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Abstract 
 
Cellular structures can deform by either the bending, stretching or both of the cell walls or 

cell struts. In this study, the fracture characteristics of multiple typical cellular structures that 
represent both the bending-dominated and stretching-dominated structures were investigated. 
An analytical model based on the matrix displacement method was established for the analysis 
of the fracture progression of the cellular structures, which was consequently employed for the 
fracture analysis of the cellular structures under various geometry design conditions including 
cell topology, cell size and number of unit cells. From the results, it was shown that the fracture 
propagation patterns and stress characteristics of the two cellular designs (diamond and 
triangular) exhibit different dependencies on their geometry designs and cellular patterns. While 
the stretch-dominated triangular structure exhibit higher fracture strength compared to the 
bending-dominated diamond structure, it also exhibits more rapid fracture propagation and 
more significant size effect. 

 
1. Introduction 

 
Cellular structures are a class of structures with low densities and novel physical, 

mechanical, thermal, electrical and acoustic properties. In general, these structures offer 
significant potentials for a broad range of applications such as light weighting, energy 
absorption, and thermal management. There exist an abundance of literatures have investigated 
the mechanical properties of various periodic cellular structures such as Poisson’s ratio, Young’s 
modulus, ultimate strength and yield strength [1-8]. For the fracture properties of the cellular 
structures, most of the efforts were focused on the fracture behaviors of infinite cellular 
structures or cellular structures with a large number of unit cells [9-17]. One of the earlier 
modeling works of cellular fracture by Ashby investigated the cellular structure subjected to 
remote stress [9]. Similar to the analysis of the conventional linear elastic fracture mechanics, 
it was assumed that the critical strut directly ahead of the macroscopic crack tip would fail when 
its stress level of that strut reached the ultimate material strength [9]. Such approach was also 
adopted by various other works as it is both mathematically efficient and conceptually 
convenient. Using this approach, generally unit cell based modeling is used to facilitate the 
simplification of the analysis. However, the modeling of unit cell structures imposes multiple 
assumptions that could potentially introduce errors into the designs [18]. For example, in order 
to ensure that the loading conditions of a single unit cell are representative of the entire structure, 
it must be assumed that the structure is subjected to remote stresses and that the boundary 
constraints can be ignored. However, as actual structures always have finite dimensions and 
therefore deviate from this condition, size effects occur with cellular structures. Both 
experimental and modeling-based size effect studies have been reported for various cellular 
structures [19-23]. However, very little is currently available on the effects of size and topology 
on the fracture pattern of cellular structures.  
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In this work, attempts were made to model fracture properties of two 2D lattice structures 

that represent the bending-dominated and stretching-dominated structures. The combined effect 
of cellular pattern size and topology on the fracture characteristics of the cellular designs were 
investigated analytically. This paper is organized into four sections. The modeling of the 
fracture of cellular structures using the matrix displacement method is described in Section 2; 
next, the geometry selection and creation is introduces in Section 3; finally, the fracture pattern 
of different structures will be compared and discussed in Section 4.  

 
2. Matrix displacement method for fracture properties modeling 
 

The cellular structures are considered as networks of interconnected struts or walls with 
porosities. Each strut or wall is considered to be rigidly connected at the nodes. Therefore, 
without losing generality, a 2D beam problem was considered. For each node, there are three 
degrees of freedom/displacement, which are axial displacement, vertical displacement and the 
rotational angle. The respective forces are the axial force, shear force and the moment. Each 
strut or wall consists of two nodes, which correspond to six degrees of freedom as shown in 
Fig.1. These six displacements of the two nodes of an element can be described under both the 
global coordinate system (�̅�𝑥o𝑦𝑦�) and local coordinate system (xoy). For the local coordinate 
system, the x axe is set to be along the axis of the element from node i to node j.  

 
Fig. 1 The global coordinate system (�̅�𝑥o𝑦𝑦�) and local coordinate system (xoy) of the 2D 

beam 
 
Under the local coordinate system (xoy), the forces at the ends of a beam element are 

related to the corresponding displacements at the ends by the element stiffness matrix, i.e., 

