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Abstract 

 
In the past decade, 3D printing is getting into more and more industry areas including 

building and construction. However, most 3D cementitious material printing processes are 
limited in horizontal printing surface. Due to the nature of building and construction industry, 
3D spray cementitious material printing process was developed to apply material in vertical or 
even overhang surfaces. Unlike traditional manually operated spray method in building and 
construction industry, 3D spray cementitious material printing process requires higher 
accuracy on material distribution. In this paper, the effects of four printing parameters 
(cementitious material flow rate, air flow rate, nozzle travel speed, nozzle standoff distance) 
on material distribution in 3D spray cementitious material printing process were investigated 
experimentally. An experimental model, which can be further used in the control of 3D spray 
cementitious material printing process, was then developed upon on the results. 

 
Keywords: Additive manufacturing, 3D cementitious material printing, spray, material 
distribution, modelling 

 
1. Introduction 

 
3D printing, also known as additive manufacturing, is a method to sequentially deposit 

material layer by layer to fabricate desired objects [1]. Recently, remarkable progress of 3D 
printing has been seen in building and construction industry. Large computer-controlled gantry 
printing systems, e.g. Contour Crafting [2], Concrete Printing [3] have been successfully 
developed to print cementitious materials. On the other hand, the precise movement control of 
robotics contributed to robot-based printing systems [4] [5], which have less size limitation of 
printed structure compared with gantry printing system. The successful practices of these 
printing systems stimulate the corresponding material research. Le et al. [6] proposed several 
key properties for high performance printable cementitious materials, e.g. pumpability and 
buildability. Subsequent research studies [7] [8] [9] [10] further revealed that pumpability and 
buildability are closely related to rheological properties of the material. With these material 
development guidance, functional printable cementitious materials have been invented, e.g. 3D 
printable sustainable material [11], 3D printable fiber reinforced concrete material [12] [13]. 

 
Most 3D printing in the building and construction is extrusion-based, and the shape of 

extrudate can be effectively controlled by the design of nozzle outlet [14], nozzle standoff 
height [15], printing speed [16], etc. However, there is little study of 3D cementitious material 
printing on the vertical surface, e.g. printing of vertical decorative pattern. Different from 
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printing on the horizontal surface, the vertically deposited material needs to resist the shear 
induced by gravity. In the building and construction area, the conventional solution is the 
adoption of spraying concrete materials. However, due to the lack of systematic control of 
spray and large rebound of high-speed sprayed material at far distance, the sprayed material on 
the substrate is not uniformly distributed and needs subsequent manual scraping work [17]. In 
contrast, 3D spray cementitious material printing process requires higher accuracy on the 
material distribution without human intervention. However, there is very limited study on 3D 
sprayable cementitious materials [18], and no research has been carried focusing on material 
distribution of 3D spray cementitious material printing. The situation stimulates the research 
motivation for this paper. 

 
The material distribution of 3D spray cementitious material printing is systematically 

studied in this paper. Similar to extrusion-based 3D cementitious material printing, material 
distribution may vary with different printing parameters. The effects of four printing 
parameters on sprayed material distribution have been investigated, i.e. cementitious material 
flow rate, air flow rate, nozzle travel speed, and nozzle standoff distance. An experimental 
model of material distribution is hereby proposed, which can be utilized for further study of 
3D spray cementitious material printing. 
 
2. Material Design 

 
The sprayable cementitious material used in the experiments was composed of Type-I 

ordinary Portland cement (OPC), Class-F fly ash, silica fume, sand and tap water. The grading 
curve of river sand is shown in Figure 1. Superplasticizer of 1 g and Air entraining agent (AEA) 
of 0.1 g was added to per liter mix. The mix proportion of the sprayable cementitious material 
is shown in Table 1. 
 

