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Abstract 
 

 Stereolithography (SL) is a process that uses photosensitive polymer solutions to create 
3D parts in a layer by layer approach. Sandia National Labs is interested in using SL for the 
printing of ceramic loaded resins, namely alumina, that we are formulating here at the labs. One 
of the most important aspects for SL printing of ceramics is the properties of the slurry itself. The 
work presented here will focus on the use of a novel commercially available low viscosity resin 
provided by Colorado Photopolymer Solutions, CPS 2030, and a Hypermer KD1 dispersant from 
Croda. Two types of a commercially available alumina powder, Almatis A16 SG and Almatis 
A15 SG, are compared to determine the effects that the size and the distribution of the powder 
have on the loading of the solution using rheology. The choice of a low viscosity resin allows for 
a high particle loading, which is necessary for the printing of high density parts using a 
commercial SL printer. The Krieger-Dougherty equation was used to evaluate the maximum 
particle loading for the system. This study found that a bimodal distribution of micron sized 
powder (A15 SG) reduced the shear thickening effects caused by hydroclusters, and allows for 
the highest alumina powder loading. A final sintered density of 90% of the theoretical density of 
alumina was achieved based on the optimized formulation and printing conditions.  
 

1. Introduction 
 
 Stereolithography (SL) is an Additive Manufacturing (AM) form of 3D printing using a 
UV light source to print photopolymerizable solutions in a layer-by-layer method.  SL is 
attractive for manufacturing intricate ceramic parts because it allows for detail and precision that 
is not available with conventional methods, such as a standard press mold or extrusion 
(Hinczewski, 1998). The focus of this paper is on ceramic, specifically alumina, highly loaded 
photopolymerizable slurries for creating ceramic parts that are hard to make with traditional 
molding methods. SL can be used to create ceramic green parts in a layer-by-layer method by 
exposing a slurry containing a ceramic powder and a photopolymerizable monomer solution to 
light in a specific pattern (Johansson, 2017). Typical light sources used to initiate polymerization 
are masks using Digital Light Processing (DLP) technology or laser sources (Halloran, 2016; 
Hinczewski, 1998). This paper focuses on the use of a commercially available digital light 
projector from Digital Light Innovations run with a Kudo 3D control system (Kudo/DLP).  
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After the green part is created using the SL printer, it goes through a debinding/burnout 

and sintering process to achieve the final density. Current research has focused on creating high 
density alumina parts that have densities comparable to traditional ceramics. Recent studies have 
shown that theoretical densities above 99.3% can be achieved using SL technology 
(Schwentenwein, 2015). To achieve high density parts the alumina material should have a 
greater than 40 vol% loading in the photopolymerizable monomer solution, or resin (Li, 2016). 
The rheological behavior of the final slurry itself is very important for a successful print. Typical 
SL slurries have a shear thinning behavior and viscosities around 3 Pa s at 30 s-1 (Li, 2016). The 
viscosities for the slurries used in this paper were evaluated using a HAAKE MARS II 
Rheometer. The rheometer allows for a measurement of the viscosity of the slurry, the yield 
stress, and an evaluation of the slurry behavior at different shear rates.  
 

The focus in this study is on commercially available low viscosity resins to achieve 
highly loaded alumina slurries that can successfully print using SL technology to achieve 
densities greater than 90% theoretical density and have low shrinkage. The low viscosity resin is 
used to compare two different particle types: a bimodal particle distribution with peak around 0.5 
µm and 5 µm, and a unimodal particle distribution around 0.5 µm. Wu et al. have shown that 
mixing both nano- and micro-sized alumina powder for SL slurries could achieve better final 
sintered densities (Wu, 2016). This study focuses on micron sized particle distributions to 
determine their effect on the rheology of the slurry.  
 

2. Materials and Methods 
 

2.1 Materials 
 
 The alumina powder used in this study was Almatis A15 SG, a commercially available 
alumina powder with a d50 = 1.7 µm and an average surface area of 4.9 m2/g. Almatis A15 SG 
was tested against a smaller powder, Almatis A16 SG with a d50 = 0.5 µm and an average 
surface area of 8.9 m2/g (Alumina, n.d.). A typical particle size distribution curve for these 
materials is shown below in Fig. 1. To identify the optional formulation, several dispersants were 
experimented with and Hypermer KD1 was identified as the optimal dispersant for this resin 
system. Hypermer KD1 has been shown to create successful dispersion of alumina particles in a 
paper by Johansson (2017). The main low viscosity resin used in this system was provided by 
Colorado Photopolymer Solutions (CPS) called CPS 2030.  
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Figure 1. Typical particle size distribution curve for A15 SG and A16 SG (C. Compson, personal 

communication, May 9, 2018). 

