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Abstract 

 
The vision of sustainable mass customization calls for additive manufacturing (AM) processes that 
are resilient to process variations and interruptions. This work targets to pioneer a system-
theoretical approach towards such a smart and reliable AM. The approach is based on control-
oriented modeling of the process variations and on closed-loop model-based controls that facilitate 
in-situ adjustment of the part quality. Specifically, one focused example is laser-aided powder bed 
fusion. Building on the in-layer precision heating and solidification, together with layer-by-layer 
iterations of the energy source, feedstock, and toolpath, we discuss mathematical abstractions of 
process imperfections that will not only understand the intricate thermomechanical interactions 
but are also tractable under realtime computation budgets. In particular, we develop and validate 
a surrogate modeling of in-process disturbances induced by the periodic in- and cross-layer 
thermomechanical interactions. This control-oriented disturbance modeling allows for the 
adoption of high-performance control algorithms to advance AM quality in a closed loop, and we 
show a first-instance study on the effect of repetitive controls in reducing melt-pool variations in 
the periodic energy deposition.  

 
1 Introduction 

 
In contrast to conventional machining, where parts are made by cutting away unwanted 

material, additive manufacturing (AM) – also called 3D printing – builds three-dimensional objects 
of unprecedented complexity by progressively adding small amounts of material. Powder bed 
fusion (PBF), in which new material is added to the part being fabricated by applying and 
selectively melting a powdered feedstock, is a popular form of AM for fabricating complex 
metallic or high-performance polymeric parts. Despite such capabilities and countless emerging 
applications, limited reliability and reproducibility are hindering broader adoption of this 
manufacturing technology. Under the current state of the art, unpredictable variations in parts arise 
from different machines or even from the same machine on a different day [1]. It remains not well 
understood how to systematically and predictably control the process for assured quality. The 
absence of such knowledge challenges a broad range of applications that impact our everyday lives 
(e.g., digital manufacturing of final products for jet engines [2], automobiles [3-4], oil and gas 
industry [5], and medical implants [6]). This study aims to provide new knowledge critical to the 
advancement of quality-assured PBF AM. The focus is on a system-theoretical understanding and 
a control-oriented disturbance modeling of the key energy deposition in laser-based PBF. 
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The PBF process builds on precision heating and solidification in a short time scale, 
together with convoluted layer-by-layer iterations that take hours or days to complete (Figure 1). 
The physics of this non-contact energy deposition is a union of thermal balance, phase change, and 
solid mechanics. Pre-process high-fidelity simulations [7-10] can map out an initial parameter 
space, and post-process material analyses can reveal the internal quality of the built parts; however, 
mitigation of various in-process disturbances and uncertainties ultimately hinges on realtime, 
feedback-based controls. Such controls have remained a long-felt but not fully realized vista in 
PBF, because a major disconnection exists between current architectures of online controls and 
the modeling of the multi-scale complex process. Algorithms in the realm of high-fidelity 
modeling are prohibitively expensive under a realtime computation budget: simulating just a few 
layers of practical energy deposition can take hundreds of hours [11]. In the realm of control-
oriented PBF modeling, existing sparse attempts of lumped parameters have been limited to the 
fusing of a single line. The modeling of layer-to-layer interactions and scanning patterns has not 
been established yet. These complex dynamics, involving heat transfer from the already-solidified 
materials, fundamentally impact part quality [12-13]. 
 

 
Figure 1: PBF AM: quality of part is tailored by layered energy deposition. 

 
The objective of this paper is to step beyond current control-oriented modeling and fill the 

critical gap pertaining to the lack of systematic disturbance models usable under a realtime 
computation budget. The proposed approach is to integrate knowledge and experience from 
precision mechatronics into related thermophysics, photonics, and laser optics in PBF. Tools from 
this list have been key for reaching nanometer-scale control resolutions in layer-by-layer 
manufacturing processes such as semiconductor manufacturing. We will create the surrogate 
models from a multi-physics multi-scale model, by partitioning the task space based on first-
principle analysis, neglecting weak couplings in the energy balance equation, and linearization 
around a quasi-stationary equilibrium. To increase the fidelity of the models, we will then add 
disturbance dynamics to account for the neglected thermal interactions. Along the course of 
developing the modeling framework, we also identified a highly structured temperature variation 
rising from periodic scanning patterns germane to the 3D infill process. Such patterns make it 
feasible to decouple an analytically tractable disturbance model from the complex heating-cooling 
cycles. The result is that we will be able to form, for the first time to our best knowledge, a set of 
computation-friendly process and disturbance models for feedback control of PBF, and understand 
exactly how the structured disturbances impact the dynamic system. Taking advantage of the 
parametric structures of these disturbance models, we propose a repetitive control algorithm for 
reaching a quality-assured PBF AM. 
 