 
 

Figure 1 Sand gradation 
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Table 1 Mix mass proportion of the sprayable cementitious material 

Cement 
Sand / 

Cement 
Ratio 

Fly ash / 
Cement 
Ratio 

Silica fume 
/ Cement 

Ratio 

Water / 
Cement 
Ratio 

Super-
plasticizer AEA 

1 0.45 0.5 0.05 0.62 1 g/L 0.1 g/L 
 

The sprayable cementitious material was prepared in Hobart HL-200 mixer as per 
following procedure. Weighed raw ingredients except water, AEA and superplasticizer were 
mixed for 180s at slow speed. The water with dissolved AEA was added afterwards and mixed 
with other ingredients for another 180s at slow speed. Then superplasticizer was added to the 
mixture, firstly mixed for 90s at slow speed and followed by another 90s mixing at high speed. 
Then the material was taken for the experiments. 

 
Some key fresh properties were assessed to check the pumping performance of the 

designed sprayable cementitious material. The flowability loss of the fresh sprayable 
cementitious material was traced by the flow table test, which provides flow diameter of the 
material after the slump cone is lifted and stroke for 25 strikes [19]. As shown in the Figure 2, 
there is no sudden decrease of flowability within one hour. The viscosity of fresh cementitious 
material can be described by Bingham Plastic model, and the yield stress and plastic viscosity 
were measured using Viskomat rotational rheometer, of which values are 115.18 Pa and 20.27 
Pa∙s respectively. Pumpability test with printing delivery system showed that the material with 
such rheological parameters can be pumped consecutively. 

 

 
 

Figure 2 Average flow diameter with time 

 
3. Experiment Design 

 
The 3D spray cementitious material printing experiments were designed to be 

completed with robotic arm control. The robotic arm used in the experiments is ABB IRB-
1600 robotic arm with 1.45 m reach. MAI Pictor Pump was adopted for pumping material 
through a hose of 2.5 m in length and 25.4 mm in diameter. High pressure air was connected 
from lab vessel with a hose of 5 m in length and 12.7 mm in diameter. The spray nozzle 
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connected to the cementitious material and high pressure air hoses was attached to the end of 
robotic arm. The whole setup of equipment can be referred to in Figure 3. 

 

 
 

Figure 3 Experiment setup consist of robotic arm, cementitioul pump with hose and high 
pressure air 

 
The nozzle’s orientation and position can be controlled by the movement of robotic arm 

as per designed programme. The spray nozzle is adjusted to point perpendicularly to the vertical 
substrate in the 3D spray cementitious material printing process. The nozzle travel path is 
illustrated in Figure 4. In the experiments, the nozzle travels parallel to the substrate plane at 
five different speeds to spray straight filaments, i.e. 50 mm/s, 100 mm/s, 150 mm/s, 200 mm/s 
and 250 mm/s. The distances between spray nozzle and the substrate were set as three different 
values in different runs of experiments, i.e. 50 mm, 70 mm and 100 mm. 
 

 
 

Figure 4 Nozzle travel path with different travel speeds 

 
In addition to the nozzle position and travel speed controlled by robotic arm, 

cementitious material flow rates and air flow rates were also set to have different levels in the 
experiments. The cementitious material flow rate is roughly proportional to the pump speeds, 
which were set as 600 rpm and 1200 rpm in experiments. Air flow rates can be identified by 
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air inject pressure values, which were 0.5 Bar and 1.0 Bar in experiments. The complete 
experiment design table is shown in Table 2. 
 

Table 2 Experiment design table 

Group Pumping rate 
(rpm) 

Air inject 
pressure 

(bar) 

Nozzle standoff 
distance (mm) 

Nozzle travel speed 
(mm/s) 

A 600 0.5 50 50 ~ 250 
B 600 0.5 70 50 ~ 250 
C 600 0.5 100 50 ~ 250 
D 1200 0.5 50 50 ~ 250 
E 1200 0.5 70 50 ~ 250 
F 1200 0.5 100 50 ~ 250 
G 1200 1.0 50 50 ~ 250 
H 1200 1.0 70 50 ~ 250 
I 1200 1.0 100 50 ~ 250 

 
After completion of 3D spray cementitious material printing process, the sprayed 

filaments were covered with plastic sheet for 24 hours in the lab. This guarantees the sprayed 
filaments have enough strength to be scraped from the substrate without deformation. Three 
samples were cut from the centre of each sprayed filament to expose the cross section (see 
Figure 5). The length of each sample is 30 mm. The images of cross section were processed 
and analysed by MATLAB. Detailed process of image analysis can be found in Lao et al. [14]. 

