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Abstract 

 

 The minimum feature size in most commercially available metal additive manufacturing 

(AM) processes is limited to ~100 microns which poses a fundamental challenge in fabricating 

complex 3D micro-components. The authors have developed a microscale selective laser sintering 

(µ-SLS) process with the goal of fabricating these microproducts with 1µm minimum feature size 

resolution. To achieve near-net shaped sintered features, the powder bed layer should not be more 

than one micron thick. This paper presents the development and testing of a powder bed deposition 

mechanism using a slot-die coater. Metallic nanoparticles uniformly dispersed in a solvent were 

used in this study. A viscocapillary coating model was used to predict the wet thickness of the 

powder bed based on the coating gap. Experimental results revealed that uniform sub-micron layer 

thicknesses were achieved by optimizing the process parameters such as flow rate, coating speed, 

coating gap, and die gap. The novel approach discussed in this paper enables the implementation 

of a robust coating mechanism for high throughput AM. 

 

Introduction 

 

AM has traditionally driven the development of high throughput techniques for the 

fabrication of complex and specialized three-dimensional products. Recent innovations in these 

technologies are being targeted at integrating the manufacture of true-3D architectures with other 

processes. While these processes are well designed for macroscale and mesoscale part fabrication, 

there are several challenges involved in downscaling them to micron and sub-micron sizes. 

Although microfabrication of polymer structures using stereolithography (SL) has been 

commercialized extensively, most microscale AM processes for metals are still in prototyping 

phases. Typical metal AM processes are based on powder bed fusion (SLS, LM) and are limited 

to a minimum layer thickness of 50 µm. Limited laser focus, uneven agglomeration of finer 

particles and higher susceptibility to oxidation, largely undermine the fidelity of the metal AM 

processes [1], [2]. Addressing these challenges, the authors have developed the μ-SLS process for 

fabrication of true-3D sintered metal structures with a 1 micron target resolution [3].  

 

A target application of the μ-SLS process is to fabricate interconnects for Integrated 

Circuits (ICs). An ever-increasing demand for the miniaturization of electronic components has 

spurred the need for the development of 3D multichip modules. Their performances are affected 

by interconnects like C4 solder bumps, vias, BGAs, and conducting pads etc. within and between 

the chip components. A SL based 3D electronic structure was reported by Lopes et al [4]. Cai et 

al [5] presented 10 um high microstrip lines and vertical interconnects with 20 um planar resolution 

using the Aerosol Jet Printing (AJP) process. However, the resolution of many extrusion and 
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printing techniques are inherently limited by the diameter of their nozzles, as smaller nozzles 

require higher operating pressures to avoid clogging of the nozzles. While Electrohydrodynamic 

(EHD) printing can address this problem by applying a potential difference across the conductive 

nozzle and the ink to achieve sub-micron droplets, the effect of highly charged droplets on the 

final part resolution is still an active area of interest [6]. 

 

This paper explores the deposition of conductive ink in a layer-by-layer fashion via a 

coating method. The coating process for μ-SLS should be able to dispense uniform sub-micron 

layers of low viscosity nanoparticle inks (NP inks) to achieve near net shape features. Another 

desirable feature in the system would be its compatibility with different substrates, including 

flexible substrates and roll-to-roll flexibility so that it can be employed in the upcoming versions 

of the μ-SLS system. A simplified process flow of the μ-SLS system has been shown in figure 1.  

A slot die coating method is used to obtain sub-micron layer thicknesses for deposition of metallic 

nanoparticle inks. While a variety of coating techniques are available (spin coating, curtain 

coating, spray coating etc.), the slot die coating method offers higher scalability and lower material 

wastage. It can achieve a coating thickness ranging from tens of nanometers to hundreds of 

microns. The design of a slot die coater can be optimized to include a wide range of liquids.  

 

 
 

Figure 1: Simplified process flow schematic of the μ-SLS system.  

 

To achieve submicron layer thicknesses, the particle size must be smaller than that. Roy et 

al [7] investigated the effect of particle size and morphology on the sintering quality. Copper (Cu) 

NPs were used because of their excellent electrical properties and lower costs, compared to gold 

(Au) and silver (Ag). Dry Cu nanopowders exhibited uncontrolled agglomeration which was 

attributed to high van der Waals’ forces between the particles to minimize the surface energy of 

the powder bed. In addition, precisely spreading them to achieve a high packing density is very 

difficult. Therefore, Cu and Ag nanoparticle inks were tested which demonstrated significantly 

lower agglomeration. These inks were chosen as the preferred method of particle bed deposition 

for the sintering process.  

