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Abstract 
 

This study aims to design a green additive approach for the fabrication of controlled porosity on 
hydrogels. Although hydrogels have been of common use in tissue engineering, the generation of 
controllable porosity remains an issue due to their swelling and degradation properties. Hydrogels 
in this study were fabricated by physical cross-linking and the porosity was generated by casting 
the solution in a 3D printed mold prior to physical cross-linking. This approach eliminates the use 
of chemical cross-linking compounds which are often toxic and not environmentally friendly. 
Polyvinyl alcohol was selected to validate this technique due to its biocompatibility and adequate 
mechanical properties. The microstructure, mechanical properties and deformation of the porous 
hydrogels were characterized. Results revealed that the proposed bioplotting technique reduced 
variation of pore size and allotted for the realization of controlled and tunable pore structures. 
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1. Introduction  
 
Hydrogels are networks of polymer chains, which possess the ability to swell and retain fluids 

within their structure. These can be derived from natural or synthetic polymers. Their application 
has been extended to include fields such as agriculture, medical drug delivery, and biosensors [1]. 
Hydrogels have become attractive particularly in vascular applications due to their favorable 
characteristics and wide spread use across the other fields of tissue engineering. They are often 
used in scaffolds due to their biocompatibility, degradability, and the resemblance to body tissues 
in terms of water content and mechanical properties. Polyvinyl alcohol (PVA) hydrogels have 
become widely used in the field of tissue engineering. Besides properties such as biocompatibility, 
biodegradability, and hydrophilicity, these hydrogels have similar mechanical properties to the 
porcine aorta, making them ideal for vascular applications [2]. In scaffold applications, porosity 
within the hydrogel is required for proper cell proliferation. Pores must exhibit regulated shapes 
and sizes, with the necessary interconnectivity to promote survival of the cells [3]. However, 
traditional fabrication methods are known to cause swelling problems, and irregularity in pore 
shape and size [4].  

 

897

Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference



Previous studies have shown organic materials, such as collagen, to produce similar properties 
to the native vessel [5]. Yet, type I collagen by itself cannot withstand high pressures and collagen 
hydrogel mixtures are prone to thrombogenicity and insufficient tensile strength [6].The use of 
synthetic materials such as polycaprolactone (PCL) provide a durable solution due to their low 
degradation rate, but they are prone to calcification [6]. 
 

Hydrogels’ similar morphological structure to human tissue matrix make them suitable for 
tissue scaffolding [7]. PVA hydrogels are used in vascular applications in particular due to their 
similar tensile properties to that of the porcine aorta [8]. Though its characteristics make PVA a 
viable material for vascular scaffolding, controlling the porosity remains a challenge. 
Interconnected and evenly shaped and distributed pores are necessary for cell survival and 
proliferation, vascularization, and nutrient circulation [3]. Conventional pore fabrication, however, 
leads to variable pore distribution, size, and interconnectivity. To combat this, common methods 
such as particle leaching limit the size and shape of the final hydrogel product, ultimately hindering 
the applications of the material [3].  

 
Traditional hydrogel pore fabrication includes particle leaching, gas foaming, and freeze-

drying [4]. For example, a porous structure can be obtained through particle leaching by adding 
salt or other particulates to act as a porogen, which is leached out using a soluble substance after 
the hydrogel has been cross-linked. Porogens located further from the outer surface of the hydrogel 
present a problem as they are difficult to leach due to the limited accessibility of the solvent which 
results in porogens to remain embedded in the hydrogel [9]. In gas foaming, bubbles are introduced 
into the hydrogel via a physical or chemical process and are stabilized by use of a surfactant [10]. 
The gas is then removed from the pockets leaving a porous final product. Freeze-drying is the 
freezing of a hydrogel so that ice crystals form. These are subsequently sublimated through freeze-
drying in vacuum leaving pores [3]. These four traditional methods of pore fabrication result in 
limited pore design and substantial variation in pore distribution and geometry.  

 
The previous methods of bioplotting use 50 percent infill to produce a lattice-like structure 

which allows for interconnected pores to be placed in the polymer [11]. Hydrogels use a variant 
of this method as hydrogels need to be printed into a medium that allows for their cross-linking 
[12]. Hydrogels require cross-linking to change from a liquid-like state to a semi-solid gel to be 
able to retain their structure. The main advantages of this method are the result of chemical cross-
linking which produces stronger chemical bonds with improved mechanical properties [12]. 
However, one major issue with this commonly used bioplotting approach of hydrogels is the high 
toxicity of the mediums that enable chemical cross-linking are not environmentally friendly. Since 
the main application of the hydrogels in this study will be used for biomedical applications, a more 
sustainable method of fabrication has to be developed.  
 