 

 
 

Figure 5 Exposed corss sections of three samples cut from sprayed filament 

 
4. Results and Discussions 
 

Thickness distribution with respect to filament width is used to describe the distribution 
of sprayed materials. A uniform material distribution should have nearly constant thickness, 
i.e. the cross section approaches rectangular shape. The integration of thickness distribution is 
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the cross section area, which suggests how much material is sprayed. The thickness distribution 
of experiment groups A to I are shown in Figure 6. It has to be pointed out that, due to very 
thin thickness of sprayed filaments, no data was collected for experiment group C. The 
integrated cross section area values are shown in Figure 7. 

 

 
Figure 6 Thickness Distribution (Group A to Group I) 
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Figure 7 Cross section area at different travel speeds in each group 

 
There are some general characteristics in the material distribution. It can be found that 

increased pump speed can greatly increase the width and thickness of sprayed filament. 
However, there is no significant difference in width and thickness when air flow rate increases. 
The increase of nozzle travel speed decreases the thickness of sprayed filament, especially 
when the nozzle travel speed increases from 50 mm/s to 100 mm/s. Nevertheless, the thickness 
difference is not significant when the speed is higher than 100 mm/s in Group A and B; for 
other groups when the speed is higher than 150 mm/s the thickness difference also decreases. 
Larger standoff distance can enlarge the thickness difference and also increase the width of 
sprayed filament. In addition, larger standoff distance leads to smaller thickness. 

 
Figure 7 shows cross section area greatly increases with higher pumping rate, especially 

when the nozzle travel speed is smaller than 200 mm/s. Similar to the trend of thickness 
distribution, there is little difference of cross section area when the nozzle travels at high speed. 
The phenomenon can be attributed to the discontinuity in the pumping process, which is traced 
from decreased density of sprayed filaments as shown in Table 3. On the other hand, either 
based on cross section area or density data, air flow rate does not seem to significantly 
contribute to material distribution. 

 
Table 3 Density of sprayed filaments (g/cm3) 

Travel 
speed 

(mm/s) 
A B C D E F G H I 

50 1.64 1.65 / 1.67 1.79 1.62 1.64 1.67 1.54 
100 1.40 1.47 / 1.57 1.64 1.54 1.57 1.59 1.59 
150 1.39 1.23 / 1.52 1.58 1.39 1.61 1.52 1.59 
200 1.23 1.05 / 1.39 1.46 1.14 1.48 1.60 1.45 
250 1.34 0.98 / 1.26 1.20 0.99 1.36 1.40 1.49 

 
Table 4 and Table 5 show volume flow rate and mass flow rate of each group 

respectively. As nozzle travel speed increases, the volume flow rate increases while the mass 
flow rate remains similar when travel speed is smaller than 200 mm/s. With the same travel 
speed (lower than 200 mm/s), it can be found that both volume flow rate and mass flow rate 
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increase proportionally as cementitious material flow rate increases. In contrast, when the 
nozzle travels at high speed, volume flow rate and mass flow rate increase. Further 
investigation needs to be taken to study the mechanism of this transition. 

 
Table 4 Volume flow rate of experiments (mL/s) 

Travel 
speed 

(mm/s) 
A B C D E F G H I 

50 33.89 30.16 / 67.06 63.63 69.38 64.99 70.84 75.21 
100 35.56 33.01 / 71.69 64.55 66.80 68.94 69.48 68.44 
150 48.03 36.38 / 73.06 68.12 79.74 68.49 71.70 66.06 
200 62.70 42.54 / 74.23 66.88 110.58 76.57 71.26 80.25 
250 78.01 50.36 / 84.93 72.49 106.64 100.05 85.27 89.20 

 
Table 5 Mass flow rate of experiments (g/s) 

