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Abstract 

Various sources of uncertainty that can potentially cause variability in the product quality 

exist at different stages of the laser powder bed fusion (L-PBF) process. To implement 

computational models and simulations for quality control and process optimization, quantitative 

representation of their predictive accuracy is required. In this study, a methodology to estimate 

uncertainties in L-PBF models and simulations is presented. The sources of uncertainty, including 

those due to modeling assumptions, numerical approximation, input parameters, and measurement 

error, are discussed in detail and quantified for low and high-fidelity melt pool simulation models. 

A design of experiments (DOE) approach is leveraged to quantify uncertainty due to input 

parameters and investigate their effects on output quantities of interest (QoIs). The result of this 

work is essential for understanding the tradeoffs in model fidelity and guiding the selection of a 

model suitable for its intended purpose. 

Keywords: Additive manufacturing, Powder bed fusion, Uncertainty quantification, Melt pool 

model, Design of experiments   

Introduction 

Metal additive manufacturing (AM) builds metallic parts layer upon layer directly from a 

3D model. Due to its capability of producing metallic components having complex geometry and 

internal structures, it has become popular in different sectors, such as aerospace and automotive 

(scaffold cooling and weight reduction) and biomedical implants (prosthesis and femur 

structures) [1–3]. Laser powder bed fusion (L-PBF) is the most widely used metal AM process. In 

L-PBF, a thin layer of powder material is selectively scanned using a laser as the energy source to

fuse powder particles together. In this process, powder layer formation and laser scanning

operations are repeated multiple times until the final part is produced [4]. Due to the inherent

nature of the L-PBF process, multiple physical phenomena and process parameters are involved at

different stages. The process is governed by a variety of physical mechanisms, such as powder

layer formation, laser-powder particle interaction, heat transfer, fluid dynamics of the melt pool,

phase transformations, and microstructure evolution. Any variation encountered in these

mechanisms potentially affects the quality of the final part. A major barrier that hinders full

adoption of the L-PBF technology is inconsistent product quality.
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To improve the quality of the product, it is important to investigate the sources of 

variability, quantify the uncertainties that occur at different stages of the process, and determine 

the magnitude of their effects on output quantities of interest. To quantify the uncertainties and 

analyze the sensitivity of input parameters, extensive research efforts have been continued based 

on physical experiments and computational models and simulations. Since performing uncertainty 

quantification in the L-PBF process using physical experiments is often expensive, computational 

models and simulations are promising tools to understand the dynamics, complex phenomena, and 

variabilities existing in the process. Although promising, computational models and simulations 

have not been fully utilized in quality control and process optimization due to lack of quantitative 

representation of their predictive accuracy. Without knowledge of the degree of accuracy of the L-

PBF models and simulations, it is challenging to select a suitable model for the intended purpose. 

Therefore, it is necessary to identify and quantify the potential sources of uncertainty to investigate 

the predictive accuracy of such models and simulations.  

This paper presents the sources of uncertainty in computational models and in the 

experimental validation and a methodology to quantify the uncertainties that exist in the L-PBF 

models. The predictive accuracy of such models strongly depends on the included and neglected 

physics of the process. Modeling uncertainty originates from the modeling assumptions that 

neglect part of the physical phenomena of a process. In addition, computational models require 

several input parameters including process parameters and material properties to represent the 

physical scenario of the process. However, the value of some parameters cannot always be known 

precisely and may exhibit inherent temporal fluctuations. Therefore, there is an associated 

parameter uncertainty in the computational models due to unknown input parameters. Moreover, 

the mathematical equations used to formulate the physical phenomena are difficult to be solved 

analytically, and various numerical methods have been used to discretize the system into finite 

elements and temporal transient phenomena into time steps to obtain an approximate solution. This 

discretization introduces numerical uncertainty in the computational models. Lastly, to validate 

the simulation results against measurement data, experimental results introduce measurement 

uncertainty due to imprecise measurement methods. In this study, all of these sources of 

uncertainty are quantified for the Rosenthal’s semi-analytical thermal model [5,6]. In addition, we 

recommend best practices for quantifying model uncertainty for a finite element method (FEM)-

based thermal model [7].  

