designs, a cumulative 
strain/displacement of 0.2mm was selected as the failure criteria in order to establish the 
estimations of fatigue strength. Fig.7 shows the fatigue life of each types of cellular designs. The 
octet-truss structures clearly exhibit significantly higher fatigue life, with both design variations 
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failing at over 3 million cycles. Fig.8 further maps the fatigue lives of different cellular designs 
against their relative densities. The results show that the relative densities evaluated in the current 
study do not have significant effect on the fatigue performance of any of the cellular designs. 
Considering that relatively low levels of relative densities (<0.25) were investigated in the study, 
it is expected that the stress-strain characteristics of individual struts within these structures are 
reasonably linear during the cyclic testing. Also, the identical cross sectional dimension design 
(1mm) of struts for all the designs also facilitated the consistency of the fabrication qualities, which 
contributed to the relative density-independent behaviors. As for the effect of the design 
mechanisms on the fatigue performance of the structures, the effects of Poisson’s ratio or structural 
symmetry appear to be insignificant, whereas the combination of deformation mode and structural 
symmetry (i.e. octet-truss versus octahedral) show significant effects. Considering that in the octet-
truss structures strut bending contributes much less to overall deformation compared to the 
octahedral designs, it was speculated that such deformation mode is responsible for the superior 
fatigue performance of the octet-truss designs. From Fig.6 it also appears that the energy 
dissipation of the octet-truss designs is more extensive throughout the structures. 

 
Fig.7 Fatigue life of each types of cellular designs  

  
a. All structures b. Octet-truss excluded 

Fig.8 Relative density-fatigue life mapping of different designs 

Conclusions 
In this work experimental studies were carried out to evaluate the potential effect of geometry 
designs on the fatigue performance of cellular structures fabricated via EB-PBF process. Due to 
the extensive presence of defects with the fabricated samples partly attributed to the calibration 
issue with the EB-PBF system used in the study, both the static and fatigue properties of the cellular 
structures were expected to be affected. On the other hand, the comparison among different designs 
indicates that the EB-PBF cellular structures exhibit distinct strain accumulation during the cyclic 
compression-compression loading. Most structures exhibit very short incubation stage during 
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which the initial cracks form, which likely attributed to the extensive defects that are present in 
the structures. After the steady strain accumulation stage, all the structures exhibit rather 
catastrophic failure during the final accelerated strain accumulation stage, which might be 
attributed to the less stochastic fracture pattern resulted from the pre-determined geometry designs. 
From the results, the cellular  designs that exhibit significant strut bending deformation mode also 
exhibit lower fatigue performance in comparison to the designs that exhibit predominantly strut 
stretch/compression deformation mode (octet-truss). Structures with negative Poisson’s ratios 
exhibit less-defined fracture patterns likely due to the ability of the structures for more 
homogenous stress distribution. On the other hand, the Poisson’s ratio and relative density do not 
appear to play significant roles in the fatigue lives of different designs. As a result, octet-truss 
designs exhibit significantly higher fatigue life compared to the other structures. All the cellular 
structure designs exhibit low fatigue strength that is in agreement with previous studies, although 
it was also revealed that structural designs could play potentially important roles in their fatigue 
performance.   
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