2336



The remainder of the paper is organized as follows. In Section 2, we elaborate the 
fundamental thermodynamics in PBF and the simulation/experimentation platforms. The control-
oriented modeling of PBF is proposed in Section 3. Section 4 analyzes extended cross-layer 
thermal interactions and applies repetitive control to compensate the periodic structured thermal 
disturbances. Section 5 concludes this paper. 

 
2 Fundamental thermodynamics, simulation and experimentation platforms 

 
2.1 Review of PBF mechanism and relevant thermal physics 
 

A typical object in PBF is built from many thousands of thin layers (tens to several 
hundreds of microns thick). During the solidification of each layer, a high-power laser or electron 
beam forms a microscopic melt pool that moves at several meters per second to selectively 
sinter/melt the particle powders (Figure 2-c). After consolidation, the bed is lowered by the 
thickness of a new thin layer. New powders are then spread over the current deposit to start the 
next repetition (Figure 2-a). 
 

 
Figure 2: Illustration of the PBF process. 

 
The strong form of the governing nonlinear thermodynamics comprises radiation, 

convection, conduction, and phase change (Figure 2-b). The central dynamic equation is a partial-
differential energy balance equation with intricate boundary conditions (Figure 2-d) and involves 
a first-order derivative in time, second-order derivatives in three spatial coordinates, and a forcing 
term that encapsulates the external heating rates. (The effect of the energy source can be considered 
either in the forcing term [7] or as a boundary condition.) There are two distinct worlds of modeling 
the multi-physical process. In the first, much larger world of numerical methods [8-10, 14], weak 
forms of the governing equations are obtained by physics-based order reduction. Successful 
approaches include: 1) removing or combining weak couplings such as surface convection and 
radiation [7, 11]; 2) Gaussian modeling of the heat source [15]; 3) polynomial or static 
approximation of the nonlinear parameter variations; and 4) assuming very localized or 
numerically canceled latent heat from phase change. Finite element and difference methods are 
then employed to numerically solve the models. In the second, very small world of control-oriented 
modeling, the sparse attempts that exist use lumped parameter modeling. Low-order linearized 
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models have been proposed [16, 17] based on input-output system identification of a black-box 
transfer function. 

 
2.2 Simulation and experimentation platforms 
 

We use the COMSOL Multiphysics 5.3a software to simulate the in-layer thermal cycles 
in a proof-of-concept benchmark problem (Figure 3). The process parameters used in the 
simulation are listed in Table 1, where 𝑘, 𝜎, and 𝜌 are, respectively, the thermal conductivity, the 
specific heat, and the effective density of the materials. The simulation encompasses surface 
convection, surface radiation, conduction, and phase change, while the effects of fluid flow and 
Marangoni force are neglected. We assume a Gaussian laser beam profile. In meshing, to balance 
accuracy with computation time, a fine resolution with the maximum element size of 0.0726 mm 
(33% of the laser diameter) is applied to the powder bed region that directly interacts with the 
energy beam, whereas less finer meshes are applied to the substrate and peripheral powder bed. In 
addition, free triangular and tetrahedral elements are used in the powder bed and substrate, 
respectively. The time step 𝑇% is 0.5 ms. Eighty tracks are bidirectionally sintered, as shown in the 
left plot of Figure 3. The right plot of Figure 3 illustrates the simulated temperature distribution of 
the powder bed and substrate at 𝑡 = 1.202 s. The simulation was run on two Intel Xeon CPU E5-
2690 v3 at 2.6 GHz with 24 cores in total. The computation time is around 54.5 hours. 
 

 
Figure 3: Schematic of meshing, laser path planning, and thermal simulation result at 𝑡 = 1.202 s. 
 

