
Low Cost, High Speed Stereovision for 

Spatter Tracking in Laser Powder Bed Fusion 

Christopher Barrett, Carolyn Carradero, Evan Harris, 

Jeremy McKnight, Jason Walker, Eric MacDonald, Brett Conner 

Youngstown State University, Youngstown, OH 44555 

Abstract 

Powder Bed Fusion Additive Manufacturing affords new design freedoms for metallic 

structures with complex geometries in high performance materials.  The aerospace industry has 

identified the inherent benefits of AM not just in terms of shape creation but also with regard to 

producing replacement parts for an aging fleet of aircraft. However, for these parts to be deployed 

in flight-critical applications, the quality must be well established given the lack of flight heritage 

for the manufacturing process.  As additive manufacturing is executed layerwise, opportunities 

exist to non-destructively verify the fabrication in situ with a qualify-as-you-go methodology.  In 

this study, a pair of low cost, high speed cameras are integrated and synchronized together to 

provide stereovision in order to identify the size, speed, direction and age of spatter ejected from 

the laser melt pool.  The driving hypothesis of the effort is that behavior of spatter can be reliably 

measured in order to determine the health of the laser process and ensure that spatter is not 

contaminating the build.  Feasibility demonstrations are shown that describe how the 

measurements are made and characteristics calculated from the image data and how the data 

were verified with alternative measurements. Opportunities, future work and challenges are 

discussed. 

1.0 Introduction

Powder Bed Fusion (PBF) shows promise in the aerospace industry for providing complex 

structures fabricated with high performance metal alloys that are spatially tailored for both high 

performance and low weight.  Interrelated assembly parts can now be consolidated into a single 

non-assembled structure with geometries not possible previously.  However, in order to broaden 

industrial adoption in light of the high standards of the aerospace industry, evidence of the 

reliability of the fabricated structures will need to be collected in situ for each and every 

fabrication.  Given the layer-by-layer processing with an unobstructed view of the top surface of 

the structure during fabrication, crucial aspects of the manufacturing process can be monitored in 

an unprecedented manner including the melt pool and ejecta. By characterizing this process and 

understanding the implications on process quality, a qualify-as-you-go methodology can be 

adopted as is required for insertion into manufacturing of flight critical hardware. 
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Within the taxonomy of PBF, Selective Laser Melting (SLM) has been optimized to 

create complex, high performance geometries in a diversity of metal alloys; however, process 

feedback is generally absent in production systems and is understood to remain as an eventual 

requirement for full qualification of these processes.  Laser spatter is relatively well 

understood and can generally inform the process as to the quality of the structure under 

development.  The final destination of the spatter after ejection can also have an in impact 

on the fabrication through contamination or due to the introduction of irregular shaped and sized 

particles if the spatter returns back to either the melted section or open powder bed in the build 

chamber.  The hypothesis of this work is that in situ monitoring using relatively low-cost 

cameras at relatively high-speed frames per second can provide data on the position and 

velocity of individual spatter and thus enable statistical analysis of general spatter behavior to 

improve quality and yield.    

1.1 Previous Work of Others 

Laser powder bed fusion is affected by several types of defects such as lack of fusion 

(Tang, Pistorius, and Beuth 2017), keyholing (King et al. 2014), balling (Khairallah et al. 2016), 

spatter (Criales et al. 2017), residual gas porosity (Cunningham et al. 2017), hatching strategy 

defects (Foster et al. 2015) and recoater defects (Foster et al. 2015). (Everton et al. 2016) 

provides an overview of in situ and nondestructive evaluation.  The premise of this effort is that 

spatter should be ejected to the margins of the powder bed or outer shelves of the build 

chamber to ensure no problems and the spatter should not return to impact on an active top 

surface of the device in fabrication as the spatter is considered a contaminant.  The particles are 

generally considered to be larger than feedstock powder, which can directly affect the quality of 

the manufacturing process by obstructed the laser melting at that point.  Spatter particles ejected 

from the melt pool can land on the melted section and these particles can be much larger than the 

D90 size of the powder size distribution and negatively impact the subsequent layers (Criales et 

al. 2017; Khairallah et al. 2016; Christopher Barrett, Jason Walker, Rodrigo Enriquez Gutierrez, 