 

Slot Die Coating Background 

 

The slot die coating process was invented by Beguin to coat gelatin Silver Halide layers 

for making photographic films [8]. The process can be used with a variety of organic and inorganic 

liquids and it can accommodate a wide range of fluid viscosities. The slot die coating process is 

the preferred manufacturing method for lithium-ion batteries, polymer electrolytic membrane fuel 

cells (PEMFCs), flat panel and flexible electronics, and solar batteries [9]–[11]. The versatility of 

this process allows us to use a variety of nanoparticle inks from different manufacturers and 
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understand the coating process better. The liquid enters a fixed slot inside a precisely machined 

die and establishes contact with a moving substrate. It is a pre-metered coating process where the 

thickness of the coated layer is a function of the flow rate of the liquid and the substrate speed. 

After the gap between the die lips and the substrate, also known as the coating gap, is filled with 

liquid, the coating bead is established. The stability of the coating bead determines the quality of 

coating. Coating uniformity is dependent on other process parameters like the flow rate, coating 

speed, vacuum pressure, die geometry, and rheological properties of the liquid [12].  

 

Conventional applications of the slot die coating system exhibit large area uniformity of 

continuous layers in roll-to-roll systems. The continuity of the process, along with the 

identification of the operability window, ensures the stability of the coating bead, thereby reducing 

coating related defects like ribbing, rivulets, and air entrapment. The current design of the µ-SLS 

system, however, makes this a non-continuous, intermittent and layer-by-layer process. 

Intermittent coating reduces the process throughput and leads to higher levels of material wastage 

during the start-up and end of the slot die coating process. There has not been significant research 

on intermittent coating of multiple layers. This introduces additional challenges in defining the 

coating parameters for high quality coating. Also, understanding the results of layer-by-layer 

coating is another area of research experimentally explored in this study. Therefore, in this study, 

we have attempted to experimentally optimize the coating parameters to achieve sub-micron layers 

of metal NP inks.   

 

Slot Die Coater Design 

 

The experimental setup is shown in figure 2. The major sub-components of the slot die 

system include the positioning mechanism, syringe pump, and the die assembly. The slot die coater 

is designed and manufactured by nTact [13]. The positioning mechanism translates the die head 

vertically for subsequent layer depositions. It is a precision ball screw linear rail with 3-micron 

positioning repeatability and backlash, driven by a 0.36 degree microstepping motor. The 

microstepping motor is controlled by a TinyG controller [14]which provides precise multi-axis 

motor control. A cylindrical flexural pivot with a micrometer is used for in-plane positioning of 

the die head. A 60mm stroke Kloehn/IMI Norgren V6 series syringe pump with a three-way rotary 

valve assembly is used as the metallic nanoparticle ink input source to the slot die coater. A zero 

dead volume tip UHMW syringe, driven by a precision ball screw, ensured that no fluid remained, 

and all air bubbles were removed from the system. The valve is operated by a NEMA 23 stepper 

motor to alternate the distribution and aspiration functions.  
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Figure 2: Components in the assembly of the slot die coating system- 1. z-direction motor coupled 

with 100mm travel leadscrew 2. Pivoting bracket 3. Input for air pilot valve 4. Slot die input 5. 

Die support Arms 6. Die head 7. Die lips 8. Substrate 

 

However, it is very difficult to achieve <10 µm film thickness without having accurate 

control over the coating gap, due to inherent assembly and machining tolerances. The primary 

approach is to facilitate multiple layer coating capability without distorting the layers underneath. 

This also introduced additional challenges at the design stage. The slot die lips needed to be parallel 

to the substrate within a specified tolerance corresponding to the datum points. These errors affect 

the parallelism between the substrate and the die lips, which can lead to machine crashes. 

Currently, the parallelism is checked manually using precision shims, however a more robust 

method using capacitance probes is being developed by the authors to measure the coating gap at 

three different points as the die is vertically translated. 

 

Viscocapillary Model 

 

The liquid layer between the substrate and the die lips is bound by an upper and lower 

meniscus. The upstream meniscus initiates the formation of the coating bead and the downstream 

meniscus facilitates the spreading of the liquid on the moving die. The range of operating 

parameters, i.e. the coating gap, die gap, substrate speed, and upstream vacuum pressure, etc. is 

defined by a coating window [15]. While an analytical method can be used to determine these 

parameters for multilayer coatings, the high experimentation costs make it imperative to 

understand the theoretical models to set the initial coating parameters. While modeling a single 

layer coating process, one of the critical parameters which needs to be monitored is the coating 

gap to film thickness ratio. The flow between the die and the substrate is governed by a 

combination of different forces, primarily viscous, capillary, and inertial forces [12].  The coating 

bead is defined as being stable when the coated layer is uniform and free of defects like air 

entrainment, ribbing, and rivulets etc. The stability of the coating bead is determined by the 
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operating limits of the process parameters. The minimum wet film thickness corresponding to a 

given coating speed is known as the low-flow limit. The coating bead becomes unstable and breaks 

if the coating speed is outside the low-flow limit.   