Table 1: Parameters for numerical simulation 
Parameters Value 
Dimensions of powder bed 15 mm × 15 mm × 50 µm 
Dimensions of substrate 15 mm × 15 mm × 5 mm 
Powder material Ti–6Al–4V 
Laser power 100 W 
Scan speed 100 mm/s 
Laser spot diameter 220 m 
Emissivity 0.35 
Ambient and initial temperature 20 ℃ 
Convection heat transfer coefficient 12.7 W/(m3 ⋅K) 
k, 𝜌, 𝜎 Temperature-dependent [18] 
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The experimentation platform used in this paper is an in-house developed selective laser 
sintering testbed (Figure 4). Laser scan experiments are conducted on this platform to investigate 
the cross-layer thermal patterns in PBF. Figure 4 shows the setup for testing the cross-layer thermal 
interactions. This sample part is directly attached to the build plate that are heated by multiple heat 
resistors from underneath. 
 

 
Figure 4: Experiment setup and sample part. 

 
3 Control-oriented modeling of repetitive variations in PBF 

 
Under the usual assumptions in high-fidelity modeling [7, 11], the dominant thermal 

dynamics in the heat affected zone is described by the energy conservation equation: 
 

𝜌𝜎
𝜕𝑇
𝜕𝑡 − 7

𝜕
𝜕𝑥 9𝑘

𝜕𝑇
𝜕𝑥: +

𝜕
𝜕𝑦 9𝑘

𝜕𝑇
𝜕𝑦: +

𝜕
𝜕𝑧 9𝑘

𝜕𝑇
𝜕𝑧:> − 𝑞(𝑡, 𝑥, 𝑦, 𝑧) = 0, (1) 

 
where 𝑇 is the temperature of materials and 𝑞 is the nonlinear forcing term encapsulating the heat 
source.  
 
(1) Order-of-Magnitude Analysis of the Time Scales 
 

For the thermal interactions on the surface layer, the basic mechanism between the energy 
beam and powder material is a high-speed precision scanning that consists of: 1) single-stroke line 
fusion; 2) a periodic raster scanning that completes the infill. In the limit of extremely thin and 
shallow scan path, the heat flow is largely restricted in one direction. A valid approximation of 
Equation 1 is then 𝜕𝑇/𝜕𝑡 − 𝑐3𝜕3𝑇/𝜕𝑝3 − 𝑞(𝑡, 𝑝) = 0, where 𝑝 is the direction of scanning and 
𝑐3 = 𝑘/(𝜌𝜎). This is a coarse approximation; however, an order-of-magnitude analysis on the 
simplified model suffices to reveal the time dependence of the thermal conditions. Meshing the 
spatial domain with the step size 𝛿G and performing the second-order numerical approximation 
𝜕3𝑇H/𝜕𝑝3 ≈ (𝑇HJK − 2𝑇H + 𝑇HLK)/𝛿G3, we obtain a first-order ordinary differential equation with a 
time constant 𝜏 = 𝜌𝜎𝛿G3/(2𝑘). For the common polymeric powder Nylon 12, 𝑘/(𝜌𝜎) is on the 
order of 10LN m3/s. With 𝛿G being on the order of 200 microns (∼ the layer thickness), the time 
constant is approximately 0.2  seconds. For metals such as Ti6Al4V, 𝜏 ≈ 0.005  seconds 
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(𝑘/(𝜌𝜎) ∼ 10LPm3/s, 𝛿G ∼100 μm). Thus, when the time to finish a stroke is longer than or in 
the same order of magnitude of the discussed time constant, unneglectable heat will start 
transferring to the adjacent lines and layers. With these distributions of time scales, it is hence 
essential to systematically understand the in-layer dynamics, and the proposed model will cover 
them with: 1) a continuous moving source model; 2) an in-layer heating-cooling disturbance 
model. 
 
(2) Single-stroke laser-material interaction 
 

The proposed single-stroke model is based on analytics of the fundamental heat and fluid 
flows during laser-material processing. We define the normalized heat flux as the input 𝐮(𝑡), 
which is related to the reflectivity of the material ℛ, power of the heat source 𝑃, beam spot size 
𝐴UVWX, and scan speed 𝑉%, by 𝐮 = (1 − ℛ)𝑃/𝐴UVWX/𝑉%. The proposed states 𝐱(𝑡) and output are the 
important melt-pool characteristics including overall area and width. When the beam is scanned 
very fast so that the boundaries of the surface layer are approximately adiabatic (zero temperature 
gradient), both temperature and geometry of the melt pool have empirical low-order dynamics [16, 
19-20]. 
 

