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Abstract 

An improved high-fidelity simulation model for a grayscale projection micro-stereolithography 

process has been developed. The modeling purpose is to accurately predict cured part shapes and 

dimensions, given a radiation intensity distribution. The model employs COMSOL to solve a series 

of chemical reaction differential equations that model the evolution of chemical species 

(photoinitiator, monomer, and polymer) concentrations. Additionally, the model incorporates the 

effects of oxygen inhibition and species diffusion. This research offers two primary contributions 

to the cure model: the consideration of volumetric intensity to model variations in photoinitiator 

absorbance as a function of depth into the resin and a change to the rate model for photoinitiator 

to free radical conversion. The effects of these changes demonstrate observed photobleaching 

effects. Simulated cured part profiles are compared to experiments and demonstrate good 

agreement. Additionally, initial results are presented on the usage of the simulation model in a new 

process planning method. 

1. Introduction 

Monolayer photopolymerization with a grayscale mask can be used for fabrication of parts with 

a freeform surface profile in a single shot of exposure. Applications include micro-lens arrays and 

other optical components, as well as surface patterning with limited pattern height. Unlike layer-

by-layer methods, the part is grown on a clear substrate by controlling the exposure energy 

distribution accordingly. However, obtaining such distribution that accurately cures desired 

profiles might be challenging and limits the accuracy regarding industrial application. Although 

the working curve is typically used in stereolithography processes, it only defines the relationship 

between exposure time and depth of cure [1,2]. However, for microfabrication of a freeform 

profile, lateral or side curing should be considered. This is the reason that expensive photoresists 

with long process times (layer deposition, prebaking, and development) are preferred for 

microfabrication [3,4]. Shrinkage and oxygen inhibition are limited by utilizing photoresists in 

comparison to liquid photopolymers.  

Lateral curing or more precisely the prediction of a cured 3D profile is related to coupled factors 

and phenomena that occur during the irradiation process that makes modeling more complex. 

Some of these effects are oxygen inhibition, photo-bleaching, photo-trapping, self-focusing, and 

shrinkage [5]. All affected parameters and properties potentially can change the shape or 

dimensions of the final profile. 
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In one of the first attempt to cover the oxygen inhibition effect, Jariwala et. al. built a semi-

empirical model of photochemical reactions with consideration of oxygen inhibition [6]. Then, 

they used this model to propose a process planning method for generating a series of binary masks 

to create spherical and aspherical lenses [7]. The simulation result demonstrated an overestimation 

discrepancy between COMSOL simulations and the experimental working curve for curing depths 

of more than 60 m [6]. 

Many researchers have studied and developed models for photobleaching (PB) effects. 

Depending on the nature of the photolysis products, the consumption of the photoinitiator can 

either lead to an increase in light intensity in the underlying layers (if the photolysis product is 

more transparent at the irradiating wavelengths) or a reduction in light intensity (if the photolysis 

product is strongly absorbing). Miller et. al. proposed a generalized model of PB for thick samples 

[8]. They conclude that diffusion is expected to have negligible effects in most PB systems. 

However, their work does not include experimental evidence. 

This article builds on the foundation provided by researchers at Georgia Tech [6,7]  to extend 

the photochemical model with a new differential equation for volumetric intensity to represent 

light intensity gradient as well as defining a new mechanism for initiator self-dissociation to 

incorporate the PB effect.  Consequently, the proposed method can estimate the curing height for 

thick layers. The capability of this work has been demonstrated for the fabrication of microlens 

with sag heights of up to 800 µm. 

2. Chemical Kinematics of Photopolymerization 

Free radical photopolymerization includes the stages of initiation, propagation, and termination, 

and the phenomena of species diffusion, heat generation, and oxygen inhibition [9]. The process 

starts with initiation when the photoinitiator molecule dissociates under UV radiation to form 

initiator radicals. Subsequently, the generated radical reacts with monomer species, producing 

primary radicals.  