In this paper, we first briefly present the state-of-the-art in uncertainty quantification for 

L-PBF models. We then explore the shortcomings of previous work by classifying and 

characterizing sources of uncertainty in L-PBF models. Then, we examine, model, and evaluate 

all uncertainty sources of a L-PBF model using a case study through a standards-based approach.  

We view this work to be an essential step to report on requirements for further standardization and 

ultimately guide the selection of models suitable for their intended purpose. 
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Background  

Since experimental-based part qualification for the L-PBF process is time consuming and 

costly, model-based qualification has been the focus of much research in the AM community. 

Several computational models have been developed to simulate the physical mechanisms and 

predict output quantities of interest at different stages of the process [8,9]. These models can be 

classified as powder bed models [10,11], heat source models [12,13], melt pool models [14,15], 

solidification models [16,17], and residual stress and distortion models [18,19]. Though 

computational models are different in their formulation, they share similar abstraction and 

characteristics [20,21]. The fidelity of the L-PBF models can be evaluated by identifying the 

various sources of uncertainty and quantifying their individual contribution to the overall 

prediction uncertainty [20].  

Uncertainty quantification (UQ) of AM processes has recently been receiving increasing 

attention and some research efforts exist based on physical experiments, modeling and 

simulations [9,22,23]. Several reports have focused on experimentally investigating the effects of 

process parameters and material properties on the output quantities of interest and performing 

uncertainty quantification and sensitivity analysis [24–27]. Since AM processes possess a large 

number of parameters that influence the quality of a product, experimental-based UQ is expensive 

[28]. Thus, model-based UQ is getting attention for part qualification. Moser et al. [29] used a 

stochastic collocation approach to identify the most important parameters that affect the fidelity of 

FEM thermal model. Assuming probability distribution functions (PDFs) of input parameters, such 

as powder density, thermal conductivity, specific heat, particle diameter, and simulation time, the 

PDF of peak temperature is predicted. Ma et al. [30] used fractional factorial DOE to identify the 

critical process parameters and material properties that significantly influence peak temperature in 

FEM-based thermal model. Nath et al. [31] conducted uncertainty analysis on a FEM-based melt 

pool model that determined temperature profile and investigated uncertainty propagation to the 

solidification model to quantify the uncertainty in the grain size distribution of the microstructure. 

There have also been research efforts on implementing UQ methods for powder-scale AM model 

by developing surrogate models [32].  

Previous studies have mainly focused on investigating the effects of input parameters on 

output quantities of interest and only quantifying parameter uncertainty. However, computational 

models exhibit all of the abovementioned sources of uncertainty and UQ-based study should 

include the remaining uncertainty sources to accurately determine the fidelity of a model. Recently, 

Lopez et al. [5] identified the four sources of uncertainty and conceptualized the quantification 

approach on the Isotherm Migration Method (IMM) model [6] by choosing melt pool width as the 

output quantity of interest. We further extend UQ approaches in the present study to quantify all 

sources of uncertainty and analyze their contribution towards model fidelity considering semi-

analytical and FEM-based L-PBF melt pool models as a case study.   

 

1915



Uncertainty Quantification of Computational Models 

 In this section, we present a detailed discussion of the sources of uncertainty and their 

quantification, including those due to modeling assumptions, numerical approximation, input 

parameters, and measurement error of L-PBF process models.  

Modeling Uncertainty  

Computational models do not exactly represent the physical mechanisms that exists in L-

