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Abstract 

The additive manufacturing (AM) lifecycle starts with the material production. This 
phase has an impact on the AM process and its quality. Nowadays, information concerning 
material production is not connected to the manufacturing process or the manufactured 
component. Increasing digitalization enables data acquisition, handling and management. 
Nevertheless, an integrated data concept for all AM lifecycle phases has not been realized yet. 
Using information collected during the material production to evaluate component quality and 
process stability is a huge research gap. Therefore, this paper deals with establishing a data 
connection between material production and manufacturing phase. Based on the explanation of 
the AM lifecycle, the identification of key influence factors and their interdependence a concept 
for a knowledge-based material production in the AM lifecycle of fused deposition modeling 
is developed. To prove the rationale behind the knowledge-based approach the interdependence 
between two exemplary key factors is then evaluated experimentally and the result is discussed. 
The implementation and validation phases contain the sensor plan for the material extruder and 
the experimental examination of the effects of filament diameter changes on product quality. 

Introduction and Motivation 

The increasing digitalization enables the collection, analysis and storage of data in 
production processes. There are different goals and business cases to use data in context of 
Industrie 4.0. One possibility is a tracking and tracing application to monitor the location and 
production progress of a part. Another possibility to use process data is predicted maintenance. 
The main aim is a reduction of unexpected machine breakdowns and therefore, an optimization 
of process stability. Furthermore, activities of Industrie 4.0 help to achieve high quality levels. 
End controls of the part might be reduced through permanent data collection and analysis. 
[Pla14] The new business models are not implemented in the AM sector. An integration of the 
capabilities of Industrie 4.0 in the AM lifecycle can contain high potentials concerning process 
and quality optimization.  

In the field of AM, no standards for data collection or analysis exist. AM machine 
producers start to use collected data to optimize or monitor the production process. For example, 
the company Arcam uses a camera system in their machines to detect defects in components 
[Arc18]. An overall concept and an implementation of a holistic and long-term data 
management for AM machines or processes does not exist yet. Furthermore, no information 
transfers between the different phases of the lifecycle have been established. This lack of data 
acquisition, handling and management is the motivation for the development of a concept and 
the implementation of a knowledge-based material production in the additive manufacturing 
lifecycle of fused deposition modeling (FDM). Therefore, important information of the material 
production process needs to be identified and a measurement concept needs to be developed. 
The collected information is transferred to other phases of the FDM lifecycle, especially to the 
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phase of product manufacturing. With the help of the information, the product manufacturing 
phase can be optimized. The relations between the material production and the product 
manufacturing phase are examined in the concept and implementation chapter of the paper. To 
develop a concept for knowledge-based material production, the AM lifecycle needs to be 
explained. Based on that, influence factors of material production on product quality and 
process stability are identified. The identified factors serve for the concept development. 
 

In the state of the art, the AM process chain and lifecycle are explained. The different 
phases of the AM lifecycle are explained for FDM. This helps to identify the influence factors 
of material production on the product and process quality in the concept chapter. Besides, the 
concept chapter deals with the development of the sensor plan to measure or determine the 
influence factors. To prove the choice of influence factors, the implementation chapter deals 
with the installation of a demonstrator of the FDM lifecycle. Furthermore, a hypothesis 
concerning the correlation of filament diameter changes and part stability is evaluated 
experimentally. The paper ends with a conclusion and a short outlook.    
 

State of the Art 

An elementary background for the knowledge-based material production is the AM 
process chain with the three phases pre-, in- and post-processing. During the pre-processing, 
the machine is prepared. With the data transformation, the native CAD data is converted into 
the STL (Standard Tessellation Language) format, which is the common data format used with  
most of the printer software systems today. After this, the part orientation and positioning takes 
place. Afterwards support structures are generated, if they are needed. This depends on the AM 
manufacturing method and the capabilities of the printer. The last step of the pre-processing is 
the slicing. After the pre-processing, the in-processing follows with the manufacturing process. 
Furthermore, the unloading and part removal are included in the in-processing. The post-
processing includes the removal of additional powder or the removal of support structures, 
depending on the AM method. Besides, the improvement of the component characteristics is 
part of the post-processing. [Aut18, Gib10, Ver14] Figure 1 shows the pre-, in- and post-
processing as overview.   