The process continues with the propagation step as monomer molecules react with the primary 

radical by a covalent bond and create an active polymer chain. The chain reaction continues until 

the termination step when radicals become extinguished or are otherwise unable to continue 

reacting. In the presence of dissolved oxygen, each active polymer chain or radical may react with 

oxygen to form a peroxide species, which converts them to an inactive polymer or dead radial. As 

a result, the propagation reaction is halted. The effect of oxygen inhibition described here is based 

on the works of Terrones-Pearlstein [10] and Dendukuri et. al. [11]. 

In contrast, our new modeling scheme includes one more step called “self-dissociation” of 

initiator to cover the PB effect. Simulations without this step correctly estimate the curing depth 

only for layers less than 350µm thick. Beyond this, the estimation error increases by depth. The 

PB effect was distinguished by Jacobs as the major reason for the observed super-logarithmic 

behavior of some photopolymer systems [12]. Comparing the simulated results of cure depth with 

the working curve obtained experimentally shows an underestimation of curing depth (refer 

Section 6, Figure 5.a).  

In our photopolymer system (TMPTA and DMPA, see Section 5), the assumption is that the 

initiator is the only absorber of UV light. Also, a simple absorption test for pure TMPTA without 

initiator shows that it does not absorb UV light at 365nm. The initiators dissociate and consume 
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during the curing and so their concentration gradually reduced. So, the absorptivity of UV light 

changes over time of exposure and it allows more photons to penetrate and reduce the attenuation 

of light. This is called the photo-bleaching effect and is our primary hypothesis to explain the 

observed super-logarithmic behavior of our photopolymer 

Simulation results without self-dissociation indicated that the consumption rate of initiator is 

not high enough to demonstrate a PB effect. It means that other mechanisms might exist for 

converting the initiator to molecule without UV absorption. Photolysis of DMPA (initiator) 

showed that various chemical reactions and products were observed, depending on the intensity 

level [13]. Furthermore, dissociation may occur by the heat energy produced by polymerization. 

To model these effects, a new self-dissociation reaction equation is added to our COMSOL model.  

The abovementioned chemical reactions are summarized in Table 1. The corresponding ordinary 

differential equations related to the dynamic concentration of the species are listed in Table 2. 
 

Table 1 – List of main chemical reactions occurred during photopolymerization 

Chemical Formula Description of reactions Product 

𝐼
     𝐾𝑑     
→     2𝑅∗ Photoinitiator Dissociation Free Radical 

𝐼 + 𝑅∗
     𝐾𝑠𝑒𝑙𝑓     
→       𝐼𝑑𝑒𝑎𝑑 + 𝑅

∗ Self-Dissociation Dead Radical 

𝑅∗ +  𝑀
     𝐾𝑖     
→     𝑀1

∗ Monomer Initiation Primary Radical 

𝑀𝑛
∗ +  𝑀

     𝐾𝑝     
→     𝑀𝑛+1

∗  Polymer Chain Propagation Active Polymer Radical 

𝑀𝑛
∗ + 𝑀𝑚

∗
     𝐾𝑡     
→     𝑀𝑑  Chain Termination (Dead) Polymer Chain 

𝑀𝑛
∗ + 𝑂2

 
     𝐾𝑂      
→      𝑀𝑑

  

𝑅 
∗ +  𝑂2

 
     𝐾𝑂      
→      𝑅𝑑

  
Oxygen Inhibition 

Dead Polymer Chain 

Dead Radical 

 

Table 2 – Ordinary differential equations corresponding to the dynamic 

concentration of the species inside the polymerization 

Differential Equation Specie Name 

𝜕𝐶𝑖𝑛
𝜕𝑡

= −
𝑅𝑖
2
− 𝐾𝑠𝑒𝑙𝑓𝐶𝑖𝑛𝐶𝑅∗ Initiator 

𝜕𝐶𝑅∗

𝜕𝑡
= 𝑅𝑖 −𝐾𝑝𝐶𝑀𝐶𝑅∗ − 2𝐾𝑡𝐶𝑀𝑛∗𝐶𝑅∗ − 2𝐾𝑡𝐶𝑅∗

2 − 𝐾𝑂𝐶𝑂2𝐶𝑅∗  Free radical 

𝜕𝐶𝑀
𝜕𝑡

= −𝐾𝑝𝐶𝑀𝐶𝑅∗ − 𝐾𝑝𝐶𝑀𝐶𝑀𝑛∗  
Monomer  

(double bond) 