Eric MacDonald, Brett Conner 2018; Kneen 2016). Spatter can lead to other negative effects 

such as increasing surface roughness of a part (Mumtaz and Hopkinson 2009) or even 

increasing the layer thickness (Ladewig et al. 2016). Large spatter particles can cause damage to 

the recoater blade and the spatter particles might not melt during the subsequent laser pass (a 

process which is optimized for the smaller powder size feedstock). Even though the 

surrounding powder can melt, the large spatter can give rise to either unfused regions or create 

a cavity around the particle. Spatter can also land in unfused powder and change the local 

powder packing density and chemistry - either of which can affect melting behavior due to 

particle size differences. 

In situ monitoring with the ultimate goal of providing feedback control has been 

researched in a variety of manners.  (Taheri Andani et al. 2018, 2017; Repossini et al. 2017; Liu 

et al. 2015; Simonelli et al. 2015) all have explored the implications and behaviors of spatter in 

powder bed 
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fusion but none explored the use of high speed stereovision at the macro level to track the travel 

trends of spatter in the build chamber.   Spatter in welding has also been explored and provides 

insights into AM spatter but is remains fundamentally different as the processes are not the same.   

(Craeghs et al. 2010); (Clijsters et al. 2014); (Lott et al. 2011); (Yadroitsev, Krakhmalev, and 

Yadroitsava 2014); (Doubenskaia et al. 2012); (Chivel 2013) all investigated monitoring the 

process at the melt pool by measuring the melt pool shape and temperature, and although the melt 

pool is the origin of spatter, this subject is outside of the scope of this work.  The melt pool is the 

essence of SLM and clearly is critical to understanding the quality of a fabrication;  (Kanko, Sibley, 

and Fraser 2016/5); (Krauss, Eschey, and Zaeh 2012); (Lane et al. 2016); (Bayle and Doubenskaia 

2008); (Grasso et al. 2017) monitored and tracked the scan path which anecdotally has a significant 

impact on the amount and direction of spatter.  This effort is intended to inform the process by 

identifying spatter behavior to determine if a build is compromised with the eventual goal of 

providing feedback for closed-loop control and a qualify-as-you-go paradigm. 

High speed digital photography has been utilized to characterize spatter in several studies. 

Frame rates used include 1,000 fps (Repossini et al. 2017), 2000 fps (You, Gao, and Katayama 

2014), 6000 fps (Taheri Andani et al. 2018) for laser additive processes. High speed thermal 

cameras have also been leveraged with frame rates of 1800 fps (Criales et al. 2017). High speed 

photography (3000 and 6000 fps) has also been used to characterize the behavior of interacting 

spatter for a multi-laser SLM 280 HL system (Taheri Andani et al. 2017). 

The use of ultra high-speed imaging (100,000 frames per second) has uncovered that the 

mechanism causing spatter is from vapor driven entrainment of micro-particles by an ambient gas 

flow (Ly et al. 2017). Previously, it was believed that spatter was caused by laser induced recoil 

pressure (which is still true for laser welding processes, see (You, Gao, and Katayama 2014)). Ly 

et al. identified three distinct types of particles. The first involve particles with low vertical 

momentum that are carried into the melt pool. The second category of spatter particles have higher 

vertical momentum but originating more than 2 melt pool widths away from the beam and are 

carried into the trailing portion of the vapor jet. These are then ejected as cold particles. The three 

category of spatter particles are closer to the laser beam than the second category. These spatter 

particles are carried into the laser beam which heats the particles to the point of becoming 

incandescent, hot particles. With a scan speed of 1.5 m/s and laser of 200W and fusing stainless 

steel 316 powder, Ly et al. found that 60% of spatter particles observed are the third category (hot 

particle ejections) with velocities of 6–20 m/s and observed particle full width at half maximum 

(FWHM)  diameters of 10 to 30 microns, another 25% are the second category (cold entrainment 

ejections) with velocities of 2–4 m/s and FWHM diameters of 20 to 30 microns, and the remaining 
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15% are recoil pressure induced droplet breakup ejections with velocities of 3–8 m/s and FWHM 

diameters of 15 to 70 microns. It should be noted that this work did not occur in a chamber with 

flowing inert gas (i.e. argon) over the powder bed as is common in most production systems. This 

inert gas flow could influence the flight path of the spatter particles. 