We first transform the full-order model (Equation 1) into a quasi-stationary surrogate by 
assuming constant material properties and introducing a new coordinate system that is attached to 
the heat source [21]. Within this transformed coordinate (𝜉, 𝑦, 𝑧)  with 𝜉 = 𝑥 − 𝑢]𝑡 , ideally a 
consistent melt pool is formed, along with a quasi-stationary state of the temperature field 𝑇 =
𝑓_(𝑇 , 𝜉, 𝑦, 𝑧, 𝑢], 𝑞, 𝜎, 𝜌, 𝑘), where 𝑢]  and 𝑞 are, respectively, the scanning speed and the input 
heat flux in the (𝜉, 𝑦, 𝑧) coordinate. For instance, given a point heat source, this mapping has the 
analytic Rosenthal solutions [21], and the temperature distribution at the quasi-stationary state is 
 

𝑇 − 𝑇a =
𝑞

2𝜋𝑘𝑟 e
Lef(gJh)3ij , (2) 

 
where 𝑟 = k𝜉3 + 𝑦3 + 𝑧3. The geometric profile of the melt pool is subsequently defined. We 
then have a nonlinear static mapping in the form of 𝐱%% = 𝑓](𝑇 , 𝐮%%). 
 

At the edge of the melt pool, 𝑇 equals the melting point Tm. Thus, for a point laser source, 
by letting 𝜉 = 𝑧 = 0 and 𝑦 = 𝑤/2	in Equation (2), where 𝑤 is the width of the melt pool, we have 
 

𝑇n − 𝑇a =
𝑞

𝜋𝑘𝑤 e
Lefopij . (3) 

 
Using the above quasi-stationary state as an equilibrium point and perturbing the full-order 

model around the equilibrium, we identify a second-order linearized plant based on input-output 
system identification: 
 

𝑃(𝑠) =
1.301 × 10s𝑠 + 1.409 × 10v

𝑠3 + 5752𝑠 + 4.377 × 10P . 
(4) 
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As shown in Figure 5, response of the identified surrogate model closely matches with the 
full-order simulation result. Here, we use the laser power as the input and the peak temperature 
(i.e., maximum melt pool temperature) as the output. The latter is closely related to the melt-pool 
geometry. To be more specific, a higher peak temperature results in larger temperature gradient on 
the melt pool surface and subsequently leads to larger Marangoni convection between the center 
and the edge of the melt pool surface [22, 23]. More melted powders are then drawn into the melt 
pool, leading to a wider melt pool width. To get a uniform part quality, the melt pool width and 
hence peak temperature are desired to be kept constant during the beam scanning [20].  
 

 
Figure 5: Step responses of the identified plant model and simulation data. 

 
Building on top of this baseline single-stroke operation model, we will establish next a 

modeling of the thermal disturbances in raster scanning. 
 
(3) Control-oriented modeling of thermal disturbances 
 

Inconsistencies exist in the temperature field after the repetitive scanning and fusion of 
materials [24]. Such cross-scan interactions enter as disturbances to the quasi-stationary state in 
Subsection 3-(2) and create different melt-pool properties. This is particularly harmful to materials 
with a high thermal conductivity or when a long scan distance is desired. Our central observation 
is that a highly repetitive temperature variation occurs due to periodic scanning patterns in the 
infill process. Hence it is feasible to decouple an analytically tractable disturbance model from the 
complex heating-cooling cycles. Early clues from experimental investigations in materials science 
and engineering support this observation [25], but the effect has not been systematically explored 
in the domain of dynamic systems and model-based controls. 

 
Figure 6: Proposed modeling of the cross-scan interactions. 