In this study, we propose a green 3-D printing approach for the fabrication of controlled 
porosity in hydrogels. This proposed method utilizes physically cross-linked PVA hydrogels to 
avoid the use of toxic chemical cross-linking agents [12]. Pores are fabricated by casting the PVA 
solution in a 3D printed mold prior to the freeze-thaw process. The casting process allows for 
controlled porosity which is capable of producing more precise interconnected pores that have 
shown to result in improved cell proliferation and vascularization [3]. By controlling porosity, we 
are able to tune the mechanical properties of the hydrogel [13]. Thus, with this sustainable 
approach, controlled porosity is achieved with improved repeatability in comparison to other 
processes such as porogen leaching. In addition, the 3D printing process is highly customizable 
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when compared to porogen leaching methods. For all methods of pore fabrication, a target of 30 
% porosity was used based on past research which shows this percentage as an optimal[10]. The 
hydrogel strength was examined using tensile testing. The swell rate was used to inspect the 
hydrophilic properties, and degradation rates were also investigated. In addition, the size and 
arrangements of pores were analyzed using a scanning electron microscope (SEM).   
 

2. Materials and Methods 
 

2.1. Synthesis of PVA hydrogel 

A solution was formed by mixing 10 g PVA (Fisher Scientific Ltd., Montreal, Quebec), 17 g 
distilled water, and the 80 g DMSO (Fisher Scientific Ltd., Montreal, Quebec) solvent at 140◦C 
for 2 hours using a magnetic stirrer. The homogeneous solution was then cast into 3mm x 3mm 
cube and tensile type v-shaped molds for solidifying. The molds used are as shown in Figure 1 
below. The casted mixtures were then allowed to rest at room temperature for 20 hours to allow 
for the rise and dissolution of air bubbles. The samples were then placed in a freezer at -20◦C for 
10 hours. After the freezing phase, the casted parts were left to thaw at room temperature for 5 
hours, completing the freeze-thaw cycle. The hydrogels were then removed from the molds and 
placed in the fume hood to allow them to dry. This is the method used for the fabrication of control 
samples. 
 

Figure 1: 3D printed cube and tensile type v-shaped molds.  
 

2.2. Porogen leaching 

Polycaprolactone (PCL) was chosen as the sacrificial porogen material. The morphology of the 
PCL powder was modified via mechanical cryomilling to yield 5 g powder to 15 mL of PVA 
hydrogel solution. PCL pellets were weighed and transferred to a vial, which underwent cryogenic 
freezing at –196 °C using liquid nitrogen. Repeated collisions and fractures during the grinding 
process. The duration of the grinding operation was five minutes, divided into four cycles 
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separated by a 5-minute dwell time. Cryogenic grinding was carried out using a freezer mill 
(SPEX, NJ, USA). PVA hydrogel solution synthesis is detailed in Section 2.1. PCL powder was 
added to the hydrogel solution at equal weight ratios and was homogeneously mixed with a lab 
spatula. It was then poured into a 10×10 mm hollow cube mold and submitted to physical cross-
linking via freeze-thawing as discussed in Section 2.1. To leach the hydrogel of PCL, the hydrogel 
was removed from the mold and placed in acetone for 10 days within an incubator at 37 °C [9]. 
An identical process was used for porogen leaching hydrogels formed in ASTM D638-10 type-V 
tensile molds, rather than cube molds, for tensile testing.   

 
2.3. 3D printed mold with pore design 

PVA hydrogel solution was synthesized as discussed in Section 2.1. The resulting solution was 
then poured into two casting molds [3]. Figure 2 (a) shows the 10×10 mm hollow cube mold with 
16 pins of 0.5 mm diameter and 1.5 mm separation. Figure 2 (b) shows the ASTM D638-10 tensile 
mold with4 pins of 0.5 mm diameter. Within the molds, the hydrogel solution was submitted to 
the freeze-thaw method detailed in Section 2.1 for physical cross-linking. 
 

a.   b.  

Figure 2: CAD model of pinned 10×10 mm cube casting mold (a), CAD model of pinned 
ASTM D638-10 type v tensile casting mold (b). 

2.4. Measurement of swelling of PVA hydrogel 

Swelling rate of PVA hydrogels in distilled water was investigated by measuring the weight gained 
by the cube-shaped samples due to increase in water content. The swelling ratio is dependent on 
the strength of the cross-linking in the polymer. Three sets of each type of porosity were placed 
into a plastic tube containing 30 mL of distilled water and then into an incubator at 35 °C [14]. 
Samples were placed in the fume hood for 10 minutes before each weighing to ensure the sample 
was dry. Measurements were taken every 12 hours for 48 hours to compare the swelling 
characteristics between the different pore fabrication methods. The swelling percentage was 
captured using equation (1): 

Degree of swelling (%) =  𝑊𝑊𝑊𝑊−𝑊𝑊𝑊𝑊
𝑊𝑊𝑊𝑊

 × 100      (1) 

Where 𝑊𝑊𝑊𝑊 is the final dry weight of the hydrogel and 𝑊𝑊𝑊𝑊 is the swollen weight of the hydrogel at 
time the  (𝑡𝑡) in distilled water. 
 
