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Abstract 

Ceramics have been broadly used as structural and functional materials with a wide range 
of engineering applications. Recent introduction of Continuous Liquid Interface Production 
(CLIP) uses projection UV photopolymerization and oxygen inhibition to tremendously reduce 
fabrication time. In addition to 3D printing polymeric materials, it has demonstrated the feasibility 
of fabricating 3D ceramic parts using photo-curable ceramic resins. However, the associated 
ceramic particle light-scattering significantly alters the process characteristics of the CLIP process, 
resulting in broadening of the lateral dimensions in associated with the reduction in the curing 
depth. Varying the exposure conditions to accommodate the scattering effect further affects the 
deadzone thickness, which introduces a systematic defocusing error to further complicate the 
process control. In this work we show that careful characterization and balance of both effects 
yields an optimal set of process parameters (UV Power and stage speed) for high-resolution 3D 
fabrication with a given photo-curable ceramic resin. 

Introduction 

 Ceramics are an important class of materials that are used in several industries ranging 
from aerospace to automotive to biomedicine.[1] Ceramics typically possess high melting 
temperature, chemical inertness, and great hardness and strength.[1, 2] Ceramic parts can be used 
in industry as either as a fully sintered ceramic or as a composite with a polymer matrix, dependent 
on application.[1] A problematic property of ceramic materials are that they can be brittle, making 
them difficult to machine and require forming methods such as moldings or Additive 
Manufacturing (also known as 3D printing) to create the green body.[1-3] The green body includes 
both the ceramic and binder material. For a full ceramic part, the green body is then placed into a 
high temperature oven, where the binder is burned away from the part, and the ceramic particles 
become fused together.[1, 4, 5] For the ceramic composite, the green body is the end of the process.  

Additive manufacturing methods have recently been used a forming method for specialty 
ceramic parts where standard forming methods could be difficult.[3] Additive manufacturing 
describes several processes including extrusion methods, selective laser sintering, and 
photopolymerization methods.[1, 3-9] Photopolymerization 3D printing methods include 
stereolithography and inkjet printing. Both methods utilize a slurry with ceramic distributed within 
a photopolymer material. With the introduction of ceramics into the photopolymer, there is a 
scattering element within the light path during polymerization. This ceramic particles redirect the 
incoming UV energy laterally, which affects dimensional accuracy.[3, 10] Characterization of the 
axial curing depth as well as scattering induced lateral broadening is important when utilizing 
stereolithography with ceramics, especially for precision high resolution requirements.  

CLIP process represents a 3rd generation of the stereolithography process. This process 
through oxygen diffusion within the UV light path creates a rapid, continuous fabrication method. 
[2, 11-13] This process creates uniform crosslinked parts, with no layering-related adhesion 
defects in the final parts. The addition of oxygen diffusion into the light path adds another aspect 
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to consider when using CLIP-based methods to fabricate polymer and ceramic parts. Standard 
curing depth and scattering are dependent on total energy dosage during UV exposure.[14] Oxygen 
deadzone thickness is largely dependent on UV power density (or photon flux).[11] Oxygen dead 
zone thickness decreases with increasing UV power density as well as with individual layer 
exposure time.[2, 11] Assuming the resin bath and build platform start from an initial calibrated 
position, variation of oxygen dead zone could affect the focus of the projected image when curing 
occurs. This de-focus can affect lateral dimensional accuracy of both pure-polymer resin and 
ceramic-filled resin products when attempting to fabricate at high resolution.  

This work intends to show the relationship of UV Power, stage speed, and ceramic 
concentration on axial and lateral fabrication accuracy from microCLIP.  

  

Materials and Methods 

Materials 

 Fabrication inks for microCLIP 3D printing process consisted of 1-6 hexanediol diacrylate 
(HDDA, primary monomer) [Sigma], N,N dimethyl formamide (DMF, solvent), hydroxyapatite 
(HA, diameter < 200nm), Irgacure 819 (photoinitiator), and Triton X (surfactant). Irgacure 819 
and Triton X were held constant at 2.2wt.% and 3wt.%, respectively for all tested inks. HA 
concentration was varied from 0 to 40wt.% and DMF concentration was varied, such that, DMF 
and HA held a ratio of 3:5. HDDA concentration within each ink was dependent on the other 
constituent components. All weight percentages listed were in terms of the full ink mixtures. 

Fabrication 

 All parts were fabricated via microCLIP process (Figure 1a). The system utilizes 365nm 
UV light to induce polymerization. UV power density for all experiments fell within the range 
2.31mW/cm2 to 17.055mW/cm2, corresponding to 25% and 100% system power, respectively. 
System projected lateral resolution at image focal plane is 7.1um x 7.1um. Oxygen permeable 
Teflon AF2400 film with 40um thickness acted as our system’s transparent optical window, with 
ambient air as the oxygen source to allow continuous fabrication. Layer slice thickness (LST) for 
all parts was held constant at 5um. All part designs were created in SolidWorks CAD software.  
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Figure 1: (a) microCLIP schematic. (b) SEM micrograph of axial curing ladders. (c) SEM 
micrograph of circular pillar array for lateral characterization. 
 