 

 
Figure 1: Overview of the AM Process Chain [Aut18] 
 
The phases of the AM process chain are optimized to increase the achievable quality of 

the manufactured part. During the pre- and in-processing, the adjustments of the approximation 
of the component geometry and machine parameters are essential to produce a certain quality. 
Faults caused during pre-processing (e.g. through wrong part orientation or selection of a too 
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tight approximation accuracy) will have a negative effect on the component´s surface quality 
and mechanical rigidity. Arndt et al. (2015), Gurpal (2014) and Kirchner et al. (2010) have 
shown these influences with the help of experimental testing and surface examination. Besides, 
different AM machine producers connect information of the pre- and the in-processing to 
minimize reject rate and to avoid mistakes [Eos18]. 
 

The integration of the AM process chain into the AM lifecycle can help to maximize 
product quality. The AM lifecycle starts with the new material extraction. In case of FDM, 
mineral oil serves to produce the plastics. In the second phase of the material production, the 
new raw material is transferred into a suitable shape. The raw material is extruded and coiled 
as filament on a reel. The third phase is the product development consisting of the four sub-
phases product planning, product design, work preparation and product manufacturing. In the 
phase product development, the component geometry is developed depending on the existing 
requirements for the part. Caused by influences of the AM method on the component geometry, 
the selection of a certain AM method needs to be frozen at this time. After the product design, 
the work preparation as pre-processing starts. During the following product manufacturing, the 
in- and post-processing takes place. The product distribution follows the product development. 
At this time, the component becomes the property of the user for the following product use 
phase. The last phase is the product end of life. Depending on the chosen material or AM 
method, the product can be recycled or has to be disposed. [Aut18] Figure 2 shows the AM 
lifecycle with the integrated AM process chain as overview.  

 

 
Figure 2: overall AM lifecycle with integrated AM process chain [Aut18] 
 
After briefly explaining the AM process chain and lifecycle, the following chapter deals 

with the concept for a knowledge-based material production. For this concept, the phases 
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material production and product development with the integrated AM process chain are most 
important.  
 

Concept 

The core of this concept is the connection of information of the material production 
phase to the product manufacturing phase to increase component quality and process stability. 
In the first part, the phase of material production is described. After this, requirements on the 
kind and amount of collected data are defined. The next step is the description of the influence 
factors and their connection. This chapter contains a hypothesis, which is tested experimentally 
in the implementation and validation chapter.  

 
The phase of material production comprises the transformation from the raw material to 

the filament, which can be used on FDM printers. To realize this transformation, an extruder is 
necessary. The raw material can be inserted as granulate material. The sorting accuracy has to 
be assured to prevent defects in the filament. In the extruder, the granulate material is 
compacted and heated up to be extruded through a nozzle. The new extruded filament needs to 
be cooled down to conserve the shape. After this, the new produced filament can be stored on 
a material reel. In this form, the material can be used for printing or stored properly.   
 

To guarantee the quality of the filament and to optimize the whole production process of a 
component, various data needs to be collected, analyzed and stored for long-term use. There 
are requirements concerning the nature and the amount of this data. These requirements help to 
ensure that all relevant information for the following lifecycle phases are collected. The 
following requirements are important: 

• There has to be a trade-off between the amount of the collected data and the information, 
which can be extracted with the help of the data. 

• Depending on the kind of data, it can minimize the amount of data if key performance 
indicators are calculated or only the changes of the data stream are documented. 

• A proper data format has to be chosen for data acquisition, data communication and data 
storage. 

• To monitor data, to indicate correlations and to identify extremal values a database 
needs to be implemented, where the collected data can be managed.  

• To transfer data into the database communication between the database and the sensors 
or the machine system has to be realized. 

 
These five requirements have to be fulfilled to enable a knowledge-based material 

production. Besides these requirements, potential influence factors are defined. The influence 
factors can have an impact on the process. The influence factors are data or measurements from 
the machine or systems. To guarantee a high quality of the produced filament and to achieve 
better process stability at all, these factors, which influence the quality and stability, have to be 
measured and monitored. Important influence factors of the material production are: 

• Granulate material sorting accuracy: the granulate material sorting accuracy is important 
to ensure. If foreign particles get into the new filament, they might cause breaking of 
the new filament, plug up the extruder or printer nozzle or minor the quality of the newly 
built component. 

