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Abstract 

 
Die casting dies made of tool steel is subject to impact, abrasion and cyclic thermo-

mechanical loading that delivers damage such as wear, corrosion, and cracking. To repair such 
defects, materials enveloping the damage need to be machined and refilled. In this study, V-shape 
defects with varied sidewall inclination angles were prepared on H13 tool steel substrates and 
refilled with cobalt-based alloy using direct metal deposition (DMD) for superior hardness and 
wear resistance. The microstructure of rebuild samples was characterized using an optical 
microscope (OM) and scanning electron microscope (SEM). Elemental distribution from the 
substrate to deposits was analyzed using energy dispersive spectrometry (EDS). Mechanical 
properties of repaired samples were evaluated by tensile test and microhardness measurement. 
Fracture mechanism in tensile testing was analyzed by observing the fracture surface. The 
experiment reveals that V-shape defects with sidewall beyond certain angles can be successfully 
remanufactured. The deposits were fully dense and free of defects. The microstructure and tensile 
test confirm the solid bonding along the interface. The tensile test shows the mean ultimate tensile 
strength (UTS) of repaired samples is approximated 620 MPa, where samples fractured at the 
deposits region. Hardness measurement reveals the hardness of deposits is around 810 HV which 
is much higher than that of the substrate. 
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Introduction 
 

Laser-aided Direct Metal Deposition (DMD) is a relatively new technique but has shown 
great applications in the fields of part fabrication [1], [2], surface coating for improved wear and 
corrosion resistance [3], [4], joining different materials [5]–[7], deposit high-entropy alloys [8] 
and functionally gradient material [9]–[11] and part remanufacturing [12]–[17]. Depositing or 
cladding hard surfacing alloys on components through DMD process can modify the surface 
properties to greatly enhance hardness, wear and corrosion resistance, therefore, extending the 
service life of metallic components. When defects were observed on worn components, materials 
with better failure resistance can be welded in the damaged area to assure that the remanufactured 
parts will last a long time.  

 
Cladding hard surfacing alloys such as Ni-based, Co-based alloys and WC composite has 

been widely investigated. Paul et. al. reported in [18] that they are able to produce fully dense and 
crack-free W-C-Co coatings on low carbon steel using pulsed Nd: YAG laser with an excellent bi-
material bonding and much higher hardness. Zhong et. al. investigated the microstructure evolution 
during laser cladding of mixture of Stellite 6 and WC powder. In the coating of W-C-Co alloys on 
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medium carbon steel [19], the researchers observed some defects like pores and cracks in the clad 
layers mainly owing to gas entrapped in clad layers and stress concentration. Spherotene tungsten 
carbides were deposited on low carbon steel in [20]. The analysis exhibits a uniform distribution 
of hard particles in coatings with a hardness around 1000-1500 HV. Investigators in [20] coated 
1.0 – 3.3 mm thick Co-based coatings on cast iron by optimizing processing parameters. The result 
reveals crack-free and good mechanical performance deposits. 

 
Defects such as cracks, dents, pitting are commonly observed in worn components. In order 

to repair such defects, it is usually required to machine a slot or groove to remove materials around 
such damage to reveal a regular shape. In machining the slot, the sidewall inclination angle of the 
slot should be carefully determined. This is because the sidewall tilt angle may affect the bonding 
condition of filler material and substrate. A small tilt angle assures the accessibility of the target 
area but may result in much material removal. Because the removed material needs to be rebuilt 
through deposition, a large amount of material removal is not suggested. However, if the sidewall 
tilt angle is large, the bonding between deposits and substrate at the vertical surface cannot be 
guaranteed. Therefore, the slot sidewall inclination angle should be studied so that less material 
will be removed to get rid of defects and assure the bi-material bonding is solid. 

 
This paper has two objectives. The first is to investigate the feasibility of direct metal 

deposition of a Co-based alloy Wallex 50 on tool steel for repair purpose. Besides, this papers aims 
to study the influence of sidewall inclination angle of defects on the properties of repaired coupons. 
In order to perform repair process, V-shaped defects with sidewall inclination angle of 45°, 75° 
and 90° were prepared on H13 tool steel substrates. The missing volume of each substrate is 
reconstructed by scanning the damaged part using a structured-light 3D scanner. After that, the 
missing geometry was sliced into layers to generate a raster deposition tool path. Wallex 50 
material was added to the damaged region to regain the missing geometry. In order to test the 
repair quality, macrostructure and microstructure characterization, EDS and XRD analysis, tensile 
test and microhardness measurement were performed on the repaired samples. 

