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Abstract 
 

This paper evaluates using in-situ SWIR imaging to monitor part quality and identify 
potential defect locations introduced during Selective Laser Melting (SLM) of 304L stainless steel. 
The microstructure (porosity, grain size, and phase field) and engineering properties (density, 
modulus, and yield strength) depend on the thermal history during SLM manufacturing. Tensile 
test specimens have been built with a Renishaw AM250 using varied processing conditions to 
generate different thermal histories. SWIR imaging data is processed layer-to-layer to extract 
features in the thermal history for each process condition. The features in the thermal history are 
correlated with resulting part engineering properties, microstructure, and defects. The use of SWIR 
imaging is then discussed as a potential for processes monitoring to ensure part quality and develop 
layer-to-layer control in SLM. This work was funded by Honeywell Federal Manufacturing & 
Technologies under Contract No. DE-NA0002839 with the U.S. Department of Energy. 

 
1. Introduction 

 
Selective Laser Melting (SLM) is a powder bed additive manufacturing (AM) process in 

which 3-Dimensional metal parts are produced layer by layer. During SLM, a laser scans and fuses 
the metal powder bed along paths defined by the part geometry with preset process parameters. 
The SLM process parameters determine the thermal histories parts experience during 
manufacturing. The thermal history ultimately controls the microstructure and mechanical 
properties. Monitoring the thermal history using layer-to-layer infrared imaging gives insight into 
the SLM process with the potential to ensure part quality. 

 
Researchers have used infrared and visible imaging to understand the thermal history parts 

experience during manufacturing and gain information about the melt pool. Long-wave infrared 
(LWIR) cameras are used to monitor slower dynamics at lower temperatures during SLM. Krauss 
et al. used a detector sensitive in the LWIR (8-14 μm) to characterize the heat affected zone during 
SLM of Inconel 718 for variations in laser scan strategies. The detector was used to find and 
compare off nominal features in the thermal history of the heat affected zone near borders of parts 
and overhangs. Grasso et al. monitored the SLM process of zinc powder with an infrared camera 
sensitive from 8-9 μm. The camera was incorporated to monitor the stability of the process and 
was able to identify the beginning of SLM process failure during layer-to-layer monitoring. 

 
Visible and short-wave infrared (SWIR) cameras are used to monitor faster dynamics in 

the SLM process and measure melt pool features. Yadroitsev et al. developed an SLM monitoring 
system with a CCD camera to measure the surface temperature and melt pool size during 
processing Ti6Al4V. Findings included the maximum temperature of the melt pool was 
experienced large increases for processing with higher laser powers, but only small increases for 
higher exposure times. The width and the depth of the melt pool were determined to scale with 
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changes temperature as a result of processing with varied laser parameters. Heigel and Lane 
analyzed the effects of powder on the melt pool size and cooling rates experienced during SLM 
through process monitoring with a SWIR camera. The SWIR imaging data showed an increase in 
melt pool length and lower cooling rates for processing powder. Cheng et al. used a SWIR camera 
to monitor melt pool size as a function of build height during SLM of Monel K500. Build height 
was determined to not significantly affect the melt pool size. 

 
Most researchers use infrared imaging to understand the temperature and size of the melt 

pool evolve during manufacturing while some researchers monitor the thermal history to identify 
defects in the SLM process. In this paper, SWIR imaging is used in layer-to-layer process 
monitoring during SLM of 304L stainless steel. Thermal features are extracted from the SWIR 
imaging data to identify defects in 3-Dimensional reconstructions of the SLM parts. These features 
are related to the melt pool size and SLM process parameters used during manufacturing. The 
thermal features are then correlated to part engineering properties to understand how data from the 
thermal history relate to mechanical performance. This is done to ultimately understand if 
meaningful information can be obtained from the SWIR data to ensure part quality and use in 
controls oriented decision making. 

