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Abstract 
The variation in thermal conductivity of 316L stainless steel samples produced with 

selective laser melting with a varying process parameters is investigated in the bulk and in the 
microscale.  A critical scan rate was observed, while holding all other process parameters constant, 
above which the porosity started to rapidly increase.  For the lowest-porosity sample, a local 
thermal conductivity map was produced using frequency-domain thermoreflectance.  The local 
stainless steel thermal conductivity varied between 10.4 and 19.8 W/m-K.  The average thermal 
conductivity of the thermal conductivity map agrees within measurement uncertainty with flash 
diffusivity measurements. The reduction in thermal conductivity with increasing scan rate is not 
fully explained by the porosity. The average measured values are less than conventionally 
produced bulk 316L due to the unique processing conditions of laser powder bed fusion, which 
modifies the crystallographic texture and microstructure.   

Introduction 
The properties of metal printed parts, and the variation in thermal conductivity with 

processing, is relatively unexplored.  We investigate the thermal conductivity of selective laser 
melted 316L stainless steel.  With additive manufacturing of metal components becoming 
increasingly common, understanding the properties of selective laser melted parts is increasingly 
important, and the thermal conductivity is important to many heat transfer related applications. 

Selective laser melting (SLM) builds through laser rastering a thin metal powder to 
selectively melt and fuse a solid part layer-by-layer. [1]  In powder bed SLM, a thin layer of metal 
powder, around 40µm thick, is deposited over the surface of the machine’s build platform.[2] 
Another related method for depositing the powder is by spraying it through a nozzle onto the build 
area, commonly referred to as direct metal deposition.[3]   

This process can currently achieve build rates of about 7cm3/h, and continues to become 
more accepted by companies looking for different options when producing products.[4]  A famous 
example of this is GE’s Leap fuel nozzle.  By using additive manufacturing, they were able to 
combine over 20 individual parts into one part and reduced the overall weight of the nozzle.[5]  
Another example is SpaceX additively manufacturing components of their rocket engines.[6] 

Depending on the selective laser melting process parameters, the physical properties can 
vary significantly from the bulk properties of materials the same chemical composition material.[7]  
For example, Gong observed a change in ultimate tensile strength from 1237MPa to 978MPa in 
Ti-6Al-4V specimens produced by SLM by changing the laser power and scan rate.[7]  That 
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translated to a 21% reduction in ultimate tensile strength. Similar analysis of thermal properties 
versus processing parameters are sorely lacking in the literature. 

While strength of the parts produced by additive manufacturing is a common concern, the 
thermal properties are also important.  In the previous examples, the additively manufactured parts 
could be subject to very high temperatures while in use.  If the thermal properties of the material 
are not well known, there could be unexpected results from using this material in high thermal 
stress environments.  The relationship between mechanical and thermal properties is also of 
interest for non-destructive testing.  Furthermore, how the thermal conductivity varies in a 3D 
printed part locally has not been previously investigated.  

The thermal properties of the SLM part are influenced by the millions of degrees per second 
cooling rates and highly localized melting and solidification phenomena.  The quenching can lead 
to amorphous regions, trap impurities in the crystal, or result in smaller grains, which would all 
lower the thermal conductivity.  There may be unfused powder that did not wet the metal below 
due to an oxide film and/or processing power.  Porosity from voids created by pinholing and 
splattering also reduce the thermal conductivity.[8]  There is also anisotropy induced by the melt 
and solidification process.[9], [10]  Therefore, the thermal properties cannot be assumed to be the 
same as conventionally processed bulk materials. 

Previous work has shown that SLM of 316L produces fine dendritic grains, on the scale of 
1µm, that grow parallel to each other in separate colonies.[11]–[14]  The crystallization type has 
also been shown to depend on the location within the melt pool.[11]  Higher energy density can 
cause recrystallization of the underlying layer, whereas a lower energy density may not, resulting 
in an reduced in dendrite size.[11]   

The main microstructure phase present in 316L produced from SLM is austenite, because 
316L does not develop martensite when quickly cooled to room temperature.[11]–[13], [15]  When 
cooled slowly, or not held at high temperature long enough, sigma and delta-ferrite phases, along 
with carbide precipitates, can develop.[15]  It has been shown in previous work that as-printed 
SLM parts produced with 316L can contain both sigma and delta-ferrite phases in an austenite 
phase matrix.[14], [15]  The sigma and delta-ferrite phases can be reduced or eliminated by holding 
the temperature of the material at temperatures above 1000oC for a certain amount of time and 
then quenching in water, with both the temperature and time at temperature based on the desired 
reduction in non-austenite phases.[15]   

Different phases and precipitates found within a material can influence the thermal 
conductivity of the material.  While studies have not been done for 316L, aluminum alloys have 
been studied and have shown a change in thermal conductivity with microstructure due to different 
heat treatments.[16], [17]  However, one study concluded that Si solutes were a major factor in the 
changing thermal conductivity, but these shouldn’t be present in 316L in large enough quantities 
to effect the bulk thermal conductivity.[16]  While there is no literature on thermal properties of 
laser powder-bed fusion stainless steels, and in particular SS316L, there are several relevant 
thermal transport studies of bulk stainless steels, sintered stainless steels, and powdered stainless 
steels in literature.[18]–[24]  
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Methods 

Six testing specimens were produced via powder bed selective laser melting using 
Binghamton University’s EOS M290 printer and EOS’s 316L stainless steel powder.[4]  The laser 
power was set to 200W and the scan rate was varied from 750mm/s to 2000mm/s in increments of 
250mm/s, with a layer height of 40um and a hatch spacing of 90um.  The samples were 
8x8x1.5mm to allow bulk and local thermal conductivity mapping.  