�
𝐹𝐹𝑖𝑖𝑒𝑒

𝐹𝐹𝑗𝑗𝑒𝑒
� = [K]𝑒𝑒 �

𝑑𝑑𝑖𝑖
𝑒𝑒

𝑑𝑑𝑗𝑗
𝑒𝑒� 

where 𝑑𝑑𝑖𝑖
𝑒𝑒 and 𝑑𝑑𝑗𝑗

𝑒𝑒 are the displacement vectors at node i and j respectively, and 𝐹𝐹𝑖𝑖𝑒𝑒 and 𝐹𝐹𝑗𝑗𝑒𝑒 

are force vectors at node i and j respectively for the element ij. Combining the bar stiffness 
matrix and pure bending beam stiffness matrix, the element stiffness matrix [K]𝑒𝑒  for a six 
degrees of freedom strut is shown in Eq. (2). E, A, l and I are Young’s modulus, area of the 
cross section, length of the strut and the second moment of inertia, respectively. [K]𝑒𝑒 is only 
decided by the structure and material and has no dependency on the applied forces.  

(1) 
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Since [K]𝑒𝑒  is based on the local coordinate system (xoy) as shown in Fig.1, and for 

cellular structures individual struts are likely orientated differently, additional transformation is 
needed to convert the stiffness matrix into the more consistent global coordinate system (�̅�𝑥o𝑦𝑦�). 
Therefore, the transformation matrix [𝑇𝑇]𝑒𝑒  shown in Eq. (3) was introduced to convert the 
different local coordinate systems to the global coordinate system. 

 

 
 

Apply such transformation to the applied forces and the displacements, and the stiffness 
matrix under global coordinate system [K�] can be expressed 

 
[K�] = [𝑇𝑇]𝑒𝑒𝑒𝑒 ∙ [K]𝑒𝑒 ∙  [𝑇𝑇]𝑒𝑒.                           (4) 

 
Then one can simply combine all the element stiffness matrices [K�] together to obtain the 

stiffness matrix for the entire structure. It is noted that the 2D lattice structures are usually 
subjected to the loading conditions that are applied on the boundaries, and there does not exist 
external forces at the internal nodes, as shown in Fig. 1. This means that on the boundaries most 
of the displacements are either zero or known values, and the external forces are always zero at 
the internal nodes. Therefore, for 2D lattice structures, the displacements [d] and forces [F] 
can be divided into the known part and unknown part for further calculation. Therefore, the 
stiffness matrix Eq. (1) can be rewritten as 

 

�𝐴𝐴11 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

� �𝑑𝑑𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑑𝑑𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
� = � 𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

�                           (5) 

 
where 𝑑𝑑𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is the vector of unknown displacements,  𝑑𝑑𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  is the vector of known 
displacements, 𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is a vector of known forces and  𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is a vector of unknown 
forces. From Eq. (5), the unknown displacements can be solved as 

(3) 

(2) 
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𝑑𝑑𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝐴𝐴11−1(𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝐴𝐴12𝑑𝑑𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢).                         (6) 
 

Therefore, with the knowledge of 𝑑𝑑𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , all the displacement components can be 
determined for the calculation of the internal forces for each strut. Furthermore, the stress 
distribution of every strut can be established from the results of the nodal displacements. 

 
To determine the crack propagation pattern of these cellular structures, the principal 

stresses are used to evaluate the brittle failure of individual struts at each stage of the crack 
propagation. When the principal stress of one strut or wall reaches the yield strength of the 
material, it was assumed that the corresponding strut or wall will fracture. The matrix 
displacement method will be iteratively employed to calculate the stress status of the un-
damaged part of the structure to determine the sequence of the strut/wall fracture. To better 
illustrate the idea of the crack propagation of the cellular structures, Fig. 2 shows an example 
of the crack propagation of a finite honeycomb structure at different stages. The two ends of 
the honeycomb cellular structures are fixed to rigid platens, which also represents the typical 
boundary condition of sandwich structures or mechanical testing of cellular cubic samples. For 
Step 0 shown in Fig. 2, the honeycomb structure exhibits its original shape without any applied 
displacements. With the increasing of the applied displacement, the honeycomb structure starts 
to deform. When the applied displacement reaches a critical point, the strut with the maximum 
principal stress would fail and fracture, as shown in Step 1 in Fig. 2. The red dots shown in 
Fig.2 identifies the fractured struts, which shows that strut 7-10 fractured at Step 1. As the 
applied displacement continues to increase, there would be another strut, 2-5, that reaches the 
critical point and fractures as shown in Step 2. At Step 3 and Step 4, struts 1-3 and 7-11 fractures 
successively and that the entire structure would fail.  