𝜕𝐶𝑀𝑛∗

𝜕𝑡
= 𝐾𝑝𝐶𝑀𝐶𝑅∗ − 2𝐾𝑡𝐶𝑀𝑛∗

2 − 2𝐾𝑡𝐶𝑀𝑛∗𝐶𝑅∗ − 𝐾𝑂𝐶𝑂2𝐶𝑀𝑛∗  
Chain-initiating 

polymer 

𝜕𝐶𝑀𝑑
𝜕𝑡

= −𝐾𝑡𝐶𝑀𝑛∗
2 + 2𝐾𝑡𝐶𝑀𝑛∗𝐶𝑅∗ + 𝐾𝑂𝐶𝑂2𝐶𝑀𝑛∗  

Dead chain 

(polymer) 

𝜕𝐶𝑂2
𝜕𝑡

= −𝐾𝑂𝐶𝑂2𝐶𝑅∗ − 𝐾𝑂𝐶𝑂2𝐶𝑀𝑛∗ − 𝐷𝑂2 (
𝜕2𝐶𝑂2
𝜕𝑥2

+
𝜕2𝐶𝑂2
𝜕𝑧2

) Oxygen 
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Generally, the initiation rates can be very fast and are controlled by a combination of the source 

of radicals, light intensity, and temperature. Additionally, a self-dissociation rate of 𝐾𝑠𝑒𝑙𝑓 is 

defined that acts to reduce the initiator concentration; it has its greatest impact when the 

concentration of free radicals is large. 

To obtain a kinetic expression for the rate of polymerization, it is necessary to assume that 𝐾𝑝 

and 𝐾𝑡 are independent of the size of the radical [14]. The rate of photochemical initiation 𝑅𝑖 is 

given by 

𝑅𝑖 = 2𝜑𝐼𝑣    1  

where 𝜑 is referred to as the quantum yield for initiation and interpreted as the number of 

propagating chains initiated per light photon absorbed. The maximum value of 𝜑 is 1 for most 

photoinitiating systems. 𝐼𝑣 is the volumetric photon absorption rate, called the volumetric intensity 

in this paper (refer to section 4). The factor of 2 in Eq. 1 is used to indicate that two radicals are 

produced per molecule undergoing photolysis.  

Finally, the rate of polymerization 𝑅𝑝 can be obtained from Eq.2 below [10,14] 

𝑅𝑝 = 𝐾𝑝[𝑀]√𝑅𝑖 2𝐾𝑡⁄   2  

where [M] is the concentration of monomer and 𝐾𝑝 and 𝐾𝑡 are the propagation and termination 

rates, respectively. It is seen that Eq.2 has the significant conclusion of the dependence of the 

polymerization rate on the square root of the initiation rate. Doubling the rate of initiation does not 

double the polymerization rate; the polymerization rate is increased only by the factor √2. This 

behavior is a consequence of the bimolecular termination reaction between radicals. 

To calculate the initial concentration of initiator [𝐼𝑛]0 and monomer double bond concentration 

[𝑀]0, the solvent density 𝜌 (𝑘𝑔/𝑚
3) is required to convert the mass-based concentration (𝑘𝑔/𝑚3) 

to molar-based (𝑚𝑜𝑙/𝑚3). Considering a solution of n% (weight percent) of initiator where n is 

less than 5%, the volumetric change of solvent due to adding the initiator can be neglected. Hence, 

the total volume of solution can be considered as the total volume of solvent (Monomer). 

Therefore, the initial value of monomer concentration (double bond) is obtained  

[𝑀]0 = 𝑛𝐷𝐵  
ρ

𝑀𝑚
  3  

where ρ is the density of monomer, 𝑀𝑚 is the molar mass (molecular weight) of monomer, and 

𝑛𝐷𝐵 is the number of double bond(s) in a monomer. Note that based on acrylate type (mono or 

multi-functional) the number of double bonds should be considered in the above equation; for 

example, a tri-acrylate has three double bonds (𝑛𝐷𝐵 = 3). It shows that each monomer has three 

active components for polymerization. 