 
Experimental condition and procedure 

 
Material and preparation 

 
H13 tool steel is usually used for manufacturing die casting dies owing to its great thermal 

fatigue cracking resistance. Therefore, H13 tool steel plate with dimensions of 25 mm × 10 mm × 
15 mm was selected as the substrate material. In order to perform repair experiments, several V-
shaped grooves with different sidewall inclination angles were machined on the substrates. Three 
sidewall inclination angles of 45°, 75°, 90°, were chosen which are depicted in Fig. 1a-c. The depth 
of each groove is 7 mm and the width of defects at the bottom is 5 mm. The chemical compositions 
of H13 tool steel are listed in Table 1. 

 
Wallex 50 is chosen as the filler material because it is a Co-based hard surfacing alloy with 

excellent corrosion resistance and low coefficient-of-friction, providing good metal-to-metal wear 
protection. Wallex 50 has high contents of Co, Ni, Cr, and W to guarantee a high hardness as well 
as good corrosive resistance. Wallex 50 can be coated on easy-to-wear surfaces of H13 tool steel 
dies to enhance its resistance to wear. Therefore, this paper tries to evaluate the repair quality of 
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using Wallex 50 as a deposition material. The chemical compositions of Wallex 50 are collected 
in Table 1. Wallex 50 alloys powder was characterized to analyze particle shape and size 
distribution. An SEM micrograph of Wallex 50 alloys powder was obtained and presented in Fig. 
2a. The image reveals that most powder particles are spherical although a few of them have 
irregular shapes. Particle size distribution analyzed using ImageJ shows the average particle 
diameter is 65 µm (Fig. 2b). 

 

        
                       (a)                                              (b)                                               (c) 

Fig. 1 Dimensions of the prepared substrates with (a) 45°, (b) 75° and (c) 90° sidewall 
inclination angle 

 
Table 1 Chemical composition of the target materials (wt%) 

Materials C Mn Si Cr Ni Mo V W B Fe Co 
H13 tool 

steel 0.4 0.4 1.0 5.25 - 1.35 1.0 - - Bal. - 

Wallex 
50 0.8 - 2.75 19 18 - - 10 3.4 1.0 Bal. 

 

     
                                      (a)                                                                         (b) 

Fig. 2 SEM micrograph (a) and particle size distribution (b) of Wallex 50 powder 
 

Experimental setup 
 

When V-shaped defects were prepared on the substrate, it is necessary to obtain the 
geometry of the missing volume to generate additive tool path. This deposition tool path directly 
determines the shape of restored parts and has great effects on the mechanical properties of 
deposits. To make sure the acquired dimensions of the refill volume is accurate, an RE-based 
damage extraction process was conducted. Each substrate was scanned using a high accuracy 
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structured-light metrology 3D scanner (OptimScan 5M from Shining 3D Tech. Co. Ltd., Fig. 3a) 
to reconstruct its three-dimensional model. The principle of the structured-light scanner is shown 
in Fig. 3a where a pattern with stripes was projected on an object by the structured-light projector 
and two CCD cameras on the left and right of the scanner capture the distortions of the pattern. 
The distortion of pattern reveals the three-dimensional geometry of the object. A complete scan of 
the part requires scanning of the geometry in different orientations and therefore, indexing targets 
were randomly marked on the part so that multiple scans can be registered into a single model. 

 
Substrates with different sidewall inclination angles were scanned using the configuration 

and the scanned point cloud was presented in Fig. 3b. Defining the point set in the damaged region 
is simply conducted by calculating the distance between each point to the top surface. The points 
on peripheral surfaces around the substrate are not considered as damage. After damaged point 
searching, the missing geometry can be defined, which is depicted in Fig. 3c. One can see in Fig. 
3c that the damage for the sample with 90° sidewall defects was not completely scanned because 
the vertical sidewall combined with narrow slot blocks the two cameras from capturing projected 
pattern simultaneously. However, this uncomplete scanned point data has no effect on the additive 
tool path generation because the tool path generation algorithm relies on the convex-hull of the 
data set, which is described below. 

 
After the damage was extracted, tool path was generated based on damaged point cloud 

utilizing the algorithm introduced in [21]. The damaged point set was sliced into 11 layers with a 
layer thickness of 0.6 mm. For each layer, deposition tool path was planned which comprises 
outline contour and raster infill pattern, indicating laser moves along the enveloping boundary and 
then along the zigzag pattern to acquire fully dense deposits. The tool path for three scenarios was 
shown in Fig. 4a-c. 