 

 
Fig. 2 Stages during fracture 

 
3. Geometry design and analysis 

 
2D triangular cellular structure and 2D diamond cellular structure were chosen in this 

study with their unit cells shown in Fig. 3(b) and (c), which are a typical stretching dominated 
structure and a bending dominated structure respectively. The design of these cellular structure 
includes five geometry parameters: the length of each strut (L), the opening angle (θ), wall 
thickness (t), number of unit cells (N) and the wall width (W), as shown in Fig. 3. In this paper, 
the effect on the fracture properties of the length of each strut (L), the opening angle (θ), wall 
thickness (t) and the number of unit cells (N) of both types of cellular structures were 
investigated with a constant boundary wall width of W.         

824



        
Fig. 3 (a) 3D view of the 2D cellular structure; (b) a triangular unit cell with the essential 

parameters; (c) a diamond unit cell with the essential parameters 
 

For the wall thickness effect study, five sets of different thicknesses were chosen to 
evaluate the size effect on the fracture behavior of the 2D diamond structure and 2D triangular 
structure, which were 0.6, 0.8, 1.0, 1.2 and 1.4mm. In this study, the length of strut was 15mm; 
the opening angle was 90º; the number of unit cells in both x and y directions was 4. The original 
pattern of 2D diamond structure and 2D triangular structure for various wall thicknesses are 
shown in Fig. 4 and Fig. 5. Variation of the wall thickness has little effect on the whole 
dimension of these two structures due to the constant strut length. It can be seen that the relative 
density (SD) is proportional to the wall thickness. The thicker the wall thickness, the more the 
relative density will be.  

 
For the strut length effect study, five different lengths were investigated, which were 5, 10, 

15, 20 and 25mm. In this study, the wall thickness was 1.0mm; the opening angle was 90º; the 
number of unit cells in both x and y directions was 4. The original patterns of these cellular 
structures are presented in Fig. 6 and Fig. 7. The overall length of the structure increases with 
the increasing strut length. It is obvious that the relative density decreases when the strut length 
increases. 

 
For the opening angle effect study, five sets of opening angles were investigated, which 

were 30º, 60º, 90º, 120º and 150º. In this study the wall thickness was 1.0mm; the strut length 
was 15mm; the number of unit cells in both x and y directions was 4. The original patterns of 
these cellular structures are presented in Fig. 8 and Fig. 9. For both the 2D diamond structure 
and 2D triangular structure, the relative density decreases when the opening angle increases 
from 30º to 90º, while the relative density increases when the opening angle increased from 90º 
to 150º. However, the relative density shows a symmetric distribution at 90º for the 2D diamond 
structure. 

 
For the unit cell numbers effect study, five sets of unit cell numbers were investigated, 

which were 2, 3, 4, 5 and 6. In this study, the wall thickness was 1.0mm; the opening angle was 
90º; the strut length was 15mm. The original patterns of these cellular structures are presented 
in Fig. 10 and Fig. 11. It is obvious that the overall length of the structure increases with the 
increasing of the strut length. Besides, the relative density remains the same under different unit 
cell numbers since the geometry parameters of each unit cells are identical. 
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Dimension 
Parameters 

t=0.6mm 0.8 1.0 1.2 1.4 
L=15mm, ϴ=90º, N=4, W=10mm 

Original 
Pattern 

     

RD 0.0772 0.1018 0.1258 0.1493 0.1720 

 

 

 

 

 

 

Fracture 
Pattern 

     

E(kJ/m3) 12.4 16.4 20.5 25.6 28.8 
Fig. 4 Effect of wall thickness on the fracture behavior of 2D diamond structure 
  

Dimension 
Parameters 

t=0.6mm 0.8 1.0 1.2 1.4 
L=15mm, ϴ=90º, N=4, W=10mm 

Original 
Pattern 

     

RD 0.1182 0.1550 0.1906 0.2249 0.2581 

  

 

 

  

Fracture 
Pattern 

  

   
E(kJ/m3) 191.2 241.4 289.2 332.2 370.2 

Fig. 5 Effect of wall thickness on the fracture behavior of 2D triangular structure 
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Dimension 
Parameters 

L=5mm 10 15 20 25 
t=1mm, ϴ=90º, N=4, W=10mm 

Original 
Pattern 

     

RD 0.3356 0.1831 0.1258 0.0957 0.0772 
 

Fracture 
Pattern 

     

E(kJ/m3) 65.7 30.9 20.5 15.4 12.3 
Fig. 6 Effect of strut length on the fracture behavior of 2D diamond structure 
 