2.0 Methods and Materials 

The overarching goal of this effort is to statistically quantify the characteristics and 

behavior of spatter in order to identify strategies to mitigate any resulting reductions in quality.   A 

secondary consideration is to implement a system that was less than 5% of the total cost of the 

manufacturing system to broaden the adoption of the proposed monitoring system.  For stereo 

analysis, calibration and camera mount design are critical parameters for accuracy in 

measurements.  

Figure 1 - EOS M290 with front port window (left) and stereovision schematic (right) 

2.1 High speed stereovision camera system 

Two low cost, high speed cameras (FPS1000 by The Slow Motion Camera Company) were 

purchased and integrated together in a stiff housing in order to minimize any movement relative 

between the cameras, and thereby allowing for standardization during calibration and live spatter 

measurements. An 18 mm lens was used with an aperture of f 4.5 (to increase depth of field).  

Images were taken in raw with a 1280x720 pixel count (maximum allowed for the camera). 

Calculating the spatial resolution for visible light (470 nm – 625 nm) gives a range of 18 µm/pixel 

to 24 µm/pixel. 
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2.2 Stereovision and Epipolar Geometry to identify position and direction of spatter 

For calibration, the intrinsic parameters include information on the camera calibration 

matrix (K) and distortion coefficients which are obtained through single camera calibration. The 

former is given by 

eq. 1 

eq. 2 

where K and K’ are camera calibration matrices, fx, fx’, fy, fy’ are focal length in pixel units, cx, 

cx’, cy and cy’ are principal points, normally at the center of the image. The open source Computer 

Vision library was used to locate a checkerboard pattern in fifty different poses (fig. 2). The 

intrinsic parameters are then used during stereo calibration, where coincident images from a stereo 

pair determine the extrinsic parameters of the system. The extrinsic parameters correspond to the 

rotation (R) and translation (t) between the two cameras, 

 eq. 3 

eq. 4 

where P and P’ are the projection matrices which are 3x4 matrices, I is the identity matrix, R is the 

rotation matrix and t is the translation matrix. The matrices returned from calibration are then used 

to rectify simultaneous frames using the OpenCV function stereoRectify. Rectification calculates 

the necessary values to apply a geometric transformation on both images, ideally resulting in near 

horizontal epipoles on the image plane.  The projection matrices were then used to triangulate two 

matched points between simultaneous frames. This method could then be applied to measure the 

length of light exposure caused by spatter between two sequential frames.   
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Figure 2 - Stereo Calibration between two coincident images from different perspectives. 

Figure 3 - Stereovision quality assurance using a caliper (50.01 mm top, 9.99 mm bottom). 
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 Two stereo images of a caliper were taken as a calibration check (fig. 3), two points were 

found, and the distance between them was measured.  The distance of the first measurement 

between the two points in the caliper was 50.01 mm, while the distance measured with stereovision 

was 50.69 mm, producing an error of 1.34%. The second distance was 9.99 mm, while the 

measured stereovision distance was 9.986 mm producing an error of 0.04% (which is precise as it 

is below the accuracy of the caliper).   

3.0 Results and Discussion 

A selective laser melting (SLM) build was completed with the camera system outside the 

front port of an EOS M290.  Ideally the system would be housed within the build chamber to 

provide the closest perspective which allowed for the entire build volume to be seen from both 

cameras; however, in this preliminary study, an external perspective provided benefits such as 

physical access to the cameras, etc.  Future work will include integrating the camera system more 

closely to the powder bed in a final system which is planned to be installed in a 3D Systems ProX 

320 where internal integration will be eased with the larger build volume.  Some concern exists 

regarding the vacuum pulled temporarily at the beginning of the build and the impact that this may 

have on the health of the electronics.  Eventually, data collected from both of the two systems 

(ProX 320 and M290) will allow for a comparison of spatter behavior across a diversity of 

processes. 