PBF process as they are developed based on assumptions that neglect or simplify some 

phenomena. Thus, there is always a discrepancy between simulation results and true physical 

mechanisms. Modeling uncertainty originates from assumptions and simplifications made in 

computational models. There are a number of predictive models in the literature to represent the 

same L-PBF physical process [8,9]. These models are developed based on different assumptions 

and, therefore, there may be a significant discrepancy in their predictive accuracy due to modeling 

uncertainty. For example, to determine the packing density of the powder bed, powder bed models 

have been developed based on the Raindrop algorithm or the discrete element method. These 

models can induce different results and have different fidelity due to the different assumptions 

considered including those for powder particles shape, size and distribution, inter-particles forces, 

and boundary conditions. Similarly, there are various melt pool models in the literature to 

determine the temperature field and melt pool dimensions in the L-PBF process. These models are 

developed based on Rosenthal’s semi-analytical thermal model, on a FEM thermal model, on a 

lattice Boltzmann approach, or on computational fluid dynamics (CFD). These models have 

different assumptions in terms of considering powder bed as a continuum or as particles, energy 

source as a point or distributed, and absorbed energy as a surface or volumetric distribution. There 

are also differences in considering other physical phenomena, such as surface tension, the 

Marangoni effect, recoil pressure, vaporization, capillary, and wetting. Although these models are 

developed for predicting the same output quantities of interest, their modeling uncertainty results 

in different predictive accuracy due to the different assumptions they considered. Therefore, it is 

important to quantify modeling uncertainty of computational models to determine their degree of 

predictive accuracy. 

To quantify modeling uncertainty, simulation results S of the predictive model need to be 

validated against the experimental data D. The ASME V&V-20 standard [33], which discusses the 

sources of uncertainty and UQ methods in heat transfer and fluid mechanics models, can be 

suitable for L-PBF models as it involves thermally-activated consolidation processes [5]. The 

interval within which modeling error falls is characterized by 𝜹𝒎𝒐𝒅𝒆𝒍 𝝐 [𝑬 ± 𝒖𝒗𝒂𝒍] where, E is the 

comparison error between simulation result S and measurement data D, and 𝒖𝒗𝒂𝒍 is validation 

uncertainty that accounts for all sources of uncertainty. Assuming that they are independent, it can 

be computed as: 

 𝑢𝑣𝑎𝑙 = √𝑢𝑛𝑢𝑚
2 + 𝑢𝑖𝑛𝑝𝑢𝑡

2 + 𝑢𝐷
2 ,  ............................................... (1) 
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where 𝑢𝑛𝑢𝑚, 𝑢𝑖𝑛𝑝𝑢𝑡, and 𝑢𝐷 are numerical uncertainty, parameter uncertainty, and measurement 

uncertainty, respectively. The following sub-sections discuss the uncertainty sources and 

quantification methods of these uncertainties.  

Numerical Uncertainty  

Due to the complexity of the L-PBF process, constitutive equations that approximate the 

physical phenomena are not often solved using analytical methods. Numerical methods that 

discretize the time and length variables are used to solve the partial differential equations. For the 

L-PBF process, predictive models are commonly developed based on numerical methods, such as 

finite element models, discrete element models, lattice Boltzmann method, and computational 

fluid dynamics studies. Thus, the choice of finite time and length resolution introduces numerical 

error that undermines the accuracy of the simulation results of the output quantities of interest [34]. 

For example, the element size or number of elements in an FEM-based thermal model and mesh 

discretization to represent the change in temperature in semi-analytical thermal model cause 

numerical uncertainty in the predicted melt pool width. Since most of predictive models are 

computationally expensive, reduced order and surrogate models are used to statistically represent 

the simulation models. This can introduce additional uncertainty due to the limited number of 

training data used to build the representative model.  

Numerical uncertainty can be quantified using a grid convergence index (GCI) developed 

by Roache [35]. The GCI is an error percentage that provides an estimate of the coverage interval 

within which the numerical error will likely lie. Numerical uncertainty is the GCI percentage of 

the value of the output quantity of interest. The GCI is obtained by multiplying the absolute value 

of Richardson extrapolation error by a safety factor determined through empirical studies and 

given by:  

 𝐺𝐶𝐼 = 𝐹𝑠
𝜖𝑒𝑥𝑡

𝑟21
𝑝

−1
, ............................................................ (2) 

 𝜖𝑒𝑥𝑡 = |
𝑓𝑒𝑥𝑡

21 −𝑓1

𝑓𝑒𝑥𝑡
21 | ,     𝑓𝑒𝑥𝑡

21 =
𝑟21

𝑝
𝑓1−𝑓2

𝑟21
𝑝

−1
 ,     𝑝 =

ln(|𝑓3−𝑓2| |𝑓2−𝑓1|⁄ )+𝑞(𝑝)