Dimension 
Parameters 

L=5mm 10 15 20 25 
t=1mm, ϴ=90º, N=4, W=10mm 

Original 
Pattern 

     

RD 0.4817 0.2740 0.1906 0.1460 0.1182 
 

Fracture 
Pattern 

   

  

E(kJ/m3) 525.5 387.6 289.2 229.0 191.2 
Fig. 7 Effect of strut length on the fracture behavior of 2D triangular structure 
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Dimension 
Parameters 

ϴ=30º 60º 90º 120º 150º 
t=1mm, L=15mm, N=4, W=10mm 

Original 
Pattern 

     

RD 0.2373 0.1439 0.1258 0.1439 0.2373 

 

Fracture 
Pattern 

     

E(kJ/m3) 40.3 23.3 20.5 24.1 42.5 
Fig. 8 Effect of opening angle on the fracture behavior of 2D diamond structure 
 

Dimension 
Parameters 

ϴ=30º 60º 90º 120º 150º 
t=1mm, L=15mm, N=4, W=10mm 

Original 
Pattern 

     

RD 0.2802 0.1963 0.1906 0.2332 0.3885 
 

Fracture 
Pattern 

     

E(kJ/m3) 1099.5 442.8 289.2 258.3 246.3 
Fig. 9 Effect of opening angle on the fracture behavior of 2D triangular structure 
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Dimension 
Parameters 

N=2 3 4 5 6 
L=15mm, t=1mm, ϴ=90º, W=10mm 

Original 
Pattern 

 
    

RD 0.1258 0.1258 0.1258 0.1258 0.1258 

 

Fracture 
Pattern 

     

E(kJ/m3) 35.0 24.6 20.5 16.4 13.9 
Fig. 10 Effect of unit cell number on the fracture behavior of 2D diamond structure 
 

Dimension 
Parameters 

N=2 3 4 5 6 
L=15mm, t=1mm, ϴ=90º, W=10mm 

Original 
Pattern 

     

RD 0.1906 0.1906 0.1906 0.1906 0.1906 
 

Fracture 
Pattern 

     

E(kJ/m3) 333.54 334.8 289.2 256.4 232.5 
Fig. 11 Effect of unit cell number on the fracture behavior of 2D triangular structure 
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4. Results and discussion 
 
Fig. 4 to Fig. 11 show the results of the stress-strain curve, the fracture propagation patterns 

and the energy absorption per volume (E) of the 2D diamond structure and 2D triangular 
structure with different sets of parameters.  
 
4.1 Effect of wall thickness 
 

A comparison of the fracture energy per volume of both 2D diamond structure and 2D 
triangular structure are shown in Fig. 4 and Fig. 5. The fracture energy per volume of these two 
structures increases when the wall thickness increases. This implies that the energy absorption 
capability of these two structures depends highly on the wall thickness. This is because the 
structures with larger wall thickness have larger stiffness, which can be seen from the stress-
strain curve from Fig. 4 and Fig. 5. The maximum strength of the structures at each step of 
crack propagation increases when the wall thickness increases.  

 
From the stress-strain curves, it is obvious that the bending-dominated diamond structure 

exhibits sawteeth-like stress fluctuation patterns with multiple stress peaks during the fracture, 
while the stretching-dominated triangular structure exhibits only one stress peaks. As each peak 
means that one or more struts fracture, more peaks indicates that the structures exhibit a slow 
and stable crack growth. Therefore, for the bending-dominated diamond structure, when the 
applied displacement reaches a critical point, one or multiple struts will fail. After the failure of 
these struts, the structure can retain its shape if no more displacement is applied. If additional 
strain is applied, the rest of the structure will continue to deform and absorb more energy before 
the next strut fractures. The numbers in fracture pattern figure from Fig. 4 show the fracture 
stages. For example, the number 1 corresponds to the first strut that fractures, and number 2 
indicates the next strut to fracture. It was concluded that for the diamond structure, the fracture 
propagation exhibits more progressive characteristics. On the other hand, the facture of the 
stretching-dominated triangular structure appears to be unstable. Once the first strut fractures, 
large numbers of struts may fracture immediately after the first one, which indicates a possible 
catastrophic failure of the structures. 

 
For the crack propagation path, the 2D diamond structures show the same diagonal pattern 

regardless of the wall thickness variations. However, for the 2D triangular structures, the crack 
propagation exhibits changing patterns when the wall thickness increases from 0.6mm to 
1.4mm. When the wall thicknesses is small (0.6mm or 0.8mm), the crack goes through the 
entire top layer. On the other hand, at higher wall thickness, the crack tends to propagate across 
multiple layers starting from the top layer.  