 
After additive tool path was acquired, the damaged substrates were loaded to DMD system 

for material deposition. The DMD cell employed in this study (Fig. 5) includes a 1000 W peak 
power continuous wave fiber laser, gas-assisted blown powder feeder (Model 1200, Bay State 
Surface Technologies, Inc.), 3-axis work table and Argon gas feeding unit. The laser has a beam 
diameter of 1.8 mm. The laser beam is tilted while the powder feed nozzle is vertical with a stand-
off distance of 10 mm. The welding was performed in argon gas environment to keep weld beads 
from oxidization. The processing parameters were summarized in Table 2. 

 

 
(a) 
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(b) 

                            
(c) 

Fig. 3 Model reconstruction for repair volume determination; (a) 3D scanning setup; (b) 
Reconstructed point cloud data; (c) Extracted damaged point set 

 

       
                                    (a)                                          (b)                                   (c) 
Fig. 4 Repair tool path for substrates including defects with (a) 45°, (b) 75° and (c) 90° sidewall 

inclination angle 
 

 
Fig. 5 DMD system and setup 

 
Table 2 Component repair processing parameters 

Laser power (W) Powder flow rate 
(g/min) 

Layer thickness 
(mm) 

Scan speed 
(mm/min) 

Overlap 

350 3.2 0.6 220 0.5 
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Sample preparation and material characterization 
 

Repaired samples were sliced into layers using Hansvedt electric discharge machine (EDM) 
and mounted on Bakelite using Simplimet 1000 mounting equipment. Specimens were ground 
using abrasive papers from 120 Silicon Carbide Grid to 1200 Grid and finally polished using 0.05 
microns silica suspension and then ultrasonically cleaned. The prepared samples were macroscopic 
analyzed using HIROX KH-8700 optical microscope to study the fusion boundary between refilled 
material and substrates. After that, the microstructure of deposits near the interface was revealed 
using Hitachi S4700 Scanning Electron Microscope (SEM). EDS line scan analysis was performed 
from the deposits to substrates to reveal elemental distribution.  

 
In order to test the mechanical properties of the repair coupons, tensile test and hardness 

measurement were conducted. For tensile test, the samples were cut into thin layers with a 
thickness of 1 mm as shown in Fig. 6. Tensile specimens were cut from each thin slices using 
EDM. The dimensions of tensile specimens are shown in Fig. 6c. The position and orientation of 
tensile samples were depicted in Fig. 6a-b. Each tensile specimen consists of deposits and substrate, 
with interface locating at the middle of the specimen. The tensile test was conducted using Instron 
tester (Model 3300) with a crosshead speed of 0.015 mm/min (Fig. 6d). Ultimate tensile strength 
was obtained and then, tensile fracture surface was analyzed. Vickers hardness was measured using 
Struers Duramin hardness tester with a press load of 9.81 N and dwell time of 10s. 

 

   
                                               (a)                                                      (b)  

          
                                                      (c)                                                          (d)               
Fig. 6 Tensile test specimen preparation and setup; Tensile specimen over the sectioned repaired 

substrates with 45° (a) and 75° (b) sidewall inclination angle damage; (c) Dimensions of the 
tensile test specimen (Dimensions in mm, 1mm in thickness); (d) Tensile test setup 

1456



Results and discussion 
 

Visual and Macrostructure 
 

The overview of the repaired samples is shown in Fig. 7. It seems that missing volumes on 
all substrates were refilled successfully. However, by deeper visual observation, one can see the 
refilled region on the sample with 90° sidewall defects was not fully dense. A big hole was 
observed slightly at the right portion of deposits. This is because when the laser was melting the 
materials on the side vertical surface, filler material was not able to bond with the substrate and 
fell down, which caused the hollow space inside the deposits. This is validated by observing the 
cross-sections of samples discussed below. 

 
The optical micrographs of cross-sections of the repaired samples are depicted in Fig. 8a-

c, which has sidewall inclination angle of 45°, 75°, and 90°, respectively. Micrographs were taken 
at the boundary of deposits and substrate. One can realize that the bonding line is free of defects 
for 45° and 75° samples, while a large number of porosities and lack of fusion were observed in 
the sample with 90° tilt sidewall damage. Those defects were almost entirely located along the 
sidewall boundaries. The bottom region of the 90° tilt sidewall sample, however, is well bonded. 
This phenomenon is expected because, for a vertical sidewall, the laser cannot continuously melt 
the materials at the vertical side of the defects but can still effectively melt materials on the bottom 
region. Thus, melt poor cannot be successfully formed at vertical regions and filler materials were 
not able to be melt and deposited. This situation might be addressed by using 5-axis DMD system 
by rotating the substrate so that the sidewall is relatively accessible to the laser beam. However, 
this is not always working if the defects are deep and narrow. Besides, toolpath planning for 5-
axis DMD system is much complicated and only desired if really required. 
 