Travel 
speed 

(mm/s) 
A B C D E F G H I 

50 55.61 49.67 / 112.22 114.06 112.06 106.39 118.00 116.06 
100 49.67 48.56 / 112.44 105.78 102.56 108.11 110.22 109.00 
150 66.83 44.67 / 111.17 107.50 111.00 110.17 108.83 104.83 
200 77.11 44.67 / 103.33 97.56 125.67 113.56 114.00 116.67 
250 104.72 49.44 / 107.22 87.22 105.83 135.83 119.72 132.50 

 
5. Construction of Empirical Model 
 

There is limited study on the distribution of sprayed materials. Ginouse and Jolin 
proposed a second-order Gaussian distribution model to describe the mass distribution of 
conventional sprayed concrete materials when the spray nozzle does not move [20]. In this case, 
the sprayed pattern has central symmetry, and more material is gathered around the centre part. 
The second-order Gaussian distribution model can be expressed as Eq. (1) and Eq. (2) in polar 
coordination system. The origin is the nodal by central axis of spray nozzle and substrate. 

 

 ( ) max max
max

max0
p

rj F r r
j r r

r r

  
≤  =   

 >

  (1) 

 max 2 max 2
1 1

max 3 3

exp expr r a r r brF a b
r a b

     − −= − + −     
     

  (2) 

 
where rmax is the maximum radius of sprayed material, jp(r) is the mass flux density at radius 
r, and jmax is the maximum mass flux density that can be measured. The coefficient a1, a2, a3, 
b1, b2, b3 in Eq. (2) can be decided by experiment data. Mass flux density refers to the mass 
flow rate for infinitesimal area, so mass flow rate Q (kg/s) can be expressed as Eq. (3). Mass 
flux density can also be estimated experimentally by sampling of sprayed material. 
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The experiments carried by Ginouse and Jolin showed that their proposed second-order 

Gaussian distribution model has good fit with experiment data when spray nozzle is placed 0.5 
m and 1 m away from substrate. Refer to the good fit results of conventional spray concrete, 
the empirical model of 3D spray cementitious material printing may be constructed on this 
basis. Nevertheless, significant differences have to be taken into consideration. Firstly, the 
linear movement of spray nozzle make the sprayed pattern lose central symmetry. As the cross 
sections are vertical to the nozzle movement direction, the movement of nozzle should not 
affect material distribution in cross section planes. Secondly, the nozzle is placed much nearer 
to the substrate as per application of 3D spray printing. Therefore, the expectation of material 
distribution is first-order Gaussian distribution with some modifications. However, the 
experiment results in Figure 6 greatly deviate from Gaussian distribution. Thus the empirical 
model to describe 3D spray cementitious material printing cannot be constructed on the basis 
of Gaussian distribution.  

 
There were three steps to construct the empirical material distribution model. The first 

step was to check the significances of printing parameters on the maximum width of sprayed 
filament by statistics model. The second step was considering the considering the physical 
deposition process and find the relationship between printing parameters and the maximum 
filament width. The third step was to correlate material distribution with width and average 
thickness data. In this step, the material distribution was described by three linear functions. 
Least square method was then utilized to construct the parameters of fitting functions. 

 
From experiment results, it is suspected that air flow rate does not have significant 

effect on material distribution. Hence, statistical checking was carried to validate this suspect. 
Table 6 shows p-values of printing parameters for checking their correlation with width and 
maximum thickness of sprayed filaments. The confidence interval is 95%. The p-values of air 
inject pressure exceed 0.05 significantly in each case, which certifies that air flow rate does not 
have significant effect on material distribution. In contrast, all the other p-values are greatly 
smaller than 0.05, suggesting the other three printing parameters have significant effects on 
material distribution. Therefore, air flow rate will not be included in the empirical model. 