 

Ruschak [16] developed a one-dimensional capillary model based on an extension of the 

Landau-Levich law which determined the minimum coating thickness of a film dragged by a plate. 

The primary assumption of Ruschak’s model is that the viscous effects are negligible. However, 

the Landau-Levich boundary conditions assume that the coating speed and flow rate of the liquid 

approach zero. This renders the model valid for low capillary number and low Reynolds number 

liquids. The operating limits defined by Ruschak’s model showed that the minimum wet film 

thickness is directly proportional to the coating gap and speed, and established a range of pressure 

drop across the downstream meniscus of the die, as shown in equations 1 and 2, respectively. Here, 

𝑡 is the thickness of the wet film, ℎ𝑑 is the downstream coating gap and ∆𝑝 is the pressure 

difference across the coating bead. 𝐶𝑎 is the capillary number, defined as the ratio of viscous forces 

to interfacial forces, 
𝜇𝑉

𝜎
, where 𝜇 is the dynamic viscosity of the liquid, 𝑉 is the coating speed and 

𝜎 is the surface tension.     

 

𝑡 ≥ 0.67ℎ𝑑𝐶𝑎2/3                                                                   (1) 

 
𝜎𝑢(1−cos 𝜃)

ℎ𝑢
+  1.34𝐶𝑎2/3 𝜎𝑑

𝑡
 ≤ ∆𝑝 ≤

𝜎𝑢(1−cos 𝜃)

ℎ𝑢
+  1.34𝐶𝑎2/3 𝜎𝑑

𝑡
      (2) 

 

 

Since the capillary number for the nanoparticle ink used in this study varies from 0.001 to 

0.02, Ruschak’s model can be used to characterize the coating speed and coating gap required for 

a required wet film thickness. Figure 3 shows the relationship between minimum wet film 

thickness and the capillary number, which increases with the coating speed. The rectangular 

window represents the range of coating speeds and gaps which can be used during the experiments 

to coat a film of specific thickness. The film thickness is also directly proportional to the coating 

gap. The input flow rate into the die was increased to sustain the coating bead stability at higher 

speeds. A 1-micron wet film thickness is required for the resolution requirement of the µ-SLS 

process. This model was used to identify a low-flow limit window which provided the authors 

with the coating speed and coating gap values for a given wet film thickness.      
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Figure 3: Minimum wet film thickness (in µm) versus coating speed (in mm/s). 

 

Results and Discussions 

 

During the start-up of the slot die coating process, initial priming of the NP ink into the 

fluid lines and the die gap is required. The upstream die is currently under ambient pressure, as a 

vacuum chamber is not being used. The die gap is set using a 50 µm thin Polyether ether ketone 

(PEEK) shim. The coating gap is measured using a Keyence IL030 laser triangulation sensor [17]to 

the die head and the measurement of its displacement by the vertical positioner. However, it is 

difficult to accurately define the planarity of the die head with respect to the substrate. A rigid 

mount is being developed by the authors which holds three capacitive sensors for planar tip-tilt 

correction. The substrate is moved via a long-range translation stage supported by two air bearing 

platforms. Once the slot die coater lines are primed and purged of air bubbles, the initial coating 

bead is established. As the substrate starts moving at the specified coating speed, the flow rate of 

the liquid entering the die is varied to maintain the stability of the bead. The coated substrate is 

completely dried at 85-90ºC for 15-25 minutes depending on the wet layer thickness and type of 

NP ink used.  

 

The dried Cu NP ink thickness is measured using an optical profilometer. The coating 

thickness is higher during the establishment of the coating bead. This led to an overflow of excess 

ink along the direction of coating, and therefore limited the uniformity of coating. A possible 
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solution to intermittent slot die coating is to initially establish the coating bead outside the sample 

area and then re-initiate the flow once the liquid flow inside the die has reached steady state. Figure 

4a shows the average dried film thicknesses achieved for varying coating gaps. The flow rate into 

the die is varied from 2.5mL/min to 5 mL/min. The coating speed is adjusted based on the coating 

gap to avoid low flow limits. The samples with coating gaps of 50 µm and 75µm were coated at 

10 mm/s and samples with 100 µm and 125 µm are coated at 15 mm/s. The thickness data is 

measured at multiple points along the direction of coating and across the samples. A measurement 

plot showing the dried film thickness uniformity for a 75 µm coating gap is shown in figure 4b. 