In the same way, the initial concentration of the Initiator is calculated as follows 

[𝐼𝑛]0 = 
𝑛

100 − 𝑛
∙
ρ

𝑀𝑖𝑛
  4  

where n is the weight percent of initiator and 𝑀𝑖𝑛 is the molar mass of initiator. 

Finally, the simulation of the kinematic model provides a molar concentration of various 

chemical products in reactions. Consequently, the polymerization level, which is indicated by the 

degree of conversion (DoC), will be calculated at any arbitrary point simply by:   
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𝐷𝑐𝑜𝑛𝑣 = 
[𝑀0] − [𝑀𝑑]

[𝑀0]
  5  

Once the resin reaches to a certain amount of Dconv, it is converted to gel and the viscosity of 

the solution increases sharply, corresponding to a rapid transition from a liquid state to a solid 

state. Therefore, Dconv provides a criterion for defining a boundary between liquid and solid states. 

Polymerization particularly in multifunctional monomer does not reach a complete conversion of 

reactants due to the sharp increase of viscosity as well as declining free volume. The ultimate Dconv 

can be measured by FTIR and is usually reported less than 0.7 in previous works. This restriction 

is also implemented in the proposed model. According to the knowledge of authors, limitation of  

Using the rate constants for TMPTA+DMPA listed in Table 3, a conversion degree value of 

0.23 was determined by fitting to the data obtained experimentally. The value of 23 percent is 

consistent with the value measured by Boddapati via micro-rheology[15]. The parameters used in 

this study, as well as previous studies, are summarized in Table 3. 

3. Intensity Distribution Model 

The illumination of light on a surface can be represented by an intensity distribution model. It 

will be used as an input of the volumetric intensity model which will be described in Section 4. 

The accuracy of the modeling depends on how well the predicted intensity profile matches the 

actual intensity. Two well-known approaches are available for this part – ray tracing method [16] 

and point spread function (SPF) [17]. The ray tracing approach is computationally intensive, while 

SPF may not incorporate the intrinsic non-uniformity of illumination in projection systems. 

In this research, the SPF method, also known as super-Gaussian, was chosen as a high-

performance solution for small patterns. It has been implemented based on research published by 

Emami et. al. [17]. The concept of approximating the intensity of a pixel by a Gaussian distribution 

has been elaborated also by other researchers [18,19]. 

 

Table 3- Estimated parameters of kinetic modeling for photopolymerization of TMPTA 

Parameter (unit) Description 

Current 

Research 

 Boddapati 

[15] Jariwala 

[7] with 

PB  

w/o 

PB 

 with 

O2 

w/o 

O2 

Kp (m
3/mol/s) Propagation rate 0.26 0.26  0.26 1.61 1.66 

Kt (m
3/mol/s) Termination rate 0.39 0.39  0.39 14.34 1.31 

KO (m
3/mol/s) Oxygen inhibition rate 2.2 1.8  2 - 125 

KSelf (m
3/mol/s) 

Initiator Self-Dissociation 

rate 
1200 0 

 
- - - 

𝜖 
Initiator molar absorption 

coefficient, decadic base 
13 10 

 
15 15 15 

wt% Initiator Concentration 2% 2%  5% 5%  5, 20% 

DoC% 
Criterion for solidified 

resin  
23 23 

 
20 20 20 

Imax (mW/cm2) Maximum intensity 18.2 18.2  14  14  1.25 
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Figure 1- Gaussian Distribution of Intensity Profile, Ik(x). 

Based on the foregoing, the intensity distribution of a series of pixels on the image plane, 𝐼𝑠(𝑥), 
is given by Eq.6. 

𝐼𝑠(𝑥) = ∑ 𝐼𝑘(𝑥)

𝑛

𝑘=0

=∑𝐺𝑘𝐼𝑚𝑎𝑥𝑒
−[4√2ln2 (𝑥−𝑘𝜌)/𝜔0]

2

𝑛

𝑘=0

  6  

where 𝐺𝑘 is the grayscale level of the kth pixel (integer value between 0 to 255), 𝐼𝑚𝑎𝑥 is the peak 

intensity of the full-on pixel, 𝜌 is pixel pitch, 𝜔0 is Gaussian half width, and n is the total number 

of pixels. As shown in Figure 1, 𝐼𝑘(𝑥) falls rapidly when moving away from the Gaussian origin, 

line x = 0. To increase the computing performance of the superposition calculation, an effective 

area (EA) is defined as the area receiving 99.99% of the total exposure [17]. This area is bounded 

by x= ±2.15𝜔0.  