 
2. Experimental Setup 

 
A Renishaw AM250 SLM system was used to manufacture cylindrical tensile test 

specimens (ASTM E8/E8M) out of 304L stainless steel (layer thickness of 50 µm). The Renishaw 
AM250 uses a 200 W maximum fiber laser (λ = 1070 nm) that scans with a point-to-point exposure 
strategy. In the point-to-point exposure strategy, the laser scanning parameters include power, P, 
exposure time, te, point distance, dp, and hatch spacing, hs. The laser steps along the scan path by 
the point distance and then emits for the exposure time. To simplify process parameters into a 
single term, linear energy density, Eρ, can be calculated using Eq. 1. 
 

 e

p

P tE
dρ
⋅

=   (1) 

 
In this work, the tensile specimens were manufactured with constant point distance (60 

μm) and hatch spacing (85 μm) while the laser power (100, 125, 150, 175, 200 W) and exposure 
time (50, 75, 100, 125 µs) were varied. SWIR imaging data was collected in-situ during the SLM 
manufacturing process for all combinations of laser power and exposure time. Figure 1 (a) is a 
schematic of the AM250 build chamber with the SWIR camera mounted at a fixed location. The 
SWIR imaging data was collected through a window installed on the top of the AM250 build 
chamber. A notch filter was selected to protect the camera from scattered laser radiation and a 
bandpass filter was utilized to minimize saturation in the thermal data. 
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FIG 1: (a) Schematic of AM250 building process with SWIR camera observing powder bed and 

(b) completed build of tensile test specimens. 
 

 Three additional tensile test tensile test specimens were manufactured for layer-to-layer 
observations using a laser power of 200 W and exposure time of 75 µs. Two of the specimens were 
manufactured with introduced defects. This was done to demonstrate the ability to detect the 
defects with in-situ measurements taken with the SWIR camera. A nominal specimen was built 
for comparison to the defect specimens. 
 

3. Thermal Camera Data Processing 
 

3.1. Thermal Feature Extraction 
 
 Preforming layer-to-layer observations with the SWIR camera results in time-series data 
of the laser processing each slice of the tensile test specimen geometry. Figure 2 contains images 
of the apparent melt pool from selected frames in the time series data for two process parameter 
combinations. Features can be extracted from this time series thermal data to assign a value to each 
pixel for compression to a single representative frame for each layer. The pixels in the 
representative frames have a known size in object space and a third dimension corresponding to 
the layer thickness can be assigned to create a voxel. A filter for the voxel based data is determined 
by the thermal feature extracted from the time-series recordings of the layers. In this paper, the 
time above melt temperature, maximum spatial gradient, and maximum cooling rate are extracted 
from the time series thermal data for comparison. 
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FIG 2: Images of melt pools from SWIR camera data. 

 
In a layer, the time above melt temperature for each pixel is defined as the total time the 

pixel is above a set threshold. The melt point threshold was determined by observation of the 
apparent phase transition region in the spatial profile of a melt pool. Figure 3 (a) is the spatial 
profile of a melt pool showing the apparent phase transition region corresponding to 12,000 counts. 
Time above melting temperature is proportionate to the apparent melt pool size. This is explained 
by the time series data from a pixel in Fig. 3 (b). Due to the raster of the laser during processing 
the apparent melt pool will pass over a pixel several times for a layer. Larger apparent melt pools 
results in the pixel measuring values above the melt temperature threshold more times than smaller 
melt pools. In Fig. 3 (b) the pixel measured values above the apparent phase transition region six 
times. The time above the melt temperature was increased each time the melt pool passed over the 
pixel. This means larger time above melt temperature values are proportionate to larger melt pools 
while smaller values of time above melt temperature correspond to smaller melt pools. 
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FIG 3: (a) Apparent phase transition region in spatial profile of melt pool and (b) temporal 

thermal data for single pixel. 
 