𝑙𝑛𝑟21
, ..................... (3) 

where, 𝐹𝑠 = 1.25 is factor of safety; 𝑓1, 𝑓3, and 𝑓3 are three simulation results at fine ℎ1, finer ℎ2, 

and finest ℎ3 mesh sizes, respectively; and 𝑟21 = ℎ2 ℎ1⁄  is the mesh refinement ratio. The order of 

convergence 𝑝 is determined using Equation (3). For a constant mesh refinement ratio, 𝑞(𝑝) = 0. 

Otherwise, 𝑞(𝑝) = 𝑙𝑛[(𝑟21
𝑝 − 𝑠) (𝑟32

𝑝 − 𝑠)⁄ ] and 𝑠 =  𝑠𝑖𝑔𝑛[(𝑓3 − 𝑓2) (𝑓2 − 𝑓1)⁄ ], and the 

convergence order is solved iteratively with initial guess 𝑞(𝑝) = 0.  

Parameter Uncertainty  

Computational models require prior determination of input parameters to represent the 

behavior of a process. The values of some parameters are not precisely known due to natural 

variation in the system or lack of sufficient data and knowledge to determine the exact value. 

Therefore, the assigned value has uncertainty that propagates into an output quantity of interest. 
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The sources of uncertainty can take one of two forms: aleatory and epistemic. Aleatory uncertainty 

arises due to natural variation existing in the parameters and in the performance of the system. For 

instance, inherent drift and fluctuation in the laser and galvanometer systems cause aleatory 

variability in the laser power and scan speed in L-PBF process. On the other hand, epistemic 

uncertainty arises as a result of lack of knowledge regarding the behavior of a system. For example, 

the determination of the absorption coefficient of a powder bed is not well established due to lack 

of a convincing measurement method and could be resolved by introducing additional information. 

This study considers the joint effect of aleatory and epistemic uncertainties instead of 

distinguishing them separately as suggested by Roache [35].  

To quantify the input parameter uncertainty, first the uncertainty associated with the 

parameters is captured in a form of distribution, nominal value, and standard deviation. Then, the 

sources of uncertainty of these parameters propagate into output quantity of interest through 

computational models or reduced order models. In this study, a design of experiments (DOE) 

method is used to quantify input parameter uncertainty by formulating a reduced order 

formulation. Experimental design is a suitable technique to identify the most important factors that 

have significant impact on the response variable and develop a response surface model that 

approximates the original process [36]. In the present study, a fractional factorial design of 

experiments approach is used to plan the design matrix for simulation runs and quantify input 

parameter uncertainty, choosing melt pool width as a response variable. The detailed procedure 

and discussion on implementing DOE for UQ of input parameters is presented in the case study 

section.  

Measurement Uncertainty 

Since experimental data is required to validate the simulation results, measurement 

uncertainty is important in the UQ process to determine the predictive accuracy of L-PBF models. 

Measurement uncertainty mainly depends on the methods and equipment used for data acquisition. 

To understand the process-structure-properties-performance chain of the L-PBF process, 

measurement results during pre-process, in-process, and post-process are necessary [37]. For 

example, uncertainties related to measurement methods used to determine the powder packing 

structure that depends on metal powder characterization (such as powder size, morphology, 

density, and distribution [38,39]), non-intrusive infrared thermography, and pyrometry to measure 

surface temperature of the heat affected zone [37]. Measurement uncertainty is quantified as per 

the guide to the expression of uncertainty in measurement (GUM) that standardized the evaluation 

and expression of uncertainty in measurement [40].  

Propagation of Uncertainty in L-PBF Models 

Uncertainty is propagated through L-PBF models in the manner depicted in Figure 1. Input 

uncertainty enters each different model with input parameters. Outputs of some models are 

incorporated as inputs in other models. For this reason, it is required to understand the propagated 

effects of uncertainty through a composition of models. Besides parameter uncertainty, modeling 

and numerical uncertainties also propagate to outputs. 
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Figure 1: Flow of uncertainty in L-PBF models. 

