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Abstract 
 

Oak Ridge National Laboratory’s Manufacturing Demonstration Facility is developing 
a novel, large-scale additive manufacturing, or 3D printing, system. The Sky Big Area Additive 
Manufacturing (SkyBAAM) system will ultimately be a fieldable concrete deposition machine 
with pick and place abilities that will allow for full-scale, automated construction of buildings. 
The system will be implemented with existing construction equipment meaning conventional 
cranes will be used to suspend the print head. SkyBAAM will be cable-driven by four base 
stations and suspended from a single crane. The elimination of a gantry system, found 
commonly in large-scale additive manufacturing systems, will enable SkyBAAM to be quickly 
set up with minimal site preparation. The medium-scale version of SkyBAAM is currently in 
development. The system design, cable stiffness analysis, and tactics for freezing rotational 
degrees-of-freedom (DOF), detailed in this paper, will provide a basis for the final, large-scale 
version of the SkyBAAM system. 

 
Introduction 

Additive manufacturing (AM) has the potential to revolutionize and revitalize 
American manufacturing. Most conventional methods of AM are currently only practical to 
produce small, high-value, and low-volume components. This leads to applications such as 
aerospace and biomedical. More recently, AM has been used to fabricate tooling for a broad 
range of applications. [1] This includes tooling for automotive and other high-volume 
applications. 
 

However, this scope excludes one of the largest sectors of the U.S. economy, namely 
the construction industry. New construction in the U.S. is projected to grow to $1.4 trillion by 
the year 2021. [2] This is roughly 6% of the U.S.’s gross domestic product (GDP). AM 
fabrication of structures or buildings has the potential to revolutionize this market, saving labor 
and material cost and shortening construction time. 
 

The idea of AM for construction has been around for decades; although, it is currently 
far from becoming a real-world application. In the framework presented below, structures are 
deposited by an extruder, one layer at a time, with a highly-viscous, low-slump concrete. This 
eliminates the need for costly formwork. Ideally, as the building is deposited, pick and place 
systems will lay components for the plumbing and electrical systems of the building in channels 
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that have been left for this purpose. Rebar and other reinforcing components can also be laid 
in with pick and place systems. Without the need for formwork, new geometries, impossible 
with conventional methods, can be realized. This makes new, energy-efficient structures 
possible.  
 

Construction waste reduction is also a possibility with AM. Waste from new 
construction in the U.S. in 2014 was 28.9 million tons. [3] With AM, material is only placed 
where it is needed; therefore, AM is inherently low waste. There is no need for traditional 
cutting or machining of stock parts and throwing out the waste. There is also no need for 
temporary structures, such as formwork, that are later discarded. Large-scale penetration of 
AM into the construction industry has the potential to greatly reduce construction waste. 
 

The end vision for construction-scale AM is grand. It is easy to envision energy efficient 
[4], aesthetically pleasing buildings constructed with less waste using automated processes that 
reduce labor. The potential effect on the economy could be profound. Take the following 
example. Currently, houses cost more than the average yearly income of the residents who buy 
them. Yet automobiles, which are massively more complex than houses, cost only around a 
tenth of what housing costs. Part of the reason for this is that automobiles are produced with 
the benefits of large-scale automation. This is not true with construction, which is a manual, 
labor intensive industry. The application of automation to construction through AM has the 
potential to make housing drastically more affordable. Similar benefits could be seen with 
commercial construction, where lower building costs could lead to increased ease of expansion 
of businesses and the creation of jobs. Unfortunately, the realization of this vision is still a long 
way off and requires much more research. 

 
Research on concrete AM started as early as the 1990s; although, the idea was not 

widely accepted. Randall Lind, a researcher at Oak Ridge National Laboratory (ORNL), first 
recorded the idea in 1993, and presented work in this field in 2009. [5] Several years after 
Lind’s initial conception of the idea, Khoshnevis [6] started work on what is now known as 
Contour Crafting. 

 
In recent years, concrete AM has been gaining traction, and there have been continued 

advances in this field, including advances in materials and extrusion techniques. However, 
concrete AM is still mostly explored and used in a laboratory setting and has not been seen in 
industry. Unfortunately, the scale necessary for effective use in construction remains elusive. 
A large reason for this is because motion platforms used for deposition are highly inadequate 
for the needs of the construction industry, as will be explored below. This paper aims to 
examine the possibility of using cable-driven robots for deposition of concrete in the 
construction industry as a means of making concrete AM a commercially feasible process.  
 