 The other metrics extracted from the thermal data including maximum gradient and 
maximum cooling rate are direct calculations. The feature of maximum gradient is determined by 
calculating the spatial derivative for each frame in the time-series data and extracting the maximum 
value a pixel experiences. The maximum cooling rate is determined by calculating the temporal 
derivative and then extracting the maximum reduction of counts from one frame to the next for 
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each pixel. Figure 4 consists of color maps of time above the melt temperature, maximum gradient, 
and maximum cooling rate for a single layer in the gage length of the tensile test specimen 
manufactured with a laser power of 175 W and exposure time of 50 µs. 

 

 

 
FIG 4: (a) Tensile test specimen geometry and color maps of layer in gage length for thermal 

features of (b) time above melt temperature, (c) maximum gradient, and (d) maximum cooling 
rate. 

 
3.2. Voxel Based 3-Dimensional Reconstruction of Parts 

 
 The compressed data in Fig. 4 can be generated for each layer of a part. The layer-by-layer 
data can then be arranged to generate a filtered voxel based 3-Dimensional reconstruction of the 
part. Figure 5 is an example of a 3-Dimensional reconstruction using time above melt temperature 
as the voxel filter for one of the tensile test specimen manufactured with a defect introduced into 
the gage length. The defect introduced into this specimen included specific areas processed with a 
laser power of 100 W. The rest of the specimen was manufactured using a laser power of 200 W. 
The voxel based reconstruction can be sliced spatially in any plane. The spatial slice in Fig. 5 is 
normal to the build plane and clearly shows the defect within the gage length. The 3-Dimensional 
reconstruction can also be sliced by setting a threshold for the values of the voxel color scale. This 
is demonstrated in Fig. 5 where a threshold was set to plot voxels with time above the melt 
temperature values from 0 to 3 ms and then 3 to 6 ms. 
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FIG 5: 3D voxel reconstruction of tensile test specimen showing introduced defect in gage length 

through spatial and color scale slicing. 
 

 Figure 6 is further demonstration of defect identification through layer-to-layer process 
monitoring with SWIR imaging. The reconstructions in Fig. 6 use time above melt temperature as 
the filter to generate the voxel based representations from the raw thermal data. Figure 6 contains 
an image of the two tensile specimens manufactured with defects. The defects introduced into 
these samples were the previously mentioned areas of the gage length processed with lower laser 
power for the first specimen and then an un-sintered void for the second specimen. It is not possible 
to differentiate the specimens through optical observations of their exteriors. The interior defects 
are visible in the voxel data for the tensile test specimens. These defects are highlighted in Fig. 6 
through the images of the cross sections of the tensile specimen CAD models and corresponding 
3-Dimensional reconstructions. The CAD geometry and voxel data slice for the nominal tensile 
specimen are also included in Fig. 6. A subtle increase in time above melt temperature can be seen 
in the voxel reconstruction for the top of the nominal specimen. This is a result of other parts with 
less layers completing during the build before the nominal tensile test specimen. The layer-to-layer 
process time was decreased and that led to an increase in the time above melt temperature for the 
nominal tensile specimens. This change in the thermal history identified through the 3-D voxel 
reconstruction can potentially be significant and lead to a variation in part properties for extreme 
cases. 
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FIG 6: Identification of changes in thermal history and internal defects in tensile test specimens 

through layer-to-layer process monitoring. 
 

4. Process Parameter and Mechanical Properties Correlations 
 

4.1. Correlation of Thermal Features and Process Parameters 
 

 The framework developed to create the filtered voxel data based on thermal features allows 
layer-to-layer process monitoring and can be used to identify introduced defects in specimens as 
shown in Fig. 6. This framework can be expanded to evaluate part engineering properties by 
correlation of the extracted thermal features to experimental data. The three thermal features 
including time above melt temperature, maximum gradient, and maximum cooling rate will be 
compared by evaluating the parameter that has the strongest relationship with process parameters 
and specimen properties.  