 

 

Figure 2- Normalized measured intensity profile vs. the super-Gaussian model for 20 pixels, 

Is(x). 

A parameter identification method has been used to find the model’s independent constants like 

as 𝐼𝑚𝑎𝑥, 𝜌 and 𝜔0. The light engine employed in this research is capable of providing a wide range 

of intensities: 1-100 (mW/cm2). 𝐼𝑚𝑎𝑥 is the average peak intensity of top-flat mask with Gray level 

of 255 (fully on mirrors) which is measured with a power meter. 
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The remaining parameters (𝜌 and 𝜔0) were tuned so that the model output fits the intensity 

profile measured by a CCD camera. A series of linewidths were chosen to show the generality of 

the model. The measured and calculated intensity distributions of a line pattern with a width of 

100 pixels is shown in Figure 2. The intensity distribution of an irradiated mask composed of n 

pixels was calculated using Eq.6. Parameter optimization showed that the minimum discrepancy 

between the experiment and the model achieved when 𝜔0=18.8 µm and 𝜌 =21.6 µm. 

4. Volumetric Intensity 

In physics, intensity is the power transferred per unit area, where the area is measured on the 

plane perpendicular to the direction of propagation of the energy. In photochemistry, any photon 

with sufficient energy can affect the chemical bonds of a chemical compound. Therefore, the 

intensity of absorbed light in moles of light quanta per volume per time, named volumetric 

intensity here, is required to calculate the number of affected bonds [10]. 

In some previous works, the expression given for initiation rate Ri (see Eq. 1) does not exhibit 

dimensional consistency [5,9,15,20]. For unit consistency, it is required that 𝐼𝑣 has dimensions of 

moles per volume per time rather than an intensity (Einstein per unit area per time). The correct 

governing equations have been proposed in this section.  

 

Figure 3- Volumetric Intensity Iv(x,z,t) 

The volumetric intensity 𝐼𝑣 is based on the Beer–Lambert law. Figure 3 shows a schematic of 

the curing process in which the light distribution at the surface is 𝐼𝑠(𝑥). The light penetrates the 

resin and the light intensity declines to 𝐼(𝑥, 𝑧́) based on the Beer-Lambert law. Derivation of 𝐼𝑠(𝑥) 
was described in Section 3.  At a specific time, t, for any arbitrary infinitesimal layer 𝑑𝑧́, the 

concentration of absorber (initiator) is assumed to be constant in the z direction, or 𝐶𝑖𝑛(𝑥, 𝑧́, 𝑡) =
𝐶𝑖𝑛(𝑥, 𝑧́ + 𝑑𝑧́, 𝑡). In the other words, initiator concentration only varies along the x-axis.  

For this study, the initiator is assumed to be the only UV absorber. Furthermore, the effect of 

light refraction can be neglected since the UV light is projected perpendicularly to the substrate. 

Also, the resin is optically clear before and after curing. Therefore, the light scattering effect is 

negligible. 

Liquid Resin 

𝐼𝑠(𝑥) 

x

Z

𝑧′ 

𝑧 

𝑪𝒊𝒏(𝑥, 𝑧
′, 𝑡) 

𝑑𝑧′ 

Volumetric Absorbed Energy 
X

𝑰𝒛(𝑥, 𝑧
′, 𝑡) 
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In photopolymerization, the concentration of initiator 𝐶𝑖𝑛 is uniform at the start, but it is not 

uniformly changed during the process. For each wavelength, the local light intensity 𝐼𝑧 decreases 

along the beam direction 𝑧 according to the integrated form of Beer’s law [10,20] 