 
4.2 Effect of strut length 
 

The effect of strut length on the fracture energy per volume of both 2D diamond structure 
and 2D triangular structure are shown in Fig. 6 and Fig. 7. The fracture energy per volume of 
these two structures decreases when the strut length increases. This is consistent with the notion 
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that with decreasing relative density the toughness of the cellular structure decreases. From the 
stress-strain curves, the bending-dominated diamond structure exhibits multi-stress peak 
characteristics during the fracture, while the stretching-dominated triangular structure again 
appears to exhibit only one stress peak. For the crack propagation pattern, the 2D diamond 
structures again exhibit consistent fracture patterns regardless of the slenderness of the struts, 
while for the 2D triangular structures, the crack propagation plane exhibits a transition from the 
middle layers to the boundary layers when strut length increases from 5mm to 25mm.  

 
4.3 Effect of opening angle 
 

The effect of opening angle on the fracture energy per volume of both 2D diamond 
structure and 2D triangular structure are shown in Fig. 8 and Fig. 9. The energy absorption per 
volume of the 2D diamond follows the trend of the relative density. When the opening angle 
varies from 30º to 90º, the energy absorption decreases, while it increases when the opening 
angle varies from 90º to 150º. However, for the 2D triangular structure, the energy absorption 
keeps decreasing when the opening angle increases. From the stress-strain curves, the 2D 
triangular structure exhibits catastrophic fracture while the diamond structure exhibits multi-
step crack propagation, which is consistent with the previous observations with the other 
geometry parameters. The crack propagation of the 2D diamond structures does not appear to 
be affected by the opening angle. However, for the 2D triangular structures, the crack plane 
exhibits a transition that starts from the boundary layers and gradually shifts towards the middle 
layers as the opening angle increases from 30º to 150º.  

 
4.4 Effect of number of unit cells 
 

The effect of cellular pattern size on the fracture energy per volume of both 2D diamond 
structure and 2D triangular structure are shown in Fig. 10 and Fig. 11. For both types of 
structures, the fracture energy absorption per volume of these two structures decreases when 
the unit cell number increases, although the relative densities remain unchanged. This implies 
that the fracture toughness of the two structures tend to decrease with increasing overall pattern 
sizes. The 2D diamond structures again exhibit relatively stable fracture crack propagation and 
insensitivity to geometrical parameters, and the 2D triangular structures exhibit catastrophic 
crack propagation that follows different patterns when the unit cell number increases.  

 
4.5 Comparison and discussion 

 
For both types of cellular designs, the fracture toughness is strongly dependent on the 

relative densities, which agrees with the previous conclusions from classic cellular fracture 
theories. For the 2D bending-dominated diamond structures, the pattern size and other geometry 
parameters do not have significant influence on its crack propagation characteristic, which 
always exhibits a diagonal crack path with a relatively slow and stable crack growth. In 
comparison, The fracture crack propagation characteristics of the 2D stretching-dominated 
triangular structure appear to be influenced by its geometry designs. Further studies are being 
carried out to investigate the implications of such observation.  
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In addition, at same relative density levels, the fracture energy absorption per volume of 

the 2D triangular structure were significantly higher than that of the 2D diamond structures. 
The reason for this may be that the strength of the stretching-dominated structures is 
significantly higher than that of the bending-dominated structures. So even though the bending-
dominated structures show a slower crack growth pattern which benefits capacity of energy 
absorption, the low strength of the structure is hindering its energy absorption performance. 

 
5. Conclusions 

 
In this paper, the fracture properties of the 2D bending-dominated diamond structure and 

2D stretching-dominated triangular structures were studied through different designs with 
varying cell topology, cell size and number of unit cells. The deformation and fracture behavior 
of these cellular structures was theoretically predicted through an analytical fracture model.  

 
1. The size and topology does not significantly affect the crack propagation patterns of the 

2D diamond structures, while they appear to have more significant impact on the crack patterns 
of the 2D triangular structure. 

 
2. Under the same relative densities, the fracture energy per volume of the 2D stretching-

dominated structure were significantly higher than that of the 2D bending-dominated structures. 
 
3. The 2D bending-dominated diamond structure exhibited relatively stable crack 

propagation pattern, while the 2D stretching-dominated triangular structure appears to exhibit 
rather catastrophic fracture failure. 
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