Three versions of CPS 2030 were provided with different photoinitiator systems using the 
same resin base. The neat viscosity for the CPS 2030 system is approximately 0.026 Pas at 25°C 
at a shear rate of 10s-1. The three different versions of CPS 2030 were created to be sensitive at 
different wavelengths using different photoinitiator systems as shown in Table 1 below. 
Photoinitiator A has low sensitivity to 405 nm light with the main peak centering just above 
300nm. At 0.1wt%, A is highly sensitive at 365nm with a short tail at 400nm; therefore, this 
photoinitiator is optimal for use on the Kudo/DLP printer. Photoinitiator B at 0.1wt% has a peak 
at 365nm and therefore is optimal for use with both the 365nm light source and the 405nm light 
source. Lastly, C is a sensitizer with an absorbance peak at 365nm added with the photoinitiator 
A to improve absorption at 405nm. The work presented here pertains to the first version of CPS 
2030, because it has a low base viscosity, as shown in Table 1 below, and successfully prints on 
the Kudo/DLP system. 
 
Table 1. Three different resin types with the associated photoinitiator and viscosity. 

Resin Version Photoinitiator Viscosity at 10s-1 (Pa s) 
CPS 2030 A 0.026 ± 0.0008 
CPS 2030 V.2 B 0.023 ± 0.0003 
CPS 2030 V.3 A, C 0.031 ± 0.0005 
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2.2 Methods 
 
 Before the slurries could be prepared, the alumina powder was ball milled with 5mm 
YSZ beads with 1wt% of the KD1 dispersant in Toluene for 24 hours. The powder was set out to 
dry, and then crushed and sieved through a number 40 sieve. The powder/dispersant mixture and 
the resin were then mixed varying from 10-65vol% of alumina powder in the resin using a 
planetary centrifugal mixer (Thinky) to ensure adequate mixing. To determine the optimal 
concentration of dispersant, a 10wt% stock solution of KD1 in CPS 2030 was prepared and used 
to create various concentrations of KD1 in CPS 2030 with 50vol% A15 alumina powder. The 
viscosities of all slurries were evaluated using a HAAKE MARS II Rheometer with a 35mm 
1°Ti cone and plate by varying the shear rate from 0.1s-1 to 1000s-1. 
 
  After the slurry was prepared, the part of varying size and complexity were printed on 
the Kudo/DLP system to create green parts. In this case, the focus of the paper is on ceramic 
cylinders with heights of 4.5mm and an outer diameter of 7.5mm. The green parts then 
underwent the burnout and sintering process. The shrinkage of the parts was determined using a 
VHX Digital Microscope, and the density was determined using the Archimedes test in DI water. 
X-ray tomography was taken of the parts using an Industrial Microfocus CT system from North 
Star Imaging to determine inter- and intra-layer cracking. The specific settings used with the 
Microfocus CT scan are included in Table 2 below.  Thermogravimetric analysis (TGA) was also 
run on each of the individual components of the slurry, as well as the slurry as a whole, to 
determine the burnout profile using a TGA/DSC 1 from Mettler Toledo.  
 
Table 2. Microfocus CT Scan Settings 

System Hardware and Software 
Shielded Cabinet Steel-lead-steel construction 
X-ray Source FeinFocus FXE-225, 10kV to 225kV 
Flat-panel Detector Premium Grade CsI 1621 Perkin Elmer (40cm x 

40cm) 
Software NSI efX-DR, efX-CT, Volume Graphics VG Studio 

MAX 
Scan Parameters 

Voltage 150kV 
Current 55 µÅ 
Pixel Pitch 200 x 200 µm 
Frame Rate 2 fps 
Number of projections 1371 
Frames Averaged 6 
System Magnification 23.96x 
Tube to detector distance 749.135mm 
Tube to part distance 31.264mm 
Effective pixel size 8.3 µm 
Pre-filter 0.6mm Cu, 3.2mm Al 
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3. Results 
 

3.1 Dispersant Loading and Resin Choice 
 
 CPS 2030 was used to determine the optimal dispersant loading for this system at a 
50vol% A15 loading. A 50vol% loading was chosen to allow the material to flow freely to get a 
more accurate measurement of the viscosity using the rheometer. The dispersant loading was 
varied every 0.5wt% between 0.5wt% and 2wt%. Fig. 2 below, shows the lowest viscosity was 
recorded at 1wt% KD1 in CPS 2030; therefore, this dispersant loading was chosen for creating 
slurries for SL printing. 