The local thermal conductivities of the samples were measured by frequency domain 
thermoreflectance (FDTR).  This process works by modulating the surface temperature by 
focusing a modulated laser (488 nm), referred to as the pump, onto the sample surface.[25]  As the 
surface temperature oscillates, it causes an oscillation in the reflectance of the material at the 
surface.  A second co-axial laser (532 nm), referred to as the probe, is then used to sample the 
temperature through the change in reflectance with temperature.  This periodic oscillation of the 
reflected probe signal is sensed with a photodiode connected to a lock-in amplifier.[25]  

Figure 1: FDTR Experimental Setup 

Based on the phase lag between the pump laser and the probe laser, the thermal properties 
of the material are determined.[25], [26].  An example of the phase shift versus frequency from 
one of the tests is shown in the following figure along with the analytical fit (Figure 2). 
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Figure 2: Representative phase shift versus frequency data for the 750mm/s sample and best 
analytical fit (k=14.7W/m-K) 

The spatial resolution of this technique is approximately 15μm radially and in the z-
direction.  The spatial resolution is approximated by the following equation for thermal penetration 
depth.[25] 

𝐿𝐿 = �2𝜋𝜋𝜋𝜋
𝜔𝜔  (1) 

In this equation, L is the thermal penetration depth, 𝛼𝛼 is the thermal diffusivity and 𝜔𝜔 is the 
modulation frequency.[25]  The testing for this sample was run over a modulation frequency of 
5kHz to 100kHz, which translates into a thermal penetration depth of 65.8µm to 14.7µm 
respectively when using 316L as the material.   

After the samples were printed, they were polished and a flash diffusivity test, which is 
based on the time it takes a heat pulse to travel through a material, was conducted to determine the 
bulk thermal conductivity of each sample.[27]–[29]  The thermal diffusivities of the samples were 
fit via nonlinear regression fitting the experimental data from the flash diffusivity tests using 
MATLAB.  The thermal conductivity was determined from the diffusivity by assuming literature 
values for the specific heat.[27]  Fitting was performed using the Clark and Taylor model that 
accounts for radiation heat loss in the flash diffusivity experiment.[30]  A comparison between 
this fit and the experimental data is shown in Figure 3. 
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Figure 3: Representative flash diffusivity data and fit for scan rate of 750 mm/s and power 200 W 
(k=14.2W/m-K) 

The porosity of each sample was measured optically using the ImageJ software on the 
images shown in Figure 4 and the results were cross-checked by measuring the mass of the samples 
and the volume of each sample, measured using a Quantachrome UltrapyC 1200e ultrapycnometer, 
to determine density. 
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Results 
The 750mm/s and 1000mm/s 

samples had minimal voids and the 
voids they did have were small, 
<25µm.  The 1250mm/s sample had 
more voids, but the majority were still 
less than 25µm in diameter.  However, 
the 1500mm/s sample showed a 
significant increase in the number and 
size of voids, with some voids being 
>100µm in diameter.  Further 
increasing the scan rate increased the 
quantity of large voids, with some 
obtaining a diameter of over 200µm. 

Figure 4: Polished Surface Images 

750mm/s 1000mm/s 

1250mm/s 1500mm/s 

1750mm/s 2000mm/s 
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Figure 5: Density and porosity vs scan rate 

At 750mm/s to 1250mm/s scan rate, the density remained relatively constant at about 
7990±80kg/m3.  The highest porosity for these samples, measured optically, was 0.17%.  As the 
scan rate was increased past 1250mm/s, up to 2000mm/s, the density started to drop and, in turn, 
caused the porosity to increase, up to 9.4% at 2000mm/s.  The thermal conductivity of each sample 
was also tested using flash diffusivity and the results can be seen in Figure 6. 