Axial Working Curves and Speed Working Curves 

 Axial (Curing Depth) working curves for all inks were obtained through fabrication of 
‘ladder’ structures (Figure 1b). In the fabrication of the “ladder” structures, UV power density (PD) 
was held constant while platform speed (vs) was varied. Ladder spokes consisted of 20 fabrication 
layers. Ladder spoke thickness was analyzed to determine average curing depth via SEM (FEI 
NOVA600). Axial Working Curves were utilized to determine axial dimensional accuracy. Axial 
curing depth was fit via the standard stereolithography curing depth equation [14] 

𝐶𝐶𝐷𝐷 = 𝐷𝐷𝑝𝑝𝑙𝑙𝑙𝑙 �
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
𝐸𝐸𝑐𝑐

�          (1) 

𝐶𝐶𝐷𝐷 = 𝐷𝐷𝑝𝑝𝑙𝑙𝑙𝑙 �
𝑃𝑃𝐷𝐷
𝑃𝑃𝑐𝑐
�          (2) 

where Dp is the depth of UV penetration and E terms being the max energy dosage and critical 
dosage (Emax and Ec, respectively). PD and PC represent the user controlled UV power density and 
critical power density, respectively. Average exposure time was calculated from the stage speed 
(vs) divided by the layer slice thickness (LST). We defined axial dimensional accuracy (axial 
critical speed) to be when the average curing depth (CD) equaled the layer slice thickness (5um). 
This signified when the rate of curing equaled vs. The dimensionally accurate (axial critical) speeds 
were plotted against the UV power density, which we defined as our speed working curves for our 
full system power range.   

Oxygen Deadzone Thickness 

 Oxygen deadzone thickness was measured by polymerizing a single exposure onto a silicon 
wafer piece. Exposure pattern was a 3mm x 3mm square. The silicon wafer was separated from 
the Teflon AF 2400 film by either a 100um or 200um shim. The 200um shim was utilized for the 

2429



Pure HDDA (0% HA) resin, while the 100um shim was used for the ceramic-infused resins. The 
oxygen deadzone was determined at the minimum exposure at which the fabricated layer attached 
to the silicon wafer. Structure thickness was measured via a digital micrometer. Oxygen deadzone 
thickness was obtained from subtracting the printed structure thickness from the shim thickness. 

Lateral Curing Tests 

 To determine lateral dimensional accuracy, circular pillars with diameter of 70 pixels were 
printed (Figure 1c). Intended diameter was 497um. Lateral curing tests were performed at the axial 
critical speeds obtained from the axial curing depth tests to ensure that all inks had a given curing 
depth of 5um per layer. Excess curing width (Cw) was obtained through the following equations 
[3]: 

𝐶𝐶𝑤𝑤 =  𝑊𝑊𝑎𝑎−𝑊𝑊𝑝𝑝

2
          (3) 

𝐶𝐶𝑤𝑤 =  𝐵𝐵𝑤𝑤ln � 𝑃𝑃
𝑃𝑃𝑤𝑤𝑤𝑤
�.        (4) 

In Equation 3, Wa represents the actual measured feature width and Wp is the projected feature 
width. Equation 4 represents the fitting equation for lateral curing width. In the lateral fit equation, 
the Bw is the slope, known as the broadening width, with P being the user-specified UV power 
density and Pwc being the power density at onset of excess exposure. Pwc allowed determination 
of the lateral dimensional accurate condition (lateral critical UV power density).  

Pixel-wise lateral dimension modeling 

 2D pixel-wise modelling was performed to approximate the experimentally fabricated 70-
pixel diameter lateral curing width. Projection intensity profiles were approximated using the 
formula:  

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝑃𝑃𝑖𝑖𝑛𝑛
𝑖𝑖=1          (5) 

where Pi is the UV power density of each individual pixel. Pixels representing pure HDDA 
polymer in the model were set with a pixel pitch of 6.92um separation and a Gaussian width of 
5um. The power density profile width was measured with profile boundary endpoints being the 
experimentally obtained Pc values. Pc was determined from the axial working curves by dividing 
the Ec by the average exposure time per layer.  Individual pixels could have their Gaussian width 
and intensities adjusted to approximate scattering or loss of projection focus. 