Case Study: UQ in a Semi-Analytical- and FEM-Based Melt Pool Models 

In this case study, semi-analytic- and FEM-based melt pool models are selected for the 

purpose of quantifying all sources of uncertainty in the L-PBF process as shown in the previous 

section. In a semi-analytical-based melt pool model, the heat conduction equation is transformed 

into a set of ordinary differential equations to determine the isotherm velocities on the surface of 

the powder bed in terms of positions and temperature derivatives. The phase change that occurs 

during the process is taken into consideration to incorporate the effect of the internal energy 

difference between solid and liquid states at melting temperature, which is given by the latent heat 

of fusion of a material. The melt pool width is predicted directly from the isotherm position by 

assigning a melting temperature on one of the isotherms. The model is first developed for laser 

cladding [6] and adjusted for prediction of melt pool dimensions in L-PBF [5]. Although this 

model considers the temperature-dependent material properties and provides results in an efficient 

manner, there are a number of assumptions related to the phenomena of the process. The heat 

source is assumed as a point source, which is not in conjunction with reality instead of a distributed 

one. The melt pool flow and distribution of particles in a powder bed are also ignored. This 

simplification and assumptions are expected to increase modeling error. The discretization of the 

temperature increment to represent the isotherms creates numerical error.    

The FEM-based melt pool model is the most popular method to simulate the L-PBF 

process [8]. It discretizes the powder bed into a finite number of elements by forming a mesh to 

solve the partial differential equation governing the system in order to estimate thermal field and 

melt pool characteristics. The main assumption of this model is that the powder bed is considered 

a homogenous continuum material instead of a distribution of powder particles. The physical 

phenomena encountered in the melt pool dynamics, such as surface tension and the Marangoni 

effect, are ignored, which creates modeling error. The FEM-based melt pool model used for 

present work is proposed by Smith et al. [7] assuming a heat source with Gaussian distribution.  
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Computational Design of Experiments 

To make the uncertainty quantification process for a model having many parameters more 

computationally practical, a DOE approach, which is widely used to identify the most important 

parameters that have major influence on the output, is used for the present work. As the number 

of factors increases, investigating the effect of each of the factors along with their interactions on 

the output quantities of interest using full factorial DOE is infeasible due to high computational 

cost. Therefore, a fractional factorial DOE is chosen to sample some of the most important runs 

that can provide the necessary information about the main effects and second-order 

interactions [41].  

For the semi-analytical-based melt pool model, all the input parameters (i.e. nine factors) 

used in the model are selected for DOE analysis. A 2IV
9−4 fractional factorial design that represents 

two levels for each factor and four resolution is selected. In this design, no main effects are 

confounded with any other main effect and two-factor interactions. We select 2IV
10−5 fractional 

factorial design having ten factors for the FEM-based melt pool model. These designs 

require 25 = 32 simulation runs for each model. Normal distributions, which commonly used in 

UQ to represent the variations of input parameters due to random and imperfect knowledge, are 

assumed for the selected factors and the design matrices for the semi-analytical- and FEM-based 

melt pool models are outlined in Tables 1 and 2, respectively. 
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Table 1: DOE plan for the semi-analytical-based melt pool model 
Factor X1 X2 X3 X4 X5 X6 X7 X8 X9 