 
Figure 2. 50vol% A15 with varying amounts of KD1 in CPS 2030. 

3.2. A15 SG vs A16 SG Powder 
 
 A16 SG powder was considered as a method to potentially increase density in the final 
sintered part because the smaller powder size would reduce the possibility of voids being created 
during sintering. A15 powder was prepared at 55.1vol% A15 with 1wt% KD1 in CPS 2030. The 
A16 powder was prepared at 43.9vol% A16 with 1wt% KD1 in CPS 2030, and 55vol% A16 with 
2wt% KD1 in CPS 2030. Fig. 3 below shows the average values for each sample at shear rates of 
10 s-1. Two mixtures of A16 were created because it was suspected that there was not enough 
dispersant at 1wt% to cover the higher surface area per gram of the A16 particles, as indicated by 
the high viscosity at a much lower particle loading of the A16 (43.9vol% A16 with 1wt% KD1), 
as compared to the A15 (1wt% KD1) sample. The large error associated with the 43.9vol% A16 
is due to the first few runs of the sample having a viscosity greater than 100 Pas at 10s-1. 
Increasing the amount of KD1 in the A16 system decreased the viscosity significantly, to allow 
for higher loading with a lower viscosity.   
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Figure 3. Viscosity of CPS 2030 with 55.1vol% A15 and 1wt% KD1 (gray), CPS 2030 with 
43.9vol% A16 and 1wt% KD1 (light purple), and CPS 2030 with 55vol% A16 and 2wt% KD1 

(dark purple). 

The proper loading of A15 and A16 was then determined by varying the A15 or A16 
amount within the CPS 2030 resin/KD1 dispersant system. For both systems, as the loading 
increased, the shear thickening behavior also increased as shown in Fig. 4 and Fig. 5 below. The 
shear thickening behavior became more pronounced and occurred at lower shear rates with an 
increase in particle loading. This sudden increase in viscosity at lower shear rates with an 
increase in particle loading is described with shear thickening as a function of the formation of 
hydroclusters (Mewis, 2012). Hydroclusters are defined as local transient fluctuations in particle 
density and are present in systems with reversible shear thickening behavior (Mewis, 2012).  For 
true shear thickening behavior, the shear stress at the onset of shear thickening should stay the 
same with increasing loading; however, for this system the shear stress also increases slightly as 
shown in Fig. 6 and Fig. 7, due to the dispersant on the surface of the particles potentially 
altering the hydrodynamic flow that creates the hydroclusters (Mewis, 2012).    
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Figure 4. Varying A15 volume percent with a constant 1wt% of KD1 in CPS 2030. Data shown 
is a representative sample of all the viscosity runs. 

 

Figure 5. Varying A16 volume percent with a constant 2wt% of KD1 in CPS 2030. Data shown 
is a representative sample of all the viscosity runs. 
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Figure 6. Varying A15 volume percent with a constant 1wt% of KD1 in CPS 2030. Data shown 
is a representative sample of all the viscosity runs. 

 

Figure 7. Varying A16 volume percent with a constant 2wt% of KD1 in CPS 2030. Data shown 
is a representative sample of all the viscosity runs. 
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The viscosity as a function of the volume percent loading of the A15 and A16 powder 
was then isolated at a low shear rate of 10s-1 and graphed as shown in Fig. 8 below. The Krieger-
Dougherty equation is valid for low shear rates, so 10s-1 was chosen as the lowest shear rate that 
allowed for a valid measurement. Varying the volume percent loading allows for a determination 
of the maximum loading for this resin using the Krieger-Dougherty equation as shown in Eqn. 1 
below.  