   
                         (a)                                              (b)                                              (c) 
Fig. 7 Overview of the repair samples with 45° (a), 75° (b) and 90° (c) sidewall inclination angle 
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Fig. 8 Optical micrographs of cross-sections of the repaired samples with 45° (a), 75° (b) and 

90° (c) sidewall inclination angle damage 
 

Microstructure characterization and EDS analysis 
 

Because the defective substrate with 90° sidewall inclination angle was failing to repair, 
only samples with 45° and 75° sidewall damage were further analyzed in terms of microstructure 
and mechanical properties. Microstructure images were taken at the boundary of deposits and 
substrates, as shown in Fig. 9. The images distinctly show the bi-material boundary line. The 
microstructure changed sharply from the substrate to deposits. This is no smooth transitional 
region between two materials. By observation, one can see there are no defects such as cracks, 
pores, or delamination observed along the interface, confirming the solid bonding condition. The 
SEM images reveal that deposits were metallurgically bonded with the substrate. The tensile test 
in the following of this paper also validated the sound bonding. 

 
The SEM micrographs in Fig. 9 also shows that the microstructure of deposits near the 

interface mostly consists of columnar structure stretched towards to the center of deposits. Those 
grains were growing parallel to the heat flow direction during solidification. When starting to 
deposit the first few layers, the damaged substrate was at room temperature. The laser melted a 
tiny amount of material on the substrate, forming a melt pool, and when materials were injected 
into such region and laser moved away, the cooling rate at such area is extremely high, which 
caused the grain to grow in the columnar direction. The cooling is so fast that leaves not sufficient 
time for grains to form secondary dendrites. As materials were deposited layer by layer, the 
microstructure of deposits gradually changed to dendrite with interdendritic eutectics. This results 
from the dropped cooling rate when depositing the above layers. 

 
The microstructure of top layers of as-deposited Wallex 50 alloy is presented in Fig. 9c, 

which consists of mostly interdendritic eutectics. It was observed that the gray region was 
enveloped by bright phases. EDS spectrum shows the bright region in Fig. 9c was rich in Cr and 
W and the gray area is dominated by Co, Ni, and Si. 

 
EDS line scan was performed on the repaired samples to study elemental composition and 

distribution. The obtained data are plotted in Fig. 10. The scan was started from the deposits and 
ended in the region of the substrate, passing through the bi-material interface. Major elements of 
Co and Fe were quantified along this path. Dwell time for each scanned point was 200 ms.  
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EDS line scan exhibits the major elements like Co and Fe were gradually changed when 
passing the interface. This is because, when a melt poor was created on the substrate, Co-based 
alloy Wallex 50 was filled in the melt poor and mixed with the melted H13 tool steel material. 
Such mixed regions caused the elemental distribution changing near the interface. Relatively large 
amount of Fe exists in the first few layers of deposits, showing the dilution of Fe into Wallex 50. 
Therefore, Fe contributes to the phase transformation over the interface. The EDS line scan result 
confirms that excellent metallurgical fusion was created through the interface. 

 

   
                                          (a)                                                                                   (b) 

 
(c) 

Fig. 9 SEM micrographs of the boundary area of repaired samples with 45° (a) and 75° (b) 
sidewall damage; (c) Micrographs of top layers of the repaired sample with 45° sidewall damage 
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                                            (a)                                                                    (b) 

Fig. 10 EDS line scan analysis results for samples with 45° (a) and 75° (b) damage 
 

Mechanical properties 
 

Tensile behavior and tensile fracture surface 
 

The tensile stress-strain curves for two repaired samples were plotted in Fig. 11 and the 
Ultimate Tensile Strength (UTS) is summarized in Table 3. The tensile stress-strain curves reveal 
that the tensile stress increased with the increase of tensile strain to a maximum stress of about 620 
MPa, and then, the tensile samples fractured suddenly and the stress decreased rapidly. The curves 
didn’t reveal yielding phenomenon during the tensile testing. The ductility of tensile samples was 
extremely low. Further investigation reveals all samples fractured at the as-deposited Wallex 50 
region. Therefore, the as-deposited Wallex 50 alloy shows brittle failure mechanism. 

 
The average UTS of the repaired samples with 45° and 75° V-shaped defects is 

approximately 618 MPa and 624 MPa, respectively. The tensile testing shows the influence of 
sidewall inclination angle on the UTS is barely recognizable. There is a relatively big variation of 
UTS in the tested result. This variation was possibly attributed to the unevenly located defects in 
the deposited regions. Some micropores in deposits may affect the UTS and result in such standard 
deviation.  