State of the Art: Problems and Alternatives 
 

As mentioned above, work on concrete AM for construction is not new. In fact, there 
is much prior work in the field. This will be briefly surveyed. However, there is a significant 
lack of solutions that are practical for use on a real-world jobsite.  
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Current Additive Manufacturing of Concrete Structures 

 
AM of concrete for construction has been a popular area of research in recent years 

because this process promises to benefit the construction industry in many ways. Biernacki et. 
al. have explored some of these possible benefits, such as safety, efficiency, and the ability to 
fabricate new types of structures. [7] Khoshnevis and the Contour Crafting group are old 
players in the field. [8] They have been successfully 3D printing with concrete for many years 
and have proposed many applications for the technology. The U.S. Army Corps of Engineers 
is researching concrete AM as well, with an interest in printing barracks and forward operating 
bases. [9] Another player in this area is WinSun, a Chinese company that is perusing the 
commercialization of concrete AM. Their work includes the printing of an office building in 
Dubai among other projects. The growing number of groups working in the field of concrete 
AM has been noted by Bos et. al. [10] 
 

a)  b)  c)  
Figure 1: a) US - Army Corp of Eng., b) Russia - Apis Cor, c) China – Winsun 

 
Many of the underlying fundamental material and extrusion problems associated with 

AM of concrete have also been examined. For example, work has been done to study the 
mechanical properties of additively manufactured cement [11], [12] as well as the printability 
of different concrete mixes. [13]  

 
The success of many of the players in the concrete AM realm led the authors to conclude 

that AM of cement structures is a problem that is well on its way to being solved. The big 
question that remains pertains to the practicality of 3D printing concrete structures. Can 
concrete AM be effectively implemented on the jobsite? This paper aims to answer that 
question in the affirmative by presenting a concept for a fieldable deposition platform. 

 

The Impracticality of Gantry Based Deposition for Construction 
 

While the deposition of concrete for AM structures has been effective, concerns arise 
when considering the current motion platforms within this context. Nearly all material 
extrusion (ME) AM systems use a gantry-based motion platform, and large-scale systems for 
deposition of structures are no exception.  

 
Scaling gantry systems to a sufficient size to manufacture buildings while making the 

systems fieldable creates problems. Gantry systems, when produced on this scale, become 
expensive. Furthermore, fielding gantry systems is quite difficult. Since the structure is printed 
within the gantry itself, it must be larger than the structure. For large buildings, this requires 
very large machinery that must be transported to the jobsite and installed, likely at a very high 
cost. The time required to set up a gantry on the jobsite would also likely be significant. Once 
on the jobsite, the gantry would have to be placed on level ground. This limits the terrain a 
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gantry could be deployed on. Even on relatively level ground, there would be an added cost to 
get the site level within the accuracy required for a gantry system to operate. Overall, there are 
significant challenges and costs associated with deploying a gantry system to a jobsite. 

 

Cable-Driven Robots 

It is desirable to have a fieldable AM system that can be deployed with ease on a jobsite, 
allowing a structure to be printed on site. Gantry robots are unlikely to provide this at an 
economical cost for reasons discussed above. Thus, it is desirable to find another type of motion 
platform that can be used for this application. 

 
Apis Cor has proposed an alternative to a Cartesian gantry-based system by using a 

polar style robot. [14] This approach has also been used by Neri Oxman’s team at MIT. [15] 
While this eliminates some of the disadvantages of a traditional gantry system, it has 
fundamental size and stiffness limitations. A good motion system for deposition is still needed. 

 
An alternative solution can be found with cable-driven robots. Cable-driven robots or 

cable-driven parallel manipulators (CDPMs) are becoming increasingly popular. They provide 
potentially large workspaces with relatively light equipment. [16] By using cables, workspaces 
much larger than the machinery itself can be achieved. This is different from gantry robots, 
where the machinery must be larger than the workspace.   

 
Cable-driven robots have been used in numerous applications. One notable example is 

the Skycam, which uses cables to suspend a camera over a sports arena and moves the camera 
to follow play. [17] Full six degree-of-freedom (DOF) robots have also been developed. [18] 
A notable example is the National Institute of Standards and Technology (NIST) robocrane, 
[19] which has spawned large area variants. [20] CDPMs have also been used in large 
telescopes, which further demonstrate the large-scale at which they can be used. [21] 

 
Cable-driven robots are a potentially suitable replacement for very large-scale AM 

applications for several reasons. Most importantly, they easily achieve large workspaces 
without requiring massive equipment and machinery. Additionally, cable-driven robots do not 
require the same level of site preparation as gantry robots. With a CPDM based system, cable 
winders can be placed at several base stations around the worksite. This would not require 
leveling of the site and could be implemented on a wider variety of terrain. Furthermore, these 
base stations would be small in comparison with the workspace, leading to a lower machinery 
cost for a given build volume. In the remainder of this paper, a scheme for a fieldable, cable-
driven robot for large-scale AM is examined. 