Name Laser 

power 

Scan 

speed 

Preheat 

temper-

ature 

Density Specific 

heat 

capacity 

Thermal 

conduct-

ivity 

Absorption 

coefficient 

Latent 

heat of 

fusion 

Melting 

temper-

ature 

Symbol 𝑃 𝑣 𝑇𝑜 𝜌 𝑐𝑝 𝑘 𝐴 ℎ𝑙 𝑇𝑚 

Nominal 

value 

195 0.8 293 𝜌(𝑇) 𝑐𝑝(𝑇) 𝑘(𝑇) 0.4 2.97x105 1593 

Unit W 𝑚/𝑠 𝐾 𝑘𝑔/𝑚3 𝐽/𝑘𝑔𝐾 𝑊/𝑚𝐾  𝐽/𝑘𝑔 𝐾 

Std. dev. 2.5% 1.5% 1% 1% 3% 3% 25% 5% 5% 

Run 01 − − − − − + + + + 

Run 02 + − − − − + − − − 

Run 03 − + − − − − + − − 

Run 04 + + − − − − − + + 

Run 05 − − + − − − − + − 

Run 06 + − + − − − + − + 

Run 07 − + + − − + − − + 

Run 08 + + + − − + + + − 

Run 09 − − − + − − − − + 

Run 10 + − − + − − + + − 

Run 11 − + − + − + − + − 

Run 12 + + − + − + + − + 

Run 13 − − + + − + + − − 

Run 14 + − + + − + − + + 

Run 15 − + + + − − + + + 

Run 16 + + + + − − − − − 

Run 17 − − − − + − − − − 

Run 18 + − − − + − + + + 

Run 19 − + − − + + − + + 

Run 20 + + − − + + + − − 

Run 21 − − + − + + + − + 

Run 22 + − + − + + − + − 

Run 23 − + + − + − + + − 

Run 24 + + + − + − − − + 

Run 25 − − − + + + + + − 

Run 26 + − − + + + − − + 

Run 27 − + − + + − + − + 

Run 28 + + − + + − − + − 

Run 29 − − + + + − − + + 

Run 30 + − + + + − + − − 

Run 31 − + + + + + − − − 

Run 32 + + + + + + + + + 

 

The design matrices in Tables 1 and 2 are coded as (–) and (+) to represent the low (nominal 

value minus standard deviation) and high (nominal value plus standard deviation) values of the 

two levels for each of the factors and defines the 32 simulation runs. The matrices in Tables 1 

and 2 are arranged in such a way that all columns are orthogonal to each other and the main and 

interaction effects can be independently estimated. Since the variation of input parameters and 

some of their values are not yet explicitly determined, the nominal values and their variations are 

chosen based on prior research and expert opinions [30].  
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Table 2: DOE plan for the FEM-based melt pool model 
Factor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