𝐼𝑧(𝑥, 𝑧, 𝑡) = 𝐼𝑠(𝑥, 𝑡) ∙ exp [− 𝛼∫𝐶𝑖𝑛(𝑥, 𝑧́, 𝑡)𝑑𝑧́

𝑧

0

]  7  

where 𝐼𝑠 is the incident light intensity at the outer surface of the reaction system and 𝐶𝑖𝑛(x,z,t) is 

the molar concentration of light-absorbing photoinitiator at the depth of 𝑧 at time t in the reaction 

system. The absorption coefficient of initiator 𝛼 varies with wavelength and temperature. Here, 

the temperature variation is not considered. Although the initial concentration distribution of the 

initiator is uniform through the reaction region it will not remaining steady and uniform during the 

reaction. The integral expression in Eq. 7, corresponds to the variation of the initiator over the 

layer thickness. This spatial variation was not considered in some previous works or was averaged 

spatially [9,11,21]. Averaged concentration might be not accurate enough to demonstrate the PB 

effect. 

The amount of absorbed light intensity at the distance of 𝑧, 𝐼𝑎, is calculated as follows 

𝐼𝑎(𝑥, 𝑧, 𝑡) = 𝐼𝑠(𝑥, 𝑡) − 𝐼𝑧(𝑥, 𝑧, 𝑡)   8  

The variation of 𝐼𝑣 along the optical path direction, z, is obtained as the differential of 𝐼𝑎 with 

respect to 𝑧 as follows 

𝐼𝑣 =
∂𝐼𝑎
∂z
= −

∂𝐼𝑧
∂z
=  𝛼𝐶𝑖𝑛(𝑧) ∙ 𝐼𝑧   9  

To solve the above differential equation (Eq.9) and obtain 𝐼𝑧, the underneath boundary 

condition (BC) is considered. At the illuminated surface, and immediately above the substrate, the 

incident intensity is 𝐼𝑠(𝑥, 𝑡). We assume that at this surface neither reflection nor refraction is 

important. The BC at the incident light surface is defined by a Dirichlet BC, 𝐼(𝑥, 𝑧 = 0, 𝑡) =
𝐼𝑠(𝑥, 𝑡), which is a function of position (x) and time (t). Having a time-dependent intensity function 

adds the capability to simulate multiple masks during the illumination. The COMSOL ODE solver 

is employed to solve the volumetric intensity coupled to the rest of physics. Consequently, the 

attenuation of light changes during the illumination according to the concentration variation of 

photoinitiator.  

The molar absorptivity 𝜖, formerly called the extinction coefficient, is often used instead of 𝛼. 

It is related by 𝛼 = 𝜖 ∙ 𝑙𝑛(10) = 2.3𝜖 and result from the use of the Napierian instead of the 

decadic base, respectively, in the Beer-Lambert law. The value of 𝜖 used in this simulation was 

reported in Table 3. The energy in a mole of light (Einstein) is calculated by 𝑁ℎ𝜈 or 𝑁ℎ𝑐/𝜆 where 

h is Planck’s constant, 𝑐 is the speed of light, 𝜆 is the wavelength and 𝑁 is Avogadro’s number 

[14].  Thus, the Eq.9 can be rewritten as follows  

𝐼𝑣 =  2.3𝜖 .
𝜆

𝑁ℎ𝑐
. 𝐶𝑖𝑛(𝑧) 𝐼𝑧  10  

Here, the units of 𝐼𝑣 and 𝐼𝑧 are (𝑚𝑜𝑙 ∙ 𝑚−3 ∙ 𝑠−1) and (𝑊 𝑚2⁄ ) respectively. Thus, the difference 

between  𝐼𝑣 and  𝐼0 can be large for thick sections.  
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5. Experimental Setup 

Trimethylolpropane triacrylate (TMPTA), a trifunctional monomer with a technical grade 

containing 600 ppm of monomethyl ether hydroquinone (as an inhibitor), and 2,2-Dimethoxy-2-

phenyl acetophenone (abbreviation - DMPA, trade name - Irgacure® 651) as a photoinitiator 

(Sigma-Aldrich) were used without further processing or purification. The weight ratio between 

the monomer and the photoinitiator was 98:2. The UV-curable resin was prepared by mixing these 

two compounds together and storing for one day until the initiator species was completely 

dissolved. 