 
Figure 7 contains representative time above melt temperature color maps for a layer in the 

gage length of the tensile test specimens. In Fig. 7, the trend time above melt temperature with 
respect to process parameters is visible qualitatively, with higher times for larger laser powers and 
exposure times. The color maps show the borders of the specimens have higher time above melt 
temperature values. This is due to the laser raster pattern and border scans. At the edges of the part 
the laser is cornering leading to larger melt pools and after the interior of the part is processed, the 
border scans trace the perimeter of the part. Both of these features in the process will increase the 
time above melt temperature. 
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FIG 7: Representative color maps of time above melting temperature for layers in tensile test 

specimens’ gage lengths processed with varied laser power and exposure time. 
 

Data similar to Fig. 7 can be generated for maximum gradient and maximum cooling rate. 
To evaluate the thermal features as a function of process parameters, time above melt temperature, 
maximum gradient, and maximum cooling rate were extracted for ten layers of each process 
parameter combination. The thermal features were averaged for the ten layers excluding data from 
the edges of the specimens to avoid effects from border scans. The three thermal features are 
plotted as a function of linear energy density in Fig. 8.  

 
In Fig. 8 (a), the time above melt temperature has a positive correlation with energy density 

while in Fig. 8 (c) the maximum cooling rate has a negative correlation. The maximum gradient 
in Fig. 8 (b) appears to have no correlation with energy density. The results for time above melt 
temperature and maximum cooling rate follow the expected trends. The higher energy densities 
lead to larger melt pool sizes which is proportionate to increased times above the melt temperature. 
The increased energy input resulting from the larger energy densities should also lead to the 
decrease in maximum cooling rate shown in Fig. 8 (c). 
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FIG 8: (a) Time above melting temperature, (b) maximum gradient, and (c) maximum cooling 

rate as a function of linear energy density. 
 

The error bars in Fig. 8 demonstrate the variation of the thermal features from layer-to-
layer. The time above the melt temperature experiences higher variance as energy density 
increases. The maximum gradient and maximum cooling rate have similar variances for all energy 
densities. The variation within a single layer and from layer-to-layer is possibly due to the laser 
scan strategy which includes changing scan path partitions and rotation angles for each layer. The 
increased variance in time above the melt temperature for higher energy densities could be a result 
of the laser cornering. This effect is illustrated in Fig. 7 by the color map of the specimen processed 
with a laser power of 175 W and exposure time of 125 µs. The higher energy densities result in 
larger melt pool sizes leading to larger time above melt temperature values at the edges of the 
specimens. The center of the specimens experience times above the melt temperature less than the 
edges. This leads to the larger variance, even with excluding data from the edges of the part that 
are affected by border scans. 

 
4.2. Correlation of Thermal Features and Mechanical Properties 

 
Both the time above melt temperature and maximum cooling rate were shown to scale with 

process parameters. Tensile test specimen properties have been correlated to the time above melt 
temperature, maximum gradient, and maximum cooling rate to further compare the three thermal 
features. The tensile specimen properties for each process parameter combination were 
experimentally determined for correlation include yield strength, ultimate strength, microhardness, 
and porosity.  

 
The tensile tests to determine yield strength and ultimate strength were performed using an 

Instron 5969 with load control under ASTM E8/E8M standards [6]. Samples were tested in as built 
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(c) 
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condition after cleaning the threads with a die. In total 95 samples were tested, 5 for each of the 
19 successful parameter sets used during manufacturing. Tensile specimen testing was randomly 
ordered and randomly oriented in the tensile testing machine grips. Vickers microhardness testing 
was performed with a Struers Duramin 5. The microhardness tests used a force of 490 mN for 13 
seconds following ASTM E384-17 standards [7]. Porosity of the tensile test specimen cross-
sections was estimated by using image analysis. The tensile test specimens were sectioned in the 
gage length and polished. Optical micrographs were taken of the cross-sections using a Hirox KH-
8700 microscope. ImageJ was then used used to find the percent porosity by converting the image 
to binary and determining the ratio of the amount of cross-sectional area that was un-sintered to 
the total area. 
 