3.1 Sequential versus single image spatter tracking 

To validate the concept of using over-exposure to integrate the light and identify the speed 

and direction of the spatter from a single stereovision image, some spatter particles were tracked 

for multiple frames as an alternative method of measuring velocity and to determine how the 

velocity and direction changed over a larger time frame (3 mS rather than 0.5 mS).  As the exposure 

was 500 µs and the period of the imaging was 1 mS, the distance traveled from frame to frame was 

expected to be twice the distance of the length of the spatter line in any given frame - minus the 

effects of gravity or build chamber atmosphere.  In fig. 4, three distinct spatter particles are tracked 

across three sequential frames as shown on the bottom of the figure.  The top of the figure shows 

the three frames overlaid on each other with green (frame 1), blue (frame 2) and red (frame 3) 

coloring to distinguish the particles in time.   As the period of the image acquisition (1000 fps 

frequency, 1000 µs period) is twice as long as the exposure time (500 µs), the smeared images for 

each of the three cases should have similar lengths and the lines should be separated by the same 

length - as the camera exposure duty cycle is 50% (500 µs exposure with 1000 µs imaging). This 

is shown to be true not just for the two fast particles ejected to the right but also for the older and 

slower particle to the left (see Table 1).   The process emission is also shown as a nebulous form 

at the bottom of each frame and is in fact moving along the laser path as expected. Other noise is 

shown primarily in the third red frame.  As the third frame has the faintest spatter signature due to 

the age of the particles, the threshold for detection was reduced and this introduced significant 
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noise into this frame.   By attempting to capture only one image per spatter and ignoring very new 

and very old spatter, the problem of uniform brightness is expected to be eliminated for the 

automated computer script by capturing only a narrow band of brightness which in turn results in 

only a certain age of spatter being captured in the computer vision.    

Figure 4 - Sequential imaging of the right camera to demonstrate that tracked spatter 

measurements (frame to frame with an overlay) can be obtained in a single image. 

3.2 Stereo imaging of spatter and determination of velocity and direction 

To demonstrate the spatter monitoring approach, fig. 5 shows a single dual-frame capture 

of an instance of significant spatter production ejected from the melt pool.  In both cameras, three 

spatter particles are shown and easily matched between the two cameras.  OpenCV computer 

vision identifies these regions as high intensity (white) and with a large aspect ratio forming a line 

that projects back to the melt pool as expected.  In each spatter case, the length of the image artifact 

is an overexposure across 500 µs and thus provides the distance traveled over that time and 
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consequently a velocity can be calculated. The particles are expected to follow a normal ballistics 

trajectory and change their velocity with time and drag; however, this is assumed negligible over 

the short 500 µs time frame. Each spatter can be identified by two points: the beginning and the 

end.  For each point in each image, a row and column can be determined.  With the same feature 

(e.g. start or end of spatter streak) as seen in two images, four values (rows and columns) can be 

obtained and through epipolar geometry the location of the point in 3D space (X, Y, and Z 

coordinates) can be determined.  With the 3D location of both the start and stop of the spatter, a 

direction vector can be generated and the magnitude of the vector (length in mm) can be divided 

by the 500 µs exposure time to calculate a velocity.  Furthermore, if the beginning of the spatter 

and the melt pool are known in 3D space, a distance can be calculated from the origin (the melt 

pool) to the spatter streak beginning.   By dividing the distance by the velocity, an age can be 

established for the particle.  The older the particle, the less bright the emissions.  This 

monotonically decreasing brightness is a characteristic that is leveraged to limit the image 

identification of the spatter to only one time and to avoid double or multiple counting in statistical 

evaluation.  Spatter that are too bright (often in the process of formation or calving and therefore 

without a distinct start and stop), and conversely, those that are not sufficiently bright will be 

excluded.  The intent is for the computer vision system to only identify the spatter once in its 

lifecycle to collect accurate statistical data on position and velocity and to avoid the challenging 

tracking of the particle between frames.  Some particles are much faster than others so separation 

between the same particle on two sequential frames can vary significantly.  Moreover, the 

brightness of the particle is ephemeral and identifying spatter on two frames may not always be 

possible.  Fig. 5 shows both the left and right-side cameras of an active moment during selective 

laser melting of powder with substantial generation of spatter.   Table 1 shows the X, Y, Z direction 

and velocity of each of the spatter shown in figure 4. 