SkyBAAM Deposition Platform 
 
Sky Big Area Additive Manufacturing (SkyBAAM) is a proposed cable-driven motion 

platform that is designed specifically around the requirements for the deposition of large-scale 
AM structures. These specific objectives will the explained below. Large-scale AM with cable-
driven platforms is not a new idea. [22] Bruckmann et. al have also proposed laying bricks with 
cable-based systems [23], while Vukorep has realized a cable-driven system that places foam 
blocks. [24] However, the SkyBAAM system proposes a radically different cable architecture 
from these systems. The SkyBAAM cable system is designed to be easily fieldable at a jobsite 
with as much conventional equipment as possible. The cable architecture was inspired by the 
Hangprinter created by Torbjørn Ludvigsen. [25] However, the requirements of the SkyBAAM 
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system are different than the Hangprinter, so there have been significant departures from the 
original Hangprinter. 

 
SkyBAAM Objective 

The overall objective of SkyBAAM is to create a cable-driven motion platform that is easily 
fieldable for the additive manufacturing of large structures. Furthermore, it is also designed to 
integrate with existing construction equipment. An initial conceptual design is shown in Figure 
2. 
 

 
Figure 2: SkyBAAM concept 

 

Single Lift Point 

Most cable-driven robots have cable winders at multiple aerial points. In a situation 
where the robot is permanently installed in a building or high-bay, this is not a problem as these 
winders can be affixed to a large frame or to the building it is housed by. However, in an 
outdoor fieldable platform this is less practical. Bruckman et. al. [23] proposed the erection of 
a large frame around the area where the structure will be fabricated to provide cable attachment 
points. However, this approach would require significant time and labor to erect a frame that 
is both large and stiff enough. It is desirable to eliminate the need for such a structure, which 
increases the ease of fieldability and reduces the amount of time required to set up the system 
on site. 

 
The best solution is to have a single aerial winding point or platform that can be 

suspended by a mobile crane. To integrate this system with existing construction equipment, 
the crane must not be part of the motion system. Instead, it simply acts as a static hoist point 
for a winder, which is integrated into the motion control. Because the crane merely provides a 
hoist point for the system, it allows the SkyBAAM system to be integrated with any crane that 
meets the necessary height and load requirements.  

 
It is also desirable to keep the total number of winders and cable anchor points to a 

minimum to reduce the number of pieces of equipment required. Furthermore, by concentrating 
cable winding points and anchor points together, the system can be split into a handful of base 
stations for deployment in the field. These base stations can be integrated into a truck or trailer 
that can be driven onto the site. 
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Constraint and Degrees-of-Freedom 
 

Any object in 3D space has six DOF. To fully constrain the end effector, most cable-
driven systems control all six DOF. However, this requires six independently controlled 
winders. For most AM, only three DOF control is needed. Linear translation is necessary in all 
three directions, however, the three rotational DOF are not needed. Instead of controlling the 
rotational DOF, it is more appropriate to fix them and only control the linear translation. This 
can be achieved, by carefully choosing the cable geometry and controlling multiple cables from 
one winder. By only controlling the three linear DOF, it is possible to make a simpler system. 
This, in turn, aids in the ease of fieldability. 

 
Over-constraint is also a problem that must be avoided. If there are more cables than 

necessary to fully constrain the system, it becomes over-constrained. In an over-constrained 
system, forces can easily get larger than would otherwise be the case, and the demands on the 
control system are much greater. Thus, it is desirable to have an exactly constrained system. 

 

Cable Configuration 
 

The cable configuration was chosen to meet the constraints already mentioned. In 
summary these are: 

1. Single aerial winder that can be held by a standard crane  
2. Concentrate cable winders and anchor points into several base stations 
3. Fully and exactly constrain the end-effector 
4. Freeze all rotational DOF 

While meeting these requirements, the stiffness of the system must be kept high to maintain 
good print quality. The importance of high stiffness is addressed in further detail below. 
 