Figure 6: Thermal conductivity vs scan rate and porosity 
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The thermal conductivity results from the flash diffusivity experiments indicate that as the 
porosity increased, the thermal conductivity decreased, as expected.  Heat conducting through the 
material would have to conduct through particles of the material in the void or convect through the 
gas making up the rest of the space in the void, which would significantly lower the effective 
thermal conductivity.  The extreme case of this is shown in the results found for thermal 
conductivity of 316L stainless steel powder, which shows a significant reduction in the thermal 
conductivity of powder when compared to solid material.[22], [23]   

Prior studies of traditionally sintered 304L and 316L stainless steel powders have similar 
trends with porosity.[19], [24]  They found a relationship between porosity and thermal 
conductivity of 304L was well described by the empirical model of Koh and Fortinin: 

𝑘𝑘 = 𝑘𝑘0 �
1 − 𝑝𝑝

1 + 10𝑝𝑝2�        (2) 

In this equation, k is the thermal conductivity of the sintered powder, k0 is the thermal conductivity 
of the bulk material and p is the porosity of the sintered powder.[24]   

The Maxwell-Garnett equation, shown in equation 3, provides analytical expression for  a 
thermal conductivity with spherical voids.[31] 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑘𝑘𝑚𝑚 + 2𝑘𝑘𝑚𝑚𝑝𝑝

𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑚𝑚
𝑘𝑘𝑖𝑖 + 2𝑘𝑘𝑚𝑚

1 − 𝑝𝑝 𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑚𝑚
𝑘𝑘𝑖𝑖 + 2𝑘𝑘𝑚𝑚

  (3) 

It does this by using the bulk conductivity of the matrix material, the volume fraction of inclusions, 
the porosity in this case, and the conductivity of the inclusions, assumed to be zero for this case.   

Lima et al. also measured the properties of samples produced using traditional metal 
sintering of 316L.  However, instead of a gradual reduction in thermal conductivity as porosity 
increased, like the results found for this paper, they showed a large drop in thermal conductivity 
at about 8% porosity.[19]  These results, along with the bulk thermal conductivity results from this 
paper and the predicted values from Equations 2 and 3 are shown in Figure 7.  It should be noted 
that a k0 value of 14.6W/m-K was used in Equations 2 and 3, as this is the primary thermal 
conductivity of 316L at 20oC used by other studies.[32]–[35] 
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Figure 7: Experimental and Predicted Thermal Conductivity vs Porosity 

Despite the shifted conductivity values at low porosity, Figure 7 shows that both the 
Maxwell-Garnett equation and the equation used by Koh and Fortini predict the same general 
trend, as was obtained for the samples tested, of a linear reduction in thermal conductivity vs 
porosity in the porosity range up to 10%.  However, the experimental results showed a larger 
decrease in thermal conductivity for the same increase in porosity when compared to the results 
from Equations 2 and 3. 

An FDTR test was also done to produce a map of thermal conductivity values on the surface 
of the 750mm/s scan rate sample with low porosity.  A 20x20 grid of sample positions were tested 
with FDTR, using a spacing of 5µm between each position.  The resulting thermal conductivity 
map is shown in Figure 8. 
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Figure 8: Thermal Conductivity Map for 750mm/s Scan Rate Sample 

This map shows that the FDTR results gave a range of thermal conductivity values 
depending on the tested position.  A histogram of the thermal conductivity values at every point 
was created and is shown in Figure 9. The lowest value for conductivity found in the FDTR test 
was 10.4W/m-K and the highest was 19.8W/m-K, with a mean of 14.3W/m-K.  Many of the points 
had calculated thermal conductivity values in the range of 13.5W/m-K to 15.5W/m-K, which is in 
the expected range for the thermal conductivity of 316L previously discussed.  The large variation 
in conductivity values over the tested area could also be due to differences in crystal grain shape 
and orientation, oxide and/or carbides.   

1703



Figure 9: Histogram of FDTR Conductivity Results 

Figure 10: XRD test results 

Finally, an x-ray diffraction test was performed on samples printed with the same process 
parameters as listed above (Figure 10).  The trends in XRD intensity trend similarly to the 
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difference between effective medium models and experimental results.  This intensity reduction 
may be due to amorphous or non-austenitic phases.   

Conclusion 
For scan rates from 750mm/s to 1250mm/s, the porosity remained less than 1% and the 

thermal conductivity was 14.1±0.8W/m-K.  After the laser scan rate was increased past the critical 
value of 1250mm/s, the porosity increased rapidly to a value of 9.4% at 2000mm/s scan rate, due 
to incomplete fusion and the creation of voids, and the bulk thermal conductivity dropped to 
10.0±0.5W/m-K.  These results show that structural properties are not the only properties effected 
by process parameters in additively manufacturing.  If the energy density of the process is too low, 
created by increasing the laser scan rate in this case, porosity develops and drastically reduces the 
thermal conductivity.  These results showed a 30% reduction in thermal conductivity by simply 
changing the laser scan rate from 1250mm/s to 2000mm/s.   

The bulk thermal conductivities are below the expected thermal conductivity versus 
porosity effective medium model by anywhere from 3-13%.[24]  The unique thermal profile of 
SLM changes the microstructure and alters the thermal conductivity.  The reduction below model 
predictions is an area of future research.  The large variation in thermal conductivity observed in 
thermal conductivity mapping is likely due to variability in the crystal growth direction and crystal 
orientation due to the thermal gradients experienced during SLM, and is also an important area for 
further study.[9], [11] 
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