𝑛𝑛𝑟𝑟 = (1 − 𝜙𝜙
𝜙𝜙𝑚𝑚

)−[𝑛𝑛]𝜙𝜙𝑚𝑚     (1) 

where 𝑛𝑛𝑟𝑟 is the viscosity measured divided by the reference fluid viscosity (in this case 0 
vol% alumina loading in CPS 2030), 𝜙𝜙 is the fraction loaded, 𝜙𝜙𝑚𝑚 is the maximum loading, and 
[𝑛𝑛] is a shape factor or the intrinsic viscosity indicating the shape of the particles in solution 
(Hunter, 1989). Fitting the Krieger-Dougherty equation to the A15 data, the maximum loading 
was 76 vol% A15 and the shape factor was 3.88. The A16 data fit to the Krieger-Dougherty 
equation yielded a maximum loading of 61vol% and a shape factor of 4.34. A typical shape 
factor for a perfect sphere is 2.5, and a perfect cube is 4, so a shape factor of 3.88 is consistent 
with a particle with imperfect edges between a cube and a sphere, and a shape factor of 4.34 is 
consistent with an imperfect cube. A maximum loading of 71% is expected for perfect identical 
spheres with hexagonal close packing or face-centered cubic packing (Hiemenz, 1997). A 
maximum loading above 71% could be possible because of the size distribution of the A15 
particles. A15 has a mixture of small and large particles so the smaller particles could fill in the 
gaps to create a slightly higher maximum packing. A16 creates a lower packing density than A15 
indicating that the bimodal distribution of particle sizes is very important to create highly loaded 
SL slurries. The A16 slurries also have a consistantly higher viscosity than the A15 slurries 
preventing highly loaded slurries that maintain a viscosity below 5 Pas to allow for it to be 
printed on a SL printer.  Due to the posibility of higher particle loadings with A15, as well as the 
lower viscosities associated with A15 particles, A15 particles were pursued for use in the SL 
system. 

 

Figure 8. Varying Alumina A15 vol% with 1wt% KD1 in CPS 2030. Varying Alumina A16 
vol% with 2wt% KD1 in CPS 2030. Average data evaluated at a shear rate of 10s-1. Solid lines 

show the Krieger-Dougherty Equation fit.  
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3.3 Final Parts 
 

 Parts using 55.5vol% A15 with 1wt% KD1 in CPS 2030 were successfully printed using 
the Kudo/DLP printer system and sent through the burnout and sintering process. Data for 
shrinkage and density were obtained from 4 samples. Of the 4 samples that were printed, 2 of the 
samples were polished using 600 and 180 grit sandpaper prior to burnout and sintering. The 
difference in the surface before and after polishing can be seen below in Fig. 9. The unpolished 
surface is on the left and the polished surface is on the right. The support features on the left 
were removed during the polish and some of the bumps have been smoothed away from the 
surface. 

 

 

Figure 9. Side images using a VHX Digital Microscope. Part #1 Unpolished (left), Polished 
(Right). 

 The shrinkage of the parts is shown below in Table 3. The average volume shrinkage was 
about 34% ± 5%. The shrinkage was higher in the height, or z-direction, with slightly less 
shrinkage in the x,y direction as indicated by the outer diameter shrinkage. A comparison of part 
#1 before and after sintering is shown below in Fig. 10. The surface looks similar, but the edges 
are slightly more rounded on the sintered part due to the shrinkage during the sintering step. 
 
Table 3. 55.5vol% A15 with 1wt% KD1 in CPS 2030 part shrinkage after burnout and sintering. 

Part Identification Height Shrinkage Outer Diameter Shrinkage Volume Shrinkage 
1. Polished 16% 14% 40% 
2. Polished 14% 10% 32% 
3. Unpolished 14% 11% 29% 
4. Unpolished 17% 12% 35% 

Average 15% ± 2% 12% ± 2% 34% ± 5% 
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Figure 10. Side images using a VHX Digital Microscope. Part #1 Green Part (Left), Sintered Part 
(Right). 

The final density of the parts was evaluated using the Archimedes method in DI water. 
The final densities are shown in Table 4 below as a percent of the theoretical density of alumina. 
The two polished parts achieved over 90% theoretical density, meeting our requirements for this 
project. The unpolished samples reached over 88% theoretical density. Smith et al in 1984 
showed that a particle distribution of this type (5µm and 0.5 µm) could reach around 90% 
theoretical density, as was observed in this experiment (Smith, 1984). Further testing is required 
to determine the extent polishing has on the final sintered densities; however, all the samples are 
similar in density within the standard deviation.  