Figure 3 shows the initial cable configuration. The red body represents the print head. Three 
vertical “z-cables” suspend the print head and control the vertical motion. These three cables 
all spooled on one winder to ensure their lengths are equal. This keeps the print head from 
tilting, which fixes two rotational DOF. This winder is located on the yellow platform, which 
is held up by the crane. Six stay cables, shown in blue, prevent this platform from moving. 

 
Figure 3: Initial cable configuration for SkyBAAM 
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Motion in the horizontal plane is controlled by the three cables wound on the blue motion 
control stations. One of these stations has two equal length cables. This fixes the third rotational 
DOF.  

 
A cable from the orange station provides tension only. The purpose of this tension cable is 

to provide a nesting force that keeps all the cables under tension. It does not contribute to the 
motion. Thus, this extra cable does not cause the system to be over-constrained. 

 
Figure 4 shows the final cable configuration. This configuration has several advantages in 

comparison to the previous configuration. 

 
Figure 4: Final cable configuration for SkyBAAM 

The two extra cables in the vertical direction in the initial configuration are brought down 
to the horizontal plane in this configuration. This still freezes all the rotational DOF but offers 
several more advantages. First, by putting more of the cables in the horizontal plane, the 
stiffness is increased in the horizontal plane. This does sacrifice some of the vertical stiffness, 
but the horizontal stiffness is more important in this system because most of the movement will 
be in the horizontal plane. The only vertical movement will be between layers when the print 
head is raised by a small increment after each layer.  
 

This change also simplifies the system by eliminating the upper platform. With only one 
vertical cable, it is possible to run this cable over a pulley and down to a winder located on a 
ground base station. This pulley is still held up by the crane, but it is possible to hold it 
stationary with only three stay cables rather than six. 
 

The final change was to add a second cable to provide tension. Both the tension stations are 
shown in orange in the figure. The net force required to keep the other cables in tension is the 
vector sum of the tension in these two cables. By adjusting the tension of the two cables, the 
net tension vector can by adjusted to some degree to optimize the system. The importance of 
this will be discussed in a later section. 

 

Layout and Deployment in the Field 
 

As noted before, an objective of this system is to be easily fieldable. The four base 
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stations could be contained on individual trailers. These trailers could drive into the correct 
positions on site. The overhead point can be suspended by a crane. After this, the cables would 
be attached to the print head, and the machine would go through a calibration routine. Then it 
would be ready to print. 

 
Material must be delivered to the head during deposition. A simple way to achieve this 

is to have a hopper on board the print head. This hopper will be periodically refilled as it uses 
material. This introduces some control challenges because the weight of the print head will be 
constantly changing. A better possible method would be to continuously supply material to the 
print head as deposition is taking place. This could be done with a concrete pumping truck. The 
boom of the pumping truck would extend above the system. A flexible hose would then run all 
the way from the extended boom to the print head and provide a continuous flow of material 
for deposition. 

 

Design Challenges 
 

So far, this paper has explained the objective and the general architecture of the 
SkyBAAM. A scaled-down, operational system is currently in development at ORNL’s 
Manufacturing Demonstration Facility.  The remainder of this paper will discuss some of the 
design challenges that must be addressed to make SkyBAAM a reality. The purpose is not to 
present a fully-developed design but to examine some of the important challenges and how 
they are being solved. 

 

Stiffness 
 

A major concern in the design of SkyBAAM is the effective stiffness of the end-effector. 
The stiffness will affect both the quality of prints and the speed at which deposition can occur. 
In a stiffer system, the end-effector will deflect less under dynamic loads, leading to a more 
accurate and repeatable system. Furthermore, a stiffer system leads to higher natural 
frequencies, which makes control of the system easier. 

 
As mentioned in a previous section, the cable layout of the system was chosen 

specifically to increase the stiffness of the system in the x-y plane, as this is the plane in which 
most of the motion occurs. 

 
Stiffness is a driving factor in the design of the whole SkyBAAM system. Not only was 

the cable configuration selected based on stiffness requirements, but throughout the whole 
design process, stiffness was a driving consideration. 

 

Cable Selection and Catenary Effects 
 

Cable selection is important for the SkyBAAM because high stiffness is desirable for 
this system. Cable selection and cable tension play significantly into the stiffness of the system. 
In selecting a cable and the required tension, the effects of catenary sag must be considered. 