• Granulate material particle size: the granulate particle size needs to be smaller than a 
defined size. Exceeding this size can cause an extruder stop, because big particles block 
the mechanical handling of particles to the extruder nozzle. 
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• Temperature of the nozzle: the temperature of the nozzle must not exceed or go below 
a certain temperature range. Higher temperatures can have negative influences on the 
characteristics of the plastics. Lower temperatures can prevent the fusing of the 
particles, which will cause breaking of the filament. 

• Diameter of the new produced filament: the diameter of the new produced filament 
needs to be in a determined range. Exceeding the diameter the nozzle of the printer may 
lead to blockage of the nozzle. If the diameter underruns the range, defects may occur 
in the new build component. The single layers do not have enough material to fuse 
together. Delamination can be a consequence. 

• Cross section of the new produced filament: the cross section of the new produced 
filament has to be round or nearly round. If the cross section differs much, the printer 
might not be able to insert the filament. 

• Length of the filament rolled up: the length of the filament is an important information 
for the printing process to ensure that the part can be built completely in the printing 
process. 

 
The granulate material sorting accuracy, the granulate particle size and the temperature 

of the extruder nozzle directly affect the quality of the filament and the production process of 
the filament. The highest impact on the printed part itself has the diameter of the filament. 
Imperfections in the filament might affect the part quality directly. To evaluate the correlation 
of filament diameter und component quality, the following hypothesis is made: 

 
Hypothesis:  The diameter of the filament affects the printed part directly concerning 
surface quality and part stability.  

 
This hypothesis is tested experimentally in the following implementation and validation 

chapter. If the hypothesis can be confirmed, the motivation for a knowledge-based material 
production opens up and it is given reason for data acquisition, handling and storage.  
 

Prototype Implementation and Validation 

This chapter serves for the implementation of the concept and for validation of the 
hypothesis. To test the hypothesis the material production and product development are realized 
in a demonstrator as two lifecycle phases. Within the experiments, exemplary parts are printed 
with manufactured filament. The parts are tested experimentally in a tensile test to investigate 
the influence of filament diameter changes and to examine the hypothesis. An extruder 
represents the material production. This machine was developed and built at the Department of 
Computer Integrated Design at TU Darmstadt, named DikXtruder. The extruder can be used 
with new granulate material or with shredded scrap parts. A funnel helps to insert the new or 
recycled granulate material into the mechanism, that condenses the granulate material and heats 
it up for the extrusion. After the extrusion, a water basin helps to cool the new filament down. 
The filament is rolled up on a material roll at the top of the extruder. A sensor to measure the 
filament diameter has been integrated. Furthermore, the temperature of the nozzle is measured. 
The length of the filament is calculated by counting the steps of a stepping motor. There is a 
light barrier to guarantee the availability of granulate material in the funnel. Besides, there is a 
sensor to check if there is still water inside the water basin. The granulate material sorting 
accuracy is verified before the material production starts. For recycled material, the different 
materials of the scrap parts are determined. With a separation of colors, a mono-material 
granulate can be produced. Bought granulate material is checked in visual testing. Figure 3 
shows the DikXtruder and the sensor layout plan for data acquisition.  
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Figure 3: Setup and sensor layout plan for the extruder DikXtruder 

 
Different printers and a computer for virtual product development represent the product 

development phase. The different printers, which are used to manufacture the exemplary parts, 
are shown in the experimental set-up. 
 
Design of Experiment 

The main aim of the experiments is testing the hypothesis. To test the effects of diameter 
changes in the filament on the surface quality and the stability of the printed part, several 
exemplary parts have to be printed and their quality has to be examined. Figure 4 shows the 
process of the experiment in an overview. 

 

 
Figure 4: Design of experiment 
 

The approach here shall be to create one black box looking only at the filament diameter 
as input and on the quality of the part itself as output, trying to relate these to each other. The 
quality of the output shall be measured by determining yield strength (RP) and tensile strength 
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(Rm) of the sample. In reality, there are several mechanical transformations of the filament 
between the reel and the printed part, which all have an influence on the quality of the product: 

a) The mechanical drive force-feeding the filament into the tube before the hot end. 
b) The “Hot End” consisting of a tube with the same diameter as the filament diameter 

before the smaller nozzle. 
c) The build-up of the part influenced by the setting of the printing parameters, e.g. the 

printing-orientation of the part. 
 
Experimental Set-Up 

Hardware: To manufacture the samples a FDM printer type PRUSA i3 MK3 is used. 
Some reference samples are printed using an ULTIMAKER 3 – both located in the Research 
Lab for Additive Manufacturing at Koblenz University of Applied Sciences. In order to test the 
resulting overall quality of the manufactured test samples their yield strength and tensile 
strength have to be measured using a 60 t Tensile Strength Testing Machine also located at 
Koblenz University of Applied Sciences. 
 