Table 4. Percent of Theoretical Density for Kudo/DLP system. 

Part Identification Density 
1. Polished 91.8% 
2. Polished 90.5% 
3. Unpolished 89.3% 
4. Unpolished 88.7% 

Average 90% ± 1.4% 
 

 X-ray tomography through two of the samples (#1 and #3) were taken to determine the 
extent of the cracking and the formation of cracks inside the samples. Cracking is common with 
the burnout and sintering of ceramics parts created with binder.  Only one of the two samples are 
shown below because the profile between the two samples is very similar. Fig. 11 shows the 
cracking from the top down on the left, and the cracking from the side on the right. The top down 
view shows that there is some cracking within the layers themselves; however, most of the 
cracking is between the layers as shown in the photo on the right in Fig. 11. When looking at the 
side view, the middle of the sample walls contains some interlayer cracking, but a lot of the 
crack propagation is along the layer boundaries. These cracks open to the surface would also 
affect the Archimedes density measured and contribute to the lowered density observed in this 
experiment. The interlayer cracking could be a function of the burnout and sintering program, 
and could be tuned to further reduce this cracking.  
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Figure 11. X-ray tomography for the 55.5vol% A15 with 1 wt% KD1 in CPS 2030 sintered 
cylinder from Kudo/DLP system. 

To try to identify some of the causes of cracking, TGA was run on the plain CPS 2030 
resin, the Alumina (A15) with 1wt% KD1, and the resin that was printed on the Kudo/DLP 
system (55.5vol% A15 with 1wt% KD1 in CPS 2030) to determine how the different materials 
burn off during the burnout step. From Fig. 12 below, the red line indicating the plain resin 
shows that the resin does not fully burn off, but leaves about 10% of material behind, but most of 
the material burns around 375°C and ends around 450°C. This peak is also seen in full slurry 
sample (black line), indicating the start of the resin burn off in the SL slurry is not changed in the 
solution. The blue line in Fig. 12 shows a steep increase right at start up for the alumina with 
KD1, then an initial decrease, and then increase in material to 108% once the material reaches 
1000°C. The initial decrease could be due to the KD1 burning off, and the increase in material 
weight could be an indication of oxidation of the material, a decrease in density of the 
surrounding air with heat, or due to the sensitivity of the instrument scale (Mettler Toledo, n.d.). 
This increase is also reflected in the SL slurry burn off. The other large drop in the slurry from 
150°C to 250°C can be contributed to an earlier, smaller burnout of some resin material. The 
TGA data could be useful to further tune the burnout process to eliminate cracks by slowing the 
temperature ramp during the burnout of the resin, between 150°C to 250°C, and 350°C to 450°C. 
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Figure 12. TGA Data in Air for Plain CPS 2030 Resin (Red line), Alumina (A15) with 1wt% 
KD1 (Blue line), and 55vol% A15 with 1wt% KD1 in CPS 2030 (Black Line). 

 

4. Summary and Conclusions 
  

 Stereolithography 3D printing can be used to create high density alumina parts; however, 
the slurry system must be carefully chosen to allow for success. Using an initially low viscosity 
base resin system and a compatible dispersant is important to allow for highly loaded alumina 
slurries at a low viscosity. The bimodal distribution of micron sized powders (A15 SG) allowed 
for higher loading with less shear thickening behavior than the unimodal distribution of micron 
sized powders (A16 SG) due to the hydrodynamic forces present at high shear rates. A15 SG 
powder allowed for a maximum loading of 76%, as evaluated by the Krieger-Dougherty 
equation, whereas the A16 SG only allowed for a maximum loading of 61%. Parts were created 
on a Kudo/Digital Light Projector system with a sintered 90% theoretical density using the A15 
SG powder at a 55vol% loading of alumina.  

Future work will focus on increasing the A15 loading to determine the viscosity limit of 
the SL instrument, working towards increasing the final sintered density. Further tuning and 
optimization of the burnout process using the TGA results as a guide will lead to increased final 
density by decreasing both the inter-layer cracking and the intra-layer cracking.  
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