 
A cable span under gravity sags in a well-known and well-studied shape called the 

catenary. [26] The amount of sag is dependent upon the amount of tension in the cable as well 
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as its weight and length. Catenary effects result in significant non-linearities in the stiffness of 
cables. [27] 

 
The authors combined the non-linear stiffness produced by catenary sag with the elastic 

stiffness of the cable to produce a composite stiffness value that is dependent upon cable 
tension. The mathematical derivation for this will be detailed in a following publication. An 
example of this for a 17ft long segment of 1/8-inch 7x19 steel wire is plotted in Figure 5. 

 
 

Figure 5. Stiffness of 1/8” 7x19 steel wire rope 17’ long varying with tension 
 

As shown in Figure 5, there is a point where the contribution of the sag to the stiffness 
becomes negligible, and the stiffness remains essentially constant with increasing tension. This 
observation is consistent across different cable types and sizes, while the exact shape of the 
graph changes. This makes it possible to classify cable stiffness into a non-linear range and a 
linear range. 

 
It is desirable to operate in the linear range for several reasons. First, this is the highest 

stiffness range of the cable. As stiffness is a priority, this alone provides significant motivation 
to be in this region. Furthermore, analysis and control of linear systems is significantly easier 
when compared to non-linear systems. For these reasons, it was decided that the cables of the 
SkyBAAM should operate in the linear region. 

 
The amount of tension required to reach the linear stiffness region of a cable as well as the 

value of the stiffness within the linear region are determined by the cable itself. The elastic 
stiffness, weight, and length of the cable play a significant role in the amount of tension 
required. To complicate things further, the elastic stiffness of the cable is affected not only by 
the material, but also by the way the fibers are woven within the cable. The interplay of these 
factors and their effect on the overall system make the selection of cable an important factor in 
the system design.  
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Cable Tensioning Scheme 
 

As mentioned in the previous section, it is important that cables operate within the linear 
range of stiffness. To achieve this, all the cables must be kept at a certain minimum tension for 
a given cable type and length. 

 
There are two tensioning cables that keep all the cables in tension. As noted above, this 

allows for some control of the net tension vector. Tension control in cable-driven robots has 
been proposed by others. [28] [29] Here, we use the control of tension to keep all the cables 
above the minimum tension required for operation in their linear stiffness region. However, 
there is more than one solution that meets this requirement. The set of all possible solutions is 
found in the null space of the static equilibrium matrix. This method will be detailed in a later 
paper. Some of the solutions may involve tensions in a few of the cables that are well above 
the minimum tension. However, it is not desirable to tension cables more than required. This 
produces no benefit; over-tensioning cables only serves to increase the required motor power 
and the required strength of the components. Thus, the solution that keeps all the cables above 
their minimum required tension and has the lowest maximum tension is chosen. The required 
force in the tensioner cables will vary as the end-effector traverses the workspace. 

 

Motion Tracking 
 

Another important consideration in the design of the SkyBAAM is how to track the 
location of the end-effector through 3D space. It is also imperative to know the location of the 
winders to solve the inverse kinematics. Both issues will be addressed with a laser-based time-
of-flight sensor. A Leica laser tracker will be used to locate and track the end-effector during 
deposition. It will also be used to locate the winders and base stations for initial calibration of 
the system. 
 

In addition to the use of laser-based time-of-flight sensors, the use of relative GPS will 
be examined. Relative GPS can be used to obtain accurate relative positions but do not require 
line of sight like a laser-based system would. 

 

System Fabrication & Next Steps 
 

Currently, a detailed design is being completed for a mid-scale SkyBAAM system at 
ORNL, and fabrication of that system has started. Assembly and testing are currently ongoing 
over the summer and fall of 2018. There are also plans to design and fabricate a full-scale 
prototype system with industrial partners that will then be tested in real-world scenarios. 

 

Conclusion 
 

This paper presents the concept for a large-scale, cable-driven system for the deposition 
of structures from cementitious material. While recognizing the existence of prior art in large-
scale AM for construction using cable-driven platforms, this system is designed to be easily 
fieldable for use on a jobsite. A proposed cable configuration is chosen to achieve this objective, 
and associated design challenges are examined. 
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This system is aimed at overcoming one of the major challenges in the AM of structures, 

namely the current lack of a fieldable motion platform. The development of a practically 
fieldable platform promises to be another step toward the goal of automated fabrication of 
structures with AM methods. 

 
The SkyBAAM system has been designed around needs specific to AM in the 

construction industry. This paper presents the overall design and layout of the SkyBAAM 
system. Currently, a mid-scale prototype is being designed and built at ORNL. This prototype 
is the next step toward a full-sized system, which if successful, will be an important step toward 
realizing practical additive manufacturing of structures.  
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