Geometry of Printed Samples: The geometry of the test samples corresponds to DIN 
50125, Form E. In order to meet the requirements of measuring tensile strength and in order to 
fit the attachments of the testing machine the dimensions presented in figure 5 are selected. 

 
Figure 5: Sample Geometry 
 
Material: To evaluate the influences of diameter variations on the printing process and 

component quality and stability, the test filament has to show some variations. Therefore, test 
PLA-filament was extruded using the DikXtruder extruder located at TU Darmstadt with a 
nominal diameter of 1.5 mm with variations of -0.4 / +0.25 mm. Figure 6 shows exemplary 
diameter variations of the produced filament. For comparison, standard material has diameter 
variations of +0.05 / -0.05 mm. 
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Figure 6: Typical diameter variations and visible defects of filament 
 

Experimental Procedure 

In order to evaluate the effect of diameter variations on the quality of finished parts 
different sample variants were printed. All tested samples were printed on the PRUSA i3 MK3, 
which is designed for 1.75mm diameter filament. The following variants in table 1 were printed. 

 
Table 1: Sample Variants 

Variant No. Filament diameter 
[mm] 

Diameter setting for 
slicing [mm] 

Printing Orientation 

1 a 1.75 1.75 lying flat 
1 b 1.75 1.75 upright 
2 a 1.5 1.75 lying flat 
2 b 1.5 1.75 upright 
3 1.5 1.5 lying flat 
4 1.75 2.04 lying flat 

 
Variants 1a and 1b: These reference samples were printed with original PRUSA-

1.75mm filament sliced with 1.75mm diameter for a fill ratio of 1.0. In order to evaluate the 
effects of the interlamellar bonding samples were printed lying flat (variant a) and standing 
upright (variant b). 

 
Variants 2a and 2b: The variants 2a and 2b were printed using 1.5mm filament sliced 

with 1.75mm diameter. The effects of underextrusion can be clearly seen during printing. Lower 
strength should be expected due to the reduced fill ratio caused by the 1.5 mm filament. 
However, the surface layers look unsuspicious. An enlarged view reveals some gaps in the 
structure as shown in figure 7. 
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Figure 7: Internal sample structure, surface and enlarged view of surface of variant 2a and 2b 
 

In order evaluate the effects of the interlamellar bonding samples were also printed lying 
flat (variant a) and standing upright (variant b). In comparison to variants 1a and 1b the 
following two questions can be answered: 

• What is the effect of using a significantly smaller nominal diameter: 1.5mm instead of 
1.75mm?  

• What is the effect of significantly higher diameter deviations than using generic or 
original filament? 

 
Variant 3: Variant 3 would have been the ideal comparison to variants 2a and 2b, having 

the same nominal fill ratio of 1.0. However, no samples could be printed because of mechanical 
failures in the feed drive and clogging before the hot end. The fact of a failure before a sample 
could be printed is a significant information regarding a knowledge-based system. 

Variant 4: In order to be able to compare the effects of using 1.5mm filament and 
1.75mm filament, samples were printed using the same fill ratio as variants 2a and 2b (0.73) 
but using original 1.75mm filament. Therefore, it is sliced with 2.04 mm.   

 
Table 2 gives an overview of the different variants.  
 

Table 2: Summary of Sample Variants 
No. Filament 

diameter 
[mm] 

Filament 
source 

Diameter 
setting for 

slicing [mm]/ 
fill ratio 

Printing 
orientation 

Filling 
orientation 

Remarks 

1a 1.75 PRUSA 1.75 / 1.0 lying flat 45° / 45° Different fill rate 
compared to 2a / 
2b, because of 
different filament 
diameter  

1b 1.75 PRUSA 1.75 / 1.0 upright 45° / 45° 

2a 1.5 DikXtruder 1.75 / 0.73 lying flat 45° / 45° Same fill rate as 4 
 
Different fill rate 
compared to 1a / 
1b, because of 
different filament 
diameter 

2b 1.5 DikXtruder 1.75 / 0.73 upright 45° / 45° 

3 1.5 DikXtruder 1.5 / 1.0 
see remark 

lying flat 45° / 45° Fill rate greater 
than 1.0 due to 
diameter deviation 
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to larger diameters 
caused clogging of 
hot end 

4 1.75 PRUSA 2.04 / 0.73 lying flat 45° / 45° Same fill rate as 2a 
/ 2b  

 
Experimental Results 

After printing the different sample variants, the testing follows. Each variant is tested 
in a tensile test. The following tensile stress values were reached, summarized in table 3.  