Higher speeds at lower flow rates would often introduce coating defects like loss of coating bead, 

which is expected as per the coating models. 

 

 
(a)                                                           (b) 

 

Figure 4. a) Experimental dry film thickness (in µm) versus coating gap (in µm) b) Optical 

profilometry 3D plot showing the coating uniformity 

 

An important consideration for the µ-SLS system is that the nanoparticle bed is uniformly 

distributed and devoid of any agglomeration. The SEM images figure 5 compares the particle 

distribution of nanopowders, spin-coated Cu NP ink and slot-die coated Cu and Ag NP ink. As can 

be observed from the images, the agglomeration in slot die coated samples is lower compared to 

the spin coated samples. The spreading uniformity were also more consistent in the slot die coated 

samples.    
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 5. Scanning electron micrographs for: a) Cu nanopowders, b) Spin coated Cu NP ink 

sample, c) Slot die coated Cu NP ink, d) Slot die coated Ag NP ink. 

 

After the first layer was coated, the coating gap was fixed at 100 µm and a subsequent layer 

was laid on top of the previous one. The preliminary results show that the dried film thickness in 

the ideal coating region of the two-layer film is 1.73 times that of the single layer thickness. A 

50W, 808 nm continuous wave (CW) laser was used to sinter nanoparticle inks for the µ-SLS 

process. A Digital Micromirror Device (DMD) [18] is used to project the pattern on the ink bed 

using a set of primary optics inside the DMD assembly. Secondary focusing optics are used to 

adjust the focal plane of the projected image. Initial sintering experiments showed that the energy 

lost before reaching the substrate was ~ 90% due to lossy primary and secondary optics inside, 

hence sufficient sintering of Cu NP ink was not achieved. The maximum irradiance at sample 

plane is 500 W/cm2, which is much smaller than sintering Cu NP ink at 50 ms with the current 

optical system. Therefore, Ag NP ink was used for the sintering experiments, as the irradiance 
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requirement was within the bounds of the current optical setup, given that the sintering exposure 

durations are high. For the initial sintering experiment, a 500µm circle was sintered. The first layer 

of the coated substrate (100 µm coating gap) was partially dried to remove excess solvent at 85ºC 

for 5-7 minutes and then sintered at 50W, 4 seconds exposure duration. The average height of the 

sintered circle was 2.37µm. Another sample was coated and sintered at the same parameters. The 

sintered sample was coated again at a 100 µm coating gap and then dried. After the second layer 

was dispensed on the top of the first layer, the same circular pattern was sintered at an exposure 

duration of 6 seconds. The average height of the 2 layers was around 5.54 µm. Excess NP ink was 

removed from both the samples by ultrasonicating them. Figure 6a and b show the 3D profilometer 

images of the sintered circles for layer 1 and layer 2 respectively. Figure 6c and d show sample 

average heights of sintered circles for layer 1 and layer 2 respectively. The bilayer sintered sample 

is 2.34 times higher than the single layer sample. During post processing measurements, it was 

noticed that the heat affected zones in the multilayer sample were larger than the single layer 

sample.  

 

  
(a)                                                                          (b) 

  
                                         (c)                                                                 (d)  

 

Figure 6. 3D profile of a) single layer sintered sample, b) bilayer sintered sample.  
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2D profile measurements along diameter for c) single layer sintered sample, d) bilayer 

sintered sample 

Conclusions and Future Work 

 

A novel nanoparticle layer dispense technique, using the slot die coating method for a 

microscale selective laser sintering process has been discussed. The critical slot die coating 

parameters like coating speed and flow rate are investigated, and the dry film thickness is 

measured. The dry film thickness was increased linearly with the coating gap. Preliminary 

sintering experiments show that the sintered part height of a two-layer coating was 2.34 times the 

single layer coating. To progress with the design development of the multilayer slot die system 

and optimization of the associated process parameters, a comprehensive study of an extensive 

series of film thicknesses will be completed. This would enable the authors to characterize the non-

linearity of the coating film thicknesses in layer-by-layer coating. Another critical parameter to 

investigate will be the effect of drying conditions on the coating and sintering quality. This research 

has shown that the slot die subsystem of the µ-SLS tool can coat submicron nanoparticle ink layers. 
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