 
To mathematically formalize the concept, it is important to recognize that materials around 

the melt pool are heated and cooled as functions of space and time (Figure 6-a, b). The already 
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fused track #𝑛 − 𝑖 (𝑖 ≤ 1) will create a heating-cooling cycle to the powder materials on track #𝑛 
(Figure 6-c). For instance, when 𝑖 = 3, this pre-heating on track #𝑛 is governed by conduction 
from track #𝑛 − 3 starting at the “just-sintered” state (determined from the Rosenthal solution if 
the energy input is from a point source). The governing 3D transient heat transfer dictates that the 
temperature will be inhomogeneous along the sintering direction (the 𝜉 axis), but has the form of 
𝑓{L|(𝜉, 𝑢], 𝑞, 𝑡). Extending the analysis to other tracks, we can model the collective effect of all 
fused tracks as the superposition of the individual heating-cooling cycles: ∑ 𝑓{LH{LK

H~K (𝜉, 𝑢], 𝑞, 𝑡 +
𝜏H)1(𝑡 − 𝜏H), where  1(𝑡) is the Heaviside step function and 𝜏H is the time interval between the 
sintering of tracks #𝑛 − 𝑖 and #𝑛. 
 

For track #𝑛 + 2, analogous procedures yield the same pattern of temperature distribution. 
The equivalent disturbance effect is thus proposed to satisfy a repetitive or quasi-repetitive model: 
𝑑(𝑡) = 𝛼𝑑(𝑡 − 𝜏) + 𝑤`(𝑡) , where 𝛼 ≈ 1  and 𝑤`(𝑡)  accounts for the effect of other less-
structured in-process disturbances. Since tracks far away from the heat source contribute 
insignificantly to the cumulative heating (Figure 6-b), a steady state or a slowly varying mode 
forms when the number of tracks is large. In other words, 𝛼 converges to 1. The repetitive portion 
of the disturbance can then be modeled as the impulse response of 𝐺g(𝑠) = 𝐵�(𝑠)/(1 − 𝑒L%�), 
where 𝐵�(𝑠) is a polynomial of 𝑠 with no roots on the imaginary axis. The period of the signal 𝜏 
is a function of the scanning pattern. 
 

Although we have focused on the in-layer heat transfer, the above analysis applies also to 
the layer-wise thermodynamics, and repetitive thermal interactions exist also across layers. For 
instance, in Figure 7, at the start of a new layer, the peak temperatures at points A and C will be 
higher than that of point B because previously solidified layers beneath A and C have accumulated 
more thermal energy that will conduct to the top surface. The supporting cross-layer experiments 
are provided in Section 4. 
 

 
Figure 7: Illustrative diagram of cross-layer sintering. 

 
    4 Results and analysis 

 
4.1 In-layer thermal interaction and repetitive control for peak temperature regulation 
 

Figure 8 shows the simulation results validating the in-layer thermal interactions. We 
observe that after a short transient, the average peak temperature reaches a steady state as a result 
of balanced heat influx and diffusion. After reaching the steady state, the peak temperature 
fluctuates around the average value (2356.2 K). Besides, the start of each laser scanning track 
(except the first track) has larger peak temperatures than the rest of the track. This is because in 
raster scanning (Figure 3), when the energy beam approaches the end of one track, the large latent 
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heat does not have enough time to dissipate out before the next track starts. These increased 
temperatures at the beginning of each track form a periodic disturbance with a repetitive spectrum 
in the frequency domain (top plot of Figure 9). The fundamental frequency 𝑓a of the disturbance 
is defined by the period of the scanning motion 𝑡a, that is, 𝑓a = 1/𝑡a = 𝑢]/𝐿, where 𝐿 is the track 
length. In this example, 𝑓a = 100/5 = 20 Hz, and frequency spikes at {𝑛𝑓a} (𝑛 ∈ ℤJ) appear in 
the fast Fourier transform of the disturbance. It is noteworthy that besides the raster scan that was 
used as a unit problem in this study, other scanning patterns yield similar repetitive disturbance 
patterns (see, e.g., experimental results in [27]). As such, automatic control algorithms [26] can be 
applied to attenuate those undesired repetitive spectra of peak temperature, as will be illustrated 
next. 
 

 
Figure 8: Peak temperature variation due to in-layer scanning patterns. 