2.5. Measurement of degradation of PVA hydrogel 
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The degradation rate of PVA hydrogels at room temperature in no solution was studied by 
measuring the percentage weight loss by the cube-shaped samples from degradation of the 
hydrogel. These degradation rates will give additional insight into cross-link strength and use 
inside the body as a cell scaffold. The rate of degradation can influence cell proliferation dependent 
on pH changes caused by the breakdown of the polymer [15]. Three sets of each type of porosity 
were placed in the petri dish and were measured every 12 hours for 48 hours. Samples were placed 
in the fume hood for 10 minutes before each weighing to ensure the sample was dry. The 
degradation rate was captured using equation (2): 

Weight loss (%) =  𝑊𝑊𝑊𝑊−𝑊𝑊𝑊𝑊
𝑊𝑊𝑊𝑊

 × 100       (2) 

Where 𝑊𝑊𝑊𝑊 is the initial weight of the hydrogel at time 0 and 𝑊𝑊𝑡𝑡 is the weight of the hydrogel at 
the given measure time(𝑡𝑡). 

2.6. Tensile properties of PVA hydrogel 

The three methods of fabrication were mechanically tested using a Universal Testing Machine 
(Test Resources 800LE2 Series, Shakopee, MN, USA) by performing tensile tests. Molds were 
printed with type V dog-bone coupon specifications in accordance to ASTM D638. Tensile 
strength was calculated using the measured cross-sectional area in the neck area of the coupon and 
the measured load. Strain was calculated using the original length of the coupon and the measure 
length at break to determine the change in length. Using both the stress and strain values, the 
modulus of elasticity was derived. 

2.7. Statistical Analysis 

The tensile properties were analyzed using RStudio (Boston, MA, USA) to determine statistical 
significance of measurements. One-way ANOVA was performed on the measured tensile strength, 
strain and modulus of elasticity using Type I error rate of 0.05. Consequently, Tukey’s multiple 
comparison test was done to determine significant differences between the different methods of 
fabrication. 

2.8. Micrographs of pores 

The pores micrographs were taken using Scienscope (Chino, CA, USA) to inspect the resultant 
pore geometries obtained from porogen leaching and the casted fabrication methods. 
Magnification of the lens was set at two times the size of the object. 

3. Results and Discussion 

3.1. Water absorption rates 

Water absorption rates were investigated by calculating the swelling ratio of PVA hydrogels in 
distilled water. Figure 3 below shows the swelling rate of the control, cast and porogen leached 
samples. The casted pores samples showed the highest swelling rates followed by the control 
sample and the porogen leached samples. The control and the casted samples approached a similar 
equilibrium value, which can be seen in Figure 3 from t = 36 hours to t = 48 hours. The porogen 
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leached samples showed significantly lower swelling rates when compared to the casted and 
control samples.  

 

Figure 3: Swelling percentage of PVA hydrogels. 

 

The casted samples had the highest swelling properties due to the presence of more interconnected 
pores since the mold was predesigned to ensure the formation of interconnected pores. The 
porogen leached samples contained pores on the outer surface of the scaffold, but visually, white 
particles of PCL were still embedded in the inner part of the scaffold. Interconnected pores were 
shown to lead to faster swelling rates due to its less dense structure [16]. The control sample 
required more compressive force initially to swell as a consequence of its denser structure [17] 
which resulted in a lower initial swelling percentage when compared to the casted pores. Once the 
force to swell for the control samples were overcome, the control and the casted pore then reached 
a similar swelling percentage equilibrium. The porogens were not completely leached from the 
hydrogel scaffold which is an issue shared with past researchers when using this method for pore 
fabrication [18]. This resulted in the porogen leached samples having embedded PCL particles 
which reduced the number of pores in the scaffold. The reduced amount of porosity combined 
with the hydrophobic nature of the PCL particles [19] led to the low rates of water absorption in 
the porogen leached samples.  

3.2. Degradation rates 
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The degradation rates were studied by measuring the weight loss at room temperature in no 
solution. The graph in figure 4 below, shows casted pores had higher initial degradation but at t = 
29 hours the casted pores and the control had similar degradation rate when t > 29 hours. While 
from t=0 to t=24 hours the control and porogen leached samples had similar degradation rates. 

 

Figure 4: Weight loss percentage of PVA hydrogels. 