In this research, a high-performance UV light engine (LE) from VISITECH was employed to 

illuminate high resolution and uniform grayscale patterns. The system specification is summarized 

in Table 4. This LE has an adjustable optical system designed that enables variable magnification 

with the capability of reducing or enlarging the projected image from the DMD. For the current 

research, a magnification ratio of 2:1 has been selected. Furthermore, the high frame rate of 19 

KHz reduces the minimum achievable exposure time to the order of 100 µs. In the other words, it 

increases the vertical resolution (in direction of z-axis) for higher intensities.    
 

Table 4- Specification of UV Light Engine 

Specification   Value 

DMD resolution 1920 × 1080 pixels 

DMD type 0,95" 1080p UV Enhanced 

Micromirror size 10.8 × 10.8 (µm2) 

Pixel size (Image Plane) 21.6 (µm) 

Light source High Power LED 

Light source wavelength 365 (nm) 

Light source power 1 - 100 (mW/cm2) 

Contrast ratio Typical 1300:1 (full ON/full OFF) 

Max binary frame rate  19.5 (KHz) 

 

 
 

Figure 4- Experimental setup consists of a high-performance light engine, UV Camera, and 

Polymerization vat. 
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The experimental setup is shown in Figure 4, along with a schematic of grayscale irradiation of 

the resin bath through the glass substrate. 

6. Results and Discussion 

To illustrate the performance of the PB model, a comparison between the working curve with 

and without the PB effect is shown in Figure 5.  The simulation result considering the PB effect 

can estimate the actual working curve of the resin up to a curing depth of 1100µm (Figure 5.b). 

This height provides adequate flexibility to design micro-optic parts. Without that, the simulation 

working curve only covers the curing depth less than 400µm. The experimental working curve of 

TMPTA shows super-logarithmic behavior. The proposed method with consideration of self-

dissociation of initiator also shows the same behavior. However, the conventional method exhibits 

a logarithmic behavior. 
 

 

Figure 5- Comparison experimental working curve with simulation result without PB effect 

(blue dot line) and with PB effect (red dot line) 

 

Figure 6- Side image of a fabricated aspherical lens with a radius of 1620µm and sag height 

of 800µm. Dash line and solid line represent the simulated profile with and without PB, 

respectively. 
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To study the feasibility of the proposed model for thick grayscale monolayer fabrication, an 

intensity profile was chosen to fabricate spherical lens with a sag height of 800 µm. In parallel, 

this profile was imported into COMSOL and used as the input to predict the final cured profile 

with and without PB effect. Since the proposed model is an axisymmetric FEM simulation, only 

the cross-section of the fabricated lens is selected for comparison. The side image of the fabricated 

lens, as well as simulation results, are depicted in Figure 6. Although both simulated profiles 

demonstrate discrepancy, the error between the result with PB (dashed line) matches with the final 

experimental profile much better than the model without the PB effect. 

 

   

Figure 7- Simulation results of initiator concentration variation with PB (Kself =1200) and 

without PB (Kself =0)  

Figure 7 shows the consumption of initiator during UV exposure at the specific point of 

[100um,100um] in the simulated part shown in Figure 6 with and without the PB effect. A non-

zero Kself value indicates that the PB effect is being modeled. Results demonstrate that the number 

of initiators consumed without the PB effect is very small compared to including the PB effect. 

7. Conclusion  

In this work, an improved multiphysics model of photopolymerization consisting of chemical 

reactions and UV irradiation has been demonstrated. In the chemical reaction part, the 

photobleaching effect has been simulated by considering a new self-dissociation reaction. A 

comparison between the simulated and actual working curve demonstrated considerable 

improvement in estimating depth of cure up to 1100 µm. Furthermore, the proposed model 

capability was tested by fabrication of microlens with sag heights of 800 µm. 

Describing and utilizing a volumetric intensity instead of surface intensity provided a precise 

molar number of photons participating in the curing based on the surface intensity. It corrected the 

unit inconsistency shortcoming of the surface intensity that was observed in some previous works. 

Future work will utilize the improved photopolymerization model in a process planning method 

to achieve high precision fabrication of optical components. 
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