Figure 9 is the correlation of specimen properties to time above melt temperature. The peak 
performance for tensile properties is reached at a time above melt temperature of 2 ms. The 
microhardness results contain more scatter, but also reach near peak performance at a time above 
melt temperature of 2 ms. Porosity in samples decreases with increasing time above melt 
temperature. Four time above melt temperatures above 3 ms resulted in less than 1% porosity. The 
time above melt temperatures above 3 ms with porosity greater than 2% correspond to the 
specimens processed with the higher exposure times. The increased porosity for these samples 
could possibly be due to an increase in keyhole processing at the edges of the parts.  
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FIG 9: Specimen properties as a function of time above melting temperature. 

 
 Figure 10 contains the correlations of specimen properties to the maximum gradient. There 
are no clear trends for any of the specimen properties as a function of maximum gradient. Figure 
11 is the correlation of specimen properties and maximum cooling rate. While maximum cooling 
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rate correlated to process parameters, there is no clear relationship with specimen properties. The 
lack of a correlation of maximum gradient and cooling rate to part properties could possibly be 
explained by uncertainties in the spatial and temporal resolution of the thermal camera data. These 
uncertainties could lead to issues with the direct calculations of the maximum gradient and 
maximum cooling rate. The feature of time above melt temperature is not significantly affected by 
the uncertainties in resolution. 
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FIG 10: Specimen properties as a function of maximum gradient. 
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FIG 11: Specimen properties as a function of maximum cooling rate. 

 
5. Summary and Conclusions 

 
  In this paper, a framework was developed to compress time series SWIR imaging data 
collected during layer-to-layer process monitoring into filtered voxel based 3-Dimensional 
reconstructions of SLM manufactured tensile specimens. The filter for the voxel data was 
determined by the feature extracted from the thermal data. The features in this paper extracted 
were time above melt temperature, maximum gradient, and maximum cooling rate. The framework 
was then used with time above melt temperature as the filter for preliminary identification of 
introduced defects in the gage length of tensile specimens through the monitoring of layer-to-layer 
part quality. The 3-Dimensional reconstructions of the specimens can be sliced spatially in any 
plane for analysis. In addition to spatial slicing, thresholds can be set to slice the data based on the 
thermal feature. 

 
After demonstration of layer-to-layer process monitoring the three thermal features were 

compared by evaluating their correlations to process parameters and specimen properties. Both 
time above the melt temperature and maximum cooling late were shown to correlate with the linear 
energy density used during manufacturing of the tensile test specimens with varied laser power 
and exposure time. Maximum gradient did not correlate with linear energy density. The time above 
melt temperature also correlated well with the part properties of yield strength, ultimate strength, 
microhardness, and porosity. A value of time above melt greater than 2 ms resulted in peak 
performance for the mechanical properties. The specimen porosity was generally a minimum for 
times above melt temperature greater than 3 ms. The maximum gradient and maximum cooling 
rate had no clear correlations with the specimen properties. 
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The time above melt temperature had the strongest relationship to part properties out of the 
three thermal features compared in this paper. The direct calculations of maximum gradient and 
maximum cooling rate possibly did not correlate well due to uncertainties in the spatial and 
temporal resolution of the SWIR imaging camera. The correlation of the thermal feature of time 
above melt temperature to part properties shows meaningful data can be extracted from SWIR 
imaging data for potential use in layer-to-layer control of the SLM process. This thermal feature 
is easily computed and can be implemented in a controls oriented decision making process. 
Ensuring a uniform time above melt across a layer through controls could result in an increase in 
mechanical property homogeneity. 

 
The framework developed for layer-to-layer process monitoring can be expanded to 

incorporate more thermal features extracted from the time series data captured for a layer during 
SLM. Features with strong correlations to part properties such as time above melt temperature can 
be used in further development of the framework. The correlations between the thermal features 
and part properties could potentially be used to generate voxel based data of localized mechanical 
properties. This development in future work will allow layer-to-layer part monitoring to ensure 
part quality and flag defects during the SLM manufacturing process based on engineering 
properties. 
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