 
Table 3: Tensile Stress Values 
No. Filament 

diameter 
[mm] 

Diameter 
for slicing 

[mm] 

Printing 
Orientation 

Tensile Stress [MPa] 
5 Samples each 

Average 
[MPa] 

1a 1.75 1.75 lying flat 34.9 35.9 36.7 35.4 35.4 35.7 
1b 1.75 1.75 upright 25.4 26.3 24.2 24.5 24.9 25.1 
2a 1.5 1.75 lying flat 18.9 20.5 18.7 18.4 21.2 19.5 
2b 1.5 1.75 upright 11.4 11.4    11.4 
3 1.5 1.5 lying flat X X X X X X 
4 1.75 2.04 lying flat 16.1 16.2 15.8 15.8 18.5 16.5 

 
Figure 8 shows the average tensile stress values for the six variants in an overview.  

 
Figure 8: Average Tensile Stress Values 
 

As expected tensile stress is the highest for the sample printed with original “high 
quality” filament and a fill rate of 1.0. Standing up printed samples have a lower tensile stress 
that the samples printed lying flat. However, it is surprising that variant 4 – made from original 
1,75mm filament – shows significantly lower tensile stress values that variant 2a, which has 
been made from 1.5 mm filament.  
 

Evaluation of variant 3: Samples could not be printed because of mechanical problems 
“within the black box”. Clogging of the tube before the hot end regularly caused the filament 
to be jammed up in the mechanical drive after about 30 to 45 minutes of printing time. The 
phenomenon of a cold reverse flow, which will eventually clog the nozzle, is well known. The 
influence of the diameter on the quality of the printed part is that we do not get a sample at all 
– a significant fact for a knowledge-based system. Figure 9 demonstrates the problems.  
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Figure 9: Mechanical problems printing variant 3 
 

Evaluation of variants 4 and 2a: It allows the comparison of equal fill rates but different 
filament diameters. Our expectation would be that variant 2a should have the same tensile stress 
values as variant 4, as the fill rates are the same. 2a might have lower tensile strength due to 
greater diameter deviations of the filament. However, we see a 20% greater tensile strength for 
variant 2a! The diameter seems to have an influence. Figure 10 presents the tensile strengths in 
an overview. 
 

 
Figure 10: Comparison variants 2a and 4 
 

Conclusion and Outlook 

The progress in the field of Industrie 4.0 and digitalization enables new business models 
and further possibilities in process optimization. A knowledge-based additive manufacturing 
offers chances to increase the process stability and the component quality. Therefore, a method 
for a knowledge-based material production is developed. The material production is the second 
phase of the AM lifecycle after the new material extraction. After this, the product development 
follows with the AM process chain. The next phases are the product distribution, product use 
and product end of life with recycling or disposal.  

 
After optimizing the phases separately, an overall optimization of the lifecycle includes 

new potentials. Requirements for a knowledge-based material production are the right amount 
and kind of data, a proper data format, communication and database. Important influence factors 
of the material production are granulate material sorting accuracy and particle size, temperature 
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of the nozzle, diameter and cross section of the new filament and the produced length. A 
hypothesis dealing with effects between the filament diameter and the surface quality and part 
stability of the new printed part is developed and tested experimentally. Therefore, the phases 
of material production and product development are realized in a demonstrator. A test geometry 
is printed in different variants. Some of the variants are printed with self-extruded filament, 
which has a high deviation of filament diameter. Implemented sensors in the extruder measure 
the diameter of the new produced filament. Therefore, the information can be connected to the 
manufactured part. The tensile strength of the variants is measured using a Tensile Strength 
Testing Machine. The tensile strength of variants printed lying flat is generally higher than 
standing upright. The fill ratio has an effect on the tensile strength of a part. The tensile strength 
of variants printed with self-extruded filament with a fill ratio of 0.73 is 20 % greater than the 
tensile strength of a printed part with original filament with the equal fill ratio. This correlation 
should be tested in further experiments. Besides, smaller diameter variations have to be 
examined to find out maximum deviations.  
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