 
Table 6 p-values of printing parameters 

Printing parameters p-value for width p-value for maximum thickness 
Pumping rate 1.23×10-6 0.02 

Air inject pressure 0.58 0.72 
Nozzle travel speed 3.09×10-6 1.25×10-10 

Standoff distance 1.02×10-4 0.02 
 

Considering the physics of the spray and deposition processes. When the material is 
sprayed out from nozzle, the spray angle can be considered as constant. Therefore, the 
maximum width of filament should be linearly related to the standoff distance. At the other 
hand, the maximum width of filament should be proportional to the square root of filament 
cross section area, which is proportional to the ratio between pumping flow rate and nozzle 
travel speed.  Denote pumping rate as α (rpm), nozzle travel speed as γ (mm/s) and standoff 
distance as δ (mm), the function to describe the maximum width of sprayed filament w (mm) 
should be in the following expression: 
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 max 1 2w C Cαδ
γ

= +   (4) 

where C1 and C2 are constants depend on the pump, nozzle and material properties. Fitting 
experimental maximum filament widths into the proposed model, the proposed model 
described by 

 max 0.145 33.9w αδ
γ

= +   (5) 

The comparison between experimental results and this fitted model is shown in Figure 8, the 
coefficient of determination R2 is 0.752, suggesting this model has some rationality while still 
needs some improvement. 

 

 
Figure 8 Comparison between experimental maximum width and fitted model. 

 
The next step of constructing empirical model is to correlate material distribution with 

width and average thickness data. By observation, the non-dimensional thickness distribution 
of printed filament can be roughly described by a trapezoid model 

 ( )
( )

0
, , , 1

1 1 1

ax x b a
s x a b c b b a x b c

c x b c x

≤ ≤
= < ≤ −
 − − < ≤

  (6) 

where x = w/wmax is the non-dimensional filament width coordinate, s = hwmax/(α/γ) is the non-
dimensional filament thickness coordinate, a, b, and c are parameters which can be found by 
curve fitting. One fitting example is shown in Figure 9. All fitted parameters of experiment 
groups A to I are plotted in Figure 10. It is very difficult to draw any meaningful conclusion 
from this distribution in current stage. While further investigation will be conducted in the 
future, the average value of each parameters (a = 14.5, b = 1.81, c = 9.56) were used for the 
prediction of material distribution in current study. 
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Figure 9 The comparison between experimental thickness and fitted three straight lines model 
of experiment group E with 150mm/s nozzle travel speed. 

 

 
 

Figure 10 Fitted parameter for filament thickness distribution 

 
6. Verification of Empirical Model 

 
Validation experiments were designed to verify the proposed empirical model. The 

pumping rate, air inject pressure, nozzle standoff distance of validation experiments were 900 
rpm, 0.75 bar, and 70 mm, respectively. The nozzle travel path and speed were the same as all 
other experiment groups as shown in Figure 4. The same image analysis process was adopted, 
and corresponding material distribution has been compared with the predicted results of 
empirical model as shown in Figure 11. As can be seen in Figure 11, the proposed empirical 
model can well predict the material distribution of 3D spray cementitious material printing 
when the travel speed is 50, 100, and 250 mm/s. However, the predicted maximum filament 
widths are not accurate for cases when travel speed is 150 and 200 mm/s.  
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Figure 11 Comparison between validation experimental and predicted material thickness 

distribution 

 
7. Conclusion 

 
In this paper, the material distribution in 3D spray cementitious material printing was 

investigated. With the adoption of robotic arm control, effects of four printing parameters (i.e. 
cementitious material flow rate, air flow rate, nozzle travel speed and standoff distance) to 
material distribution were studied. The experimental results showed that the increases of 
pumping speed or standoff distance increases the maximum filament width, the increase of 
nozzle travel speed decreases the maximum filament width, the change of air inject pressure 
has negligible effect on material distribution. When the ratio between pumping speed and 
nozzle travel speed decrease to under some specific value, which requires further study, the 
sprayed filament density will decrease and thus, the cross section area will only decrease 
slightly. 

 
Based on the experimental material distribution results, an empirical model was 

proposed to describe the material distribution in 3D spray cementitious material printing. 
Different from the conventional concrete spray process, the influence of moving nozzle and 
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extra brought by air flow with projected material have been taken into consideration. This 
empirical model predicts that the maximum filament width is linearly related to the product of 
standoff distance and the square root of the ratio of pumping speed and nozzle travel speed, 
then the material distribution is described by an empirical trapezoid shape model. The 
verification experiments show that this empirical model can predict the maximum filament 
width and material distribution in a reasonable level. In the future, this empirical model will be 
improved and used in planning of 3D spray cementitious material printings.  
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