Variable 

name 

Laser 

power 

Scan 

speed 

Layer 

thick-

ness 

Laser 

beam 

radius 

Density Specific 

heat 

capacity 

Thermal 

conduct-

ivity 

Absorption 

coefficient 

Latent 

heat of 

fusion 

Emis-

sivity 

Symbol 𝑃 𝑣 𝑙𝑡 𝑟𝑏𝑒𝑎𝑚 𝜌 𝑐𝑝 𝑘 𝐴 ℎ𝑙 𝜀 

Nominal 

value 

195 0.8 40 45 𝜌(𝑇) 𝑐𝑝(𝑇) 𝑘(𝑇) 0.4 2.97x105 0.4 

Units W 𝑚/𝑠 µ𝑚 µ𝑚 𝑘𝑔/𝑚3 𝐽/𝑘𝑔𝐾 𝑊/𝑚𝐾  𝐽/𝑘𝑔  

Std. dev. 2.5% 1.5% 25% 10% 1% 3% 3% 25% 5% 10% 

Run 01    −   −   −   −   −   +   +   +   +   + 

Run 02    +   −   −   −   −   −   −   −   −   + 

Run 03    −   +   −   −   −   −   −   −   +   − 

Run 04    +   +   −   −   −   +   +   +   −   − 

Run 05    −   −   +   −   −   −   −   +   −   − 

Run 06    +   −   +   −   −   +   +   −   +   − 

Run 07    −   +   +   −   −   +   +   −   −   + 

Run 08    +   +   +   −   −   −   −   +   +   + 

Run 09     −   −   −   +   −   −   +   −   −   − 

Run 10    +   −   −   +   −   +   −   +   +   − 

Run 11    −   +   −   +   −   +   −   +   −   + 

Run 12    +   +   −   +   −   −   +   −   +   + 

Run 13    −   −   +   +   −   +   −   −   +   + 

Run 14    +   −   +   +   −   −   +   +   −   + 

Run 15    −   +   +   +   −   −   +   +   +   − 

Run 16    +   +   +   +   −   +   −   −   −   − 

Run 17    −   −   −   −   +   +   −   −   −   − 

Run 18    +   −   −   −   +   −   +   +   +   − 

Run 19    −   +   −   −   +   −   +   +   −   + 

Run 20    +   +   −   −   +   +   −   −   +   + 

Run 21    −   −   +   −   +   −   +   −   +   + 

Run 22    +   −   +   −   +   +   −   +   −   + 

Run 23    −   +   +   −   +   +   −   +   +   − 

Run 24    +   +   +   −   +   −   +   −   −   − 

Run 25    −   −   −   +   +   −   −   +   +   + 

Run 26    +   −   −   +   +   +   +   −   −   + 

Run 27    −   +   −   +   +   +   +   −   +   − 

Run 28    +   +   −   +   +   −   −   +   −   − 

Run 29    −   −   +   +   +   +   +   +   −   − 

Run 30    +   −   +   +   +   −   −   −   +   − 

Run 31    −   +   +   +   +   −   −   −   −   + 

Run 32    +   +   +   +   +   +   +   +   +   + 
 

Results and Discussion  

To identify the input parameters that significantly influence the melt pool width, the main 

and interaction effects are computed. An effect is the amount of change in melt pool width when 

only the parameter under consideration is changed from its low (−) to high (+) level. A normal 

probability plot of the effects is used to isolate statistically significant effects of factors and their 

interactions from those effects that come solely from random variables. The normal probability 

plot is used for assessing whether or not a data set is approximately normally distributed and 

identifying statistically significant factors [42]. The normal probability plot of the effects for the 

semi-analytical-based melt pool model is shown in Figure 2. The main and interaction effects that 

represent x-axis in Figure 2 are calculated by subtracting the average of the response at the low 

level from the high level for the parameter under consideration. 
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Figure 2: Normal probability plot of the semi-analytical-based melt pool model 

It can be seen from normal probability plot that the main factors and some of their 

interactions significantly affect the melt pool width. A statistically-driven mathematical model is 

formulated from the DOE analysis using the identified main factors and interactions that have 

significant effect on the response [36]. At the given set of parameters, the mathematical model 

closely approximates the physics-based model. To quantify the input parameters uncertainty, a 

Monte Carlo approximation is conducted for 50,000 samples which are quite sufficient to get stable 

results and the probability distribution of the predicted melt pool width is shown in Figure 3. The 

average and standard deviation of the predicted melt pool width are found to be 94.2µm 

and 55.1µm, respectively.  

 
Figure 3: Normal distribution of predicted melt pool width of the semi-analytical model 
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The FEM-based melt pool model, though more accurate, posed difficulty when managing 

uncertainty with the calibration parameters. Using the set of input parameters in Table 2 the 

parameters that significantly affect melt pool width cannot be identified from the main and 

interaction effects due to the large percentage variation assumed for layer thickness and absorption 

coefficient. Thus, the uncertainty of the input parameters in which the model performs reasonably 

needed to be reconsidered.   

To quantify numerical uncertainty in the semi-analytical melt pool model, simulations with 

a different number of isotherms having different temperature increments were run. In this case, all 

the input parameters are set to their nominal values. Then, the grid convergence index (GCI), which 

is an estimate of 95% uncertainty, was computed using Equation (2). Using the given nominal 

values, the estimated melt pool width in the semi-analytical model is 100.9  3.43µm. Similarly, 

a convergence study was performed for the FEM-based melt pool model by running the simulation 

with different element sizes. Using the given nominal values, the estimated melt pool width for 

the FEM-based model is 141.0  4.23µm. 

To complete UQ in L-PBF models, measurement uncertainty that comes from the 

experiments used for validation is required. The melt pool width was measured from the image of 

a 1mm long scan track of IN625 captured using an optical microscope by manually tracing the 

edges of the track and determining the distance between the traces. The average and standard 

deviation of the melt pool width at 195W and 800mm/s are measured to be 132.2µm and 14.1µm, 

and the 95% suggested confidence interval is  28.2µm. In addition to this uncertainty, manually 

tracing the edges of the scan track causes uncertainty due to human error estimated to be  2µm. 