Figure 5: Stereovision imaging of spatter of varying directions and speeds (+Z into plane) 
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Table 1: Spatter from fig. 5 described in direction, velocity 

Particle Start ([x,y,z], mm) End ([x,y,z], mm) Direction ([x,y,z], mm) Velocity (m/s) 

1.1 [0.6590, -7.590, 3.301] [2.875, -10.20, 6.840] [2.216, 2.610, 3.539] 9.85 

1.2 [3.025, -10.40, 6.017] [5.249, -12.80, 9.481] [2.223, 2.392, 3.463] 9.52 

1.3 [5.182, -13.21, 8.668] [7.160, -15.17, 12.85] [1.978, 1.960, 3.463] 10.05 

Avg Particle 1 9.81 

2.1 [2.415, -7.800, 3.881] [6.730, -10.21, 8.902] [4.315, 2.410, 5.021] 14.09 

2.2 [6.730, -10.21, 8.902] [10.62, -12.39, 13.70] [3.893, 2.176, 4.802] 13.11 

2.3 [10.62, -12.39, 13.70] [14.49, -15.15, 16.85] [3.866, 2.768, 3.141] 11.40 

Avg Particle 2 12.87 

3.1 [-0.650, 19.04, 19.16] [-0.305, 20.65, 20.36] [0.3452, 1.604, 1.198] 4.06 

3.2 [-0.4195, 20.98, 21.06] [0.1509, 22.43, 21.51] [0.5704, 1.451, 0.4597] 3.25 

3.3 [0.1509, 22.43, 21.52] [0.1678, 24.66, 24.05] [0.01691, 2.227, 2.535] 6.75 

Avg Particle 3 4.69 

Future work will investigate more accurately where in the melt pool each spatter originated 

and furthermore, if the melt pool motion (build path) has an impact on the quantity, speed and 

direction of the spatter.  Preliminarily it can be noted that when the laser changes direction, the 

production of spatter dramatically increases and the spatter tends to favor the direction opposite to 

the new laser scan path.  The ultimate goal of this research effort is (1) to automate the one 

detection of each spatter and to collect statistical data over millions of frames (2) to verify that by 

determining the position and velocity of the spatter just after creation that this method can predict 

the final impact destination of the spatter in order to improve quality and yield.  

3.3 Spatter calving and implications on melt pool location and contour determination 

On a large fraction of the captured images, spatter was shown in the nascent stage - still 

connected with the melt pool.  Fig. 6 shows the extreme case of a new particle which has yet to 

fully emerge from the melt pool and is being “calved”.  Consequently, the velocity and age of the 

particle cannot be determined as there is no start point other than the melt pool which is large and 

provides an insufficient data as to the exact origination.  These cases are therefore ignored with 

the understanding that as the spatter emerges completely, the particle will be captured and 

evaluated in a subsequent frame.   An additional technique to avoid evaluating calving spatter is 

to identify and contour the melt pool.  If excessive concavity exists (easily detectable in OpenCV), 

the contour can be ignored.  Furthermore, if the centroid of the melt pool is calculated as required 

in order to determine the origin in an age calculation, the centroid can be adjusted to eliminate 

skewing of the location based on calving spatter influence.  
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Figure 6 - Spatter calving where new spatter particles have been formed and are being ejected.  

These “half-baked” spatter do not have a distinct start and stop point which means that 

although the direction can be determined, the velocity cannot.  Furthermore, the centroid of the 

melt pool is distorted and incorrectly pulled to the side of calving particle. 

4.0 Conclusions 

In conclusion, this paper details a low-cost method for spatter tracking and analysis for 

laser powder bed fusion.  The key completed objectives are as follows: 

● Stereovision demonstrates a reliable way to gather in situ statistical information about

spatter particles.

● Spatter Age, Velocity, Direction, and Size have been reliably measured.

● Low cost (less than $10,000 USD) and open source resources were successfully used to

accomplish this work.

● The foundation for an automated system has been laid, which will allow for the gathering

of statistical data for future analysis.

Future work will entail the automation and statistical identification of trends which can be used 

for defect analysis in laser powder bed fusion. 
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