 
To get a uniform in-layer temperature distribution during the scanning of a single track in 

the repetitive beam motion, we apply a well-tuned baseline PID controller and a plug-in repetitive 
controller [28] by using the surrogate model as the plant and the generated temperature variation 
from the multi-scale multi-physics simulation as the add-on disturbance. Here, the PID control 
provides a basic closed-loop performance with a bandwidth of 639 Hz, while the repetitive control 
enables high-performance compensation of the periodic disturbances. It is observed that PID 
control alone fails to properly attenuate the thermal disturbance: over 80 Kelvin degrees of 
variation show up in the controlled peak temperature (dashed line in Figure 10), and large harmonic 
modes in the frequency spectrum match with the aforementioned calculations (top plot of Figure 
9). After adding the proposed repetitive control on top of the PID algorithm, we observe significant 
attenuations of the periodic disturbances in both the time domain (solid line in Figure 10) and the 
frequency domain (bottom plot in Figure 9). In particular, the peak temperature was controlled to 
be nearly constant. 
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Figure 9: Spectrum of closed-loop temperature variations during in-layer raster scanning.  

 

 
Figure 10: Simulated closed-loop peak temperature of the melt pool under raster scanning and 

the proposed repetitive control.	
 
4.2 Cross-layer thermal interaction: repetitive variations of melt pool width 
 

Similar to the in-layer case where previously sintered tracks generate thermal disturbances 
to the new track, the heating-cooling cycles of previously sintered layers also create disturbances 
to the temperature profile of the surface layer. As a result, the temperature distribution across the 
powder bed is the lumped output of both in-layer and cross-layer heat transfer dynamics (Figure 
7). The cross-layer thermal disturbance is particularly harmful for parts with abrupt geometric 
changes, such as those with overhang structures, and we identify next such effects from a control-
oriented analysis based on experimentation results in the in-house selective laser sintering testbed 
(Figure 4).  

A pre-fabricated aluminum part (Figure 4) is buried in Nylon 12 powders with a few thin 
layers of powders spread on top of the flat surface of the part. At the stage of pre-heating, since 
aluminum has a higher thermal conductivity than Nylon 12, the temperature of the powders on top 
of the part surface is significantly higher than that of the powders outside (left plot of Figure 11). 
We generate a raster scanning (right plot of Figure 11) with a 2.8Watt 445nm laser diode that has 
the proper energy density to fuse the powder materials. The pattern has a much larger width than 
the aluminum part underneath. This configuration imitates the sintering process of parts with 
overhang structures, and the aluminum part corresponds to previously fused layers. The powder 
bed thermal profile is recorded by a FLIR A325sc infrared camera. 
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Figure 11: Illustration of cross-layer disturbance: high-temperature fused material in previous 
layers create periodic thermal disturbance to the energy deposition on the top layer. (The area 

around the powder bed in (a) is caused by camera error due to inconsistent surface conditions.) 
 

 
Figure 12: Temporal evolution of melt pool width. 

 
We observe significant repetitive variations of the melt pool width (evaluated by pixel 

numbers in the video frames) from the temporal evolution in Figure 12. Since the initial powder 
temperature inside the boundary of the aluminum part is much larger than that outside, every time 
the laser scans through the thin powder on top of the aluminum part, a larger melt pool width is 
generated (Tracks 4-7 in Figure 12). Correspondingly, multiple frequency spikes show up in the 
frequency-domain spectrum of the melt pool width (Figure 13). In particular, the peak frequencies 
0.44 Hz and 0.88 Hz correspond to the single-stroke scan period. Our ongoing research is targeting 
at high-performance control solutions to attenuate these cross-layer thermal disturbances that are 
closely related to geometric features and thermal-material interactions. 
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Figure 13: Melt pool width spectrum.  

(The low-frequency spike corresponds to the steady-state value of the melt pool width) 
 

5 Conclusions 
 

This paper provides a new control-oriented disturbance modeling and a system-theoretical 
understanding of the energy deposition in powder bed fusion (PBF) additive manufacturing. 
Starting from the intricate multi-scale PBF thermal physics, we investigated and modelled two in-
process disturbances induced by in- and cross-layer thermal-material interactions. Along the 
course of developing the modeling framework, we identified highly structured temperature 
variations rising from periodic beam-scanning patterns and part geometry. The resulting 
disturbance parameterization provides a new design space for advanced control algorithms to 
improve the quality of PBF-manufactured parts, and we presented a plug-in repetitive controller 
design for substantially better control of the melt-pool profile.  
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