 
The micrographs of tensile fracture surface are presented in Fig. 12a-c. The overview 

image reveals a relatively flat surface which is perpendicular to the tensile loading direction. 
Magnified view in Fig. 12b-d shows microscopically unsmooth areas. Microcracks were observed 
at such magnified views. There is a very limited population of voids and dimples, indicating the 
fractured region is very brittle. This is because the Wallex 50 is a Co-based alloy and also consist 
of a relatively large number of hard elements including Cr, W, Si.  Cr, W, and Si can form a very 
hard phase that results in the brittle failure mechanism of as-deposited Wallex 50 during tensile 
testing.  
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(a)                                                                (b) 

Fig. 11 Tensile stress-strain curves for repaired samples with 45° U-shaped defects (a) and 75° 
U-shaped defects (b) 

 
Table 3 UTS obtained from tensile test 

 Specimen UTS (MPa) 

45° 

1 623.06 
2 612.12 
3 610.00 
4 629.46 

Average 618.66 
S.D. 9.19 

75° 

1 646.22 
2 656.36 
3 602.61 
4 591.73 

Average 624.23 
S.D. 31.83 
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Fig. 12 Tensile fracture morphologies; (a) Overview of the fracture surface; (b) Magnified view 

of area 1 in (a); (c) Magnified view of area 2 in (a); (d) Magnified view of area 3 in (a) 
 

Microhardness measurements 
 

Vickers hardness was measured on the cross-sections of the repaired samples starting from 
the top of deposits to the substrate. The step between two adjacent indentations is 0.4 mm. The 
Vickers hardness tested on two samples was plotted in Fig. 13. 

 
A first observation is that the hardness of deposits is much higher than the hardness of 

substrate. The hardness of the H13 substrate is approximately 210 HV, while the hardness of 
deposits is 810 HV, almost four times of the hardness of substrate. However, H13 tool steel used 
for die casting dies is in quenched and tempered condition and usually shows a hardness range of 
480 -520 HV. The reason that the hardness of the substrate utilized in this study is only 210 is 
owing to the condition of the received H13 tool steel material. The as-received H13 substrate is in 
the annealed condition and has not been hardened, causing the low hardness. However, one can 
see that even the hardened H13 tool steel which condition is exactly used for casting dies is also 
much lower than the hardness of as-deposited Wallex 50.  

 
The sharply increased hardness on the deposited region is mainly caused by two reasons. 

The major reason is that Wallex 50 is a Cobalt-based Co-Ni-Cr-W alloy. The Cobalt-rich matrix 
with very hard phases results in the very high hardness. In addition, the cooling rate during material 
deposition is rapid, leading to the formation of fine microstructure, which also plays a role in the 

1462



hardening. The hardness at bi-material interface jumped from 250 HV to 800 HV rapidly. The 
transitional hardness values at interface indicate the dilution in the heat-affected area. The 
transitional range is approximately 1.5 mm.   
 

 
Fig. 13 Vickers hardness tested on the cross-section of the repaired samples 

 
Conclusion 

 
In the current study, Co-based alloy Wallex 50 was evaluated through depositing on H13 

tool steel substrate. In order to test the possibilities of repairing slots with different sidewall 
inclination angles, V-shaped defects with 45°, 75°, and 90° sidewall tilt angles were prepared. The 
tool path for material deposition was obtained through 3D scanning of the defective substrate and 
extracting the damaged area. Once the missing volume was obtained, it was sliced into layers to 
generate a raster deposition tool path. Wallex 50 particles were filled up the missing area to regain 
the geometry. To validate the repair quality, a number of tests were performed on the repaired 
samples. 

 
The macroscopic analysis confirms the samples with 45° and 75° damage were repaired 

successfully. For the sample with 90° damage, since the laser was not able to melt the material at 
the vertical area, filler material was not bonding well with the substrate, causing lack of fusion and 
a large number of pores. The microstructure of deposits near interface shows mostly columnar 
structure mainly due to the high cooling rate for the first few layers. As materials built up layer by 
layer, microstructure was changed to the equiaxed structure. Microstructure and EDS analysis 
confirm the forming of metallurgical bonding along the interface. 

 
Tensile testing of repaired samples reveals a UTS of approximately 620 MPa. The 

influence of sidewall inclination angle of damage on the UTS is not observed. The fracture surface 
shows all samples fractured at the as-deposit Wallex 50 region and shows brittle failure mechanism. 
The hardness analysis shows deposits is much harder than the substrate. A homogeneous hardness 
of 810 HV was measured on deposits while the hardness of substrate is around 210 HV. 
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