This is based on the ability to determine the edge of the track accurately accounting for the focus 

of the image at the edge of the track and the size of pixels. More details about the experimental 

results and measurement methodology is given by Fox et al. [43].  

The comparison of the predicted and measured melt pool width by the two models at a 

given laser power and scan speed combination is shown in Figure 4. Assuming all sources of 

uncertainty are independent, the validation uncertainty that accounts for all sources of uncertainty 

is computed using Equation (1) and for the semi-analytical model is estimated to be  114.3µm. 

Thus, the interval within which the modeling error falls for the nominal conditions 

is 31.3  114.3µm. Since the uncertainty of the semi-analytical melt pool model at the given set of 

parameters is large and beyond the realm of possibility, the percentage variation assumed for 

absorption coefficient need to be revised. From the DOE analysis and obtained results, the 

following observations can be made. 

(1) The modeling uncertainty of the semi-analytical-based melt pool model (𝐸 = 31.3µm 

and 𝑢𝑣𝑎𝑙 = 114.3µm at nominal parameter setup) is large as expected due to many 

assumptions and simplifications used regarding heat source, powder layer formation, 

and melt pool dynamics. Ignoring these phenomena results in larger modeling error, 
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and thus a model that considers many physical phenomena existing in L-PBF process 

can have better predictive accuracy.  

(2) The contribution of input parameters uncertainty to the overall modeling uncertainty is 

more than 100% ( 109.2%) for the semi-analytical model. This is mainly due to the 

large uncertainty value assumed for the input parameters, especially, the absorption 

coefficient ( 25%). The knowledge of parameter uncertainty is necessary for the 

estimation of modeling uncertainty in which the model accurately determines the 

response within a specified range of parameters. In addition, the accuracy of the 

statistically-driven mathematical model can be improved by increasing the number of 

testing results which requires more simulation runs. 

(3) The contribution of the numerical uncertainty is very small ( 3.4% for semi-analytical) 

compared to the other sources of uncertainty. This contribution can be considered 

negligible. The measurement uncertainty used for model validation has a significant 

contribution to the modeling uncertainty ( 29.9%). This large variation can be 

associated with the calibration of the optical microscope used to capture the image of 

a scan track, variation of the incandescent light generated by the hot surface (which 

depends on the temperature and emissivity of the surface), the adjusted exposure time 

of the camera, and the dynamics of the melt pool, powder, and laser interactions [43].  

 

Figure 4: Predicted and measured melt pool width  

 

 

Laser power = 195W 

Scan speed = 500mm/s 
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Conclusions  

 In this paper, we presented an uncertainty quantification strategy for L-PBF models. A case 

study was presented with two models: a semi-analytical-based and a FEM melt pool models. A 

DOE fractional factorial study was conducted with two levels for nine and ten input parameters 

for the semi-analytical-based and FEM melt pool models, respectively. The DOE models were 

then used as part of a Monte Carlo simulation to predict melt pool width in order to compute output 

uncertainty of the models due to uncertainty in input parameters.  

The semi-analytical-based melt pool model was computationally efficient to run, but the 

DOE prediction results had large uncertainty. The FEM melt pool model, though more accurate, 

posed difficulty when managing uncertainty with the calibration parameters. The DOE study 

conducted in this paper included only two levels and therefore can only estimate linear effects 

between the levels. To develop an accurate DOE model for prediction, three or more levels would 

need to be conducted. This requires an increasingly large number of simulations for quantifying 

the uncertainty of FEM models. 

Future work will involve further refining the amount of uncertainty included in the input 

parameters and then running the DOE with higher levels that ensure non-linear effects between 

the levels and among multiple factors. This process will be evaluated for both the semi-analytical-

based and FEM-based melt pool models. Refinement of the input uncertainty especially on 

absorption coefficient and layer thickness is needed as the amount of uncertainty assumed for these 

parameters is appeared to be too high. 
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