Past researchers have shown that the increase in porosity increases the degradation rate of the 
polymer [20]. This explains why the casted pores displayed higher degradation rate from t=0 to 
t=29 hours when compared to the other two samples. Porogen leached samples as explained in 
section 3.1, had remaining PCL particles embedded inside the sample, therefore, mimics the 
control sample with similar degradation rates from t=0 to t=24 hours due to the similarities in 
densities between the two samples. Once the force to deform the control sample was overcome 
[17], the control sample showed degradation kinetics similar to the casted sample at t = 29 hours 
similar to the swelling behavior shown in section 2.1. Since the porogen leached sample had 
remaining PCL particles embedded in it, the degradation rate remains notably lower than the 
control and casted sample. PCL is known to have slower degradation rates [21] in comparison to 
PVA hydrogels hence the lower degradation equilibrium displayed in figure 4 from t= 29 to t= 48 
hours.  

3.3. Mechanical properties of PVA hydrogels 

Tensile tests were performed following ASTM specifications to evaluate the mechanical properties 
of each pore fabrication method, Figure 5. The control sample resulted in the highest ultimate 
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tensile strength, just below 25 psi, followed by porogen leaching and casted samples. The control 
is expected to have the highest ultimate tensile strength due to the lack of pores. Porogen leached 
samples showed the highest strain values followed by the control. Casted samples had strain values 
less than half of either the control or the porogen leaching. The three methods resulted in similar 
modulus of elasticity values. Past research shows that the size and the distribution of pores affect 
the modulus of elasticity [22]. At lower porosity percentages, the effect of porosity on the modulus 
of elasticity is known to be negligible [23]. 

 

Figure 5: Stress-strain curve of various pore fabrication methods for PVA hydrogels. 

 

Statistical analysis of the data was performed using a One-way ANOVA in RStudio (Boston, 
MA, USA) with a Type I error rate of 0.05. The results of the analysis are shown in Figure 6. 
Significance codes ‘***’, ‘**’ and ‘*’ denote the alpha value of 0.001, 0.01 and 0.05 
respectively. No statistical differences were found between tensile strengths of the control and 
porogen leached samples. Yet, casted samples had a significantly lower tensile strength when 
compared to the two. This is was the expected result due to the lack of pores in the control and 
the porogen leached samples only presented pores on the surface [24]. Strain rates for each 
hydrogel were significantly different with the casted sample being the lowest and porogen 
leaching having the highest as a result of the embedded PCL particles. No significant differences 
were found between samples when comparing the modulus of elasticity. One main concern for 
the application of hydrogel synthesis for vascular applications is the potential for rupturing 
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during testing. Yet, the typical stress arterial pressure is only 2 psi so even the casted hydrogel 
should suffice [25]. 

 

Figure 6: One-way Anova analysis. 

3.4. Micrographs of pores 

Micrographs of a porogen leached and a pore-casted sample were taken and observed to determine 
differences, as shown in Figure 7. Analysis of micrographs of the pores concluded that the pore-
casted samples (Figure 7: A and C) displayed more consistent geometry and dimensions, 
possessing an average size of 0.52mm and a standard deviation of 0.02mm. Notably, the porogen-
leached samples (Figure 7: B and D) varied significantly throughout in not only dimension but 
also in geometry, with an average size of 0.31mm and standard deviation of 0.47mm. The lack of 
interconnected pores in this porogen leached sample would lead to the sample being less favorable 
for cell attachment and proliferation [3].  E on Figure 7 shows a controlled sample with lines 
present; these are solely for the beads of the 3D printed model. The analysis concluded that 
consistency was more favorable in the pore-casted samples. Additionally, the number of pores can 
be customized, due to the mold printing process, which in turn leads to a tunable and controlled 
porosity. 
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Figure 7: A) Dimensions of pores in porogen leached sample B) Dimension of pores in casted 
samples C, D, E) Micrograph of porogen leached, casted and control. 

4. Conclusions and Future Work 

The effects of various pore fabrication techniques on the swelling and degradation kinetics, 
mechanical properties and pore geometry of PVA hydrogel were investigated. The higher the 
number of interconnected pores in the hydrogel, the higher the initial swelling and degradation 
rate of the scaffold. The porogen leaching approach displayed difficulties to extract the inner 
porogens, leading to lower rates of swelling and degradation due to the properties of the PCL that 
remained embedded in the sample. This study has shown a method of pore fabrication that may 
enable tunable swelling and degradation behavior, which is useful when applied to different 
applications. Mechanical properties showed that with the presence of a larger proportion of pores, 
the weaker and less malleable the resultant scaffolds become. The ability to customize and acquire 
controlled porosity using this proposed method will help with the ability to tune the mechanical 
properties of scaffolds. Future studies will emphasize elucidating how different levels of porosity 
attained through the proposed method affect tunability. In addition, cell studies are suggested to 
further justify and validate the resultant biocompatibility that the use of this method of pore 
fabrication can provide. Lastly, further investigation into other physical cross-linking methods can 
be completed as comparison to the method used in this study. 
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