Results 

Axial Curing 

 Initial working curves for all inks were obtained at 2.31mW/cm2 (corresponding to 27% 
system intensity), which are shown in Figure 2a. Dimensionally accurate condition was defined 
when the curing depth matched the layer slice thickness (red line, Figure 2a). From the working 
curves it can be observed with increasing HA concentration, the ink’s intrinsic properties DP and 
EC decrease, typically. With 40% HA, the DP and EC falls intermediate of the tested inks. Ec in 
these working curves indicate the energy necessary to overcome the oxygen deadzone thickness. 
In addition, with increasing HA, the necessary axial critical energy dosage increases (0.615 to 
2.4mW/cm2) and the corresponding axial critical curing speed decreases (18.8 to 4.7um/s). Axial 

2430



critical speeds were obtained for all inks at the following UV power densities: 2.31, 5.8, 9.218, 
and 17.055mW/cm2. These measurements yielded our speed working curves, dimensionally 
accurate speeds with respect to UV power density (Figure 2b). For inks with HA concentration 
between 0 and 20%, the axial critical curing speeds have an approximately linear relationship to 
the UV power density. This implies that a single working curve can approximate the full tested 
region of UV power density and speed combinations. For inks with [HA] greater than 20%, the 
speed working curves resemble a logarithmic relationship to UV power density.  

 
Figure 2: (a) Axial working curves for all tested inks at 2.31mW/cm2. Ideal curing speed or 
“dimensionally accurate” speed was determined where the working curves matched LST (red line). 
(b) Speed working curves for all tested inks across all tested UV power densities.  
 

Oxygen Deadzone Thickness 

 Pure HDDA is more easily polymerized than its ceramic-infused counterparts. Oxygen 
appears to be readily diffusible in the pure HDDA ink, with HDDA having the largest deadzone 
thickness of the tested inks for all tested UV intensities. Deadzone thickness followed a similar 
trend as described by Tumbleston et.al., where thickness decreased with increasing UV power.[11] 
Figure 3 below shows the measured oxygen deadzone thickness values corresponding to 2.31%, 
5.8, 9.218, and 17.055mW/cm2 system UV power density. Largest deadzone thickness for pure 
HDDA was 85.5um. and smallest thickness was measured to be ~12um. The ink consisting of 20% 
HA featured the second highest deadzone thickness for all tested UV Power density values. Largest 
deadzone thickness of the 20% HA ink was measured to be 40um and smallest thickness was 
measured to be 11um. All other ceramic inks were comparable to one another at all tested 
intensities. Largest deadzone thicknesses for 10%, 30%, and 40% HA inks were measured to be 
29, 22, and 25um, respectively. Smallest deadzone thicknesses measured were 8, 8, and 7um, 
respectively. 
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Figure 3: Oxygen Deadzone thickness vs UV Power Density graphs for all tested inks. 

 

Pixel-wise lateral curing scattering model 

 After experimental data collection was obtained, Matlab was utilized to approximate the 
cured voxel shape. To ensure energy was conserved, with increasing HA concentration, the 
individual pixel Pi’s were reduced and Gaussian widths (0) increased such that the max total 
power density matched the measured UV power density (17.055mW/cm2) and the power density 
profile width was within + 3% of the experimental curing widths. Figure 4a & 4b show the increase 
of Gaussian width and power density decrease, respectively, with increasing HA concentration. 
The change between pure HDDA and 10% HA ink was very small (in terms of both gaussian width 
and individual pixel power density), whereas for [HA] > 10% the changes in cured voxel properties 
are significant. Gaussian width of approximated cured voxels increases in an exponential 
relationship to HA concentration. Individual pixel penetrative power decreases in a logarithmic 
relationship to HA with [HA] > 10%. Figure 4c shows our approximated relative cured voxel 
(represented 2D planar) shapes to approximate ceramic-induced scattering (reduction of intensity 
and lateral redirection of the energy). Figure 4d shows the experimental and modeled lateral feature 
with for fabricated 70 pixel diameter circular pillars.   
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Figure 4: (a) Gaussian width change with increasing [HA]. (b) Individual pixel intensity change 
with increasing [HA]. (c) Individual relative 2D voxel shape approximation. (d) Experimental 
lateral curing of 69-pixel feature at 17.055mW/cm2 power density and modeled lateral curing 
feature with increasing [HA]. 
 

Pixel-wise lateral curing dead zone -defocus model 

 While scattering is the primary reason for dimensional deviation, the oxygen dead zone 
can affect lateral dimensional accuracy. Lateral curing of HDDA ink (0% HA) was 1st analyzed 
to help determine effect of oxygen dead zone without particle-induced scattering on lateral 
dimensional accuracy. It could be observed that at full system power density (17.055mW/cm2), 
the lateral feature size had very good fidelity to the projected image. Full system power density 
corresponded to the minimum oxygen deadzone thickness for all tested inks. With decreasing 
intensity (increasing deadzone thickness), the feature lateral dimension also decreased. Where 
scattering is intrinsic to the ceramic concentration within the ink, oxygen dead zone affects lateral 
curing via projection edge pixel blurring during the curing process. Pixel-wise intensity profiles 
were made to approximate the lateral feature size of the 0% HA ink with varied UV power 
densities (Fig. 5a). Gaussian width of all pixels was set to a constant 5um and pitch between pixels 

2433



was 6.92um. To match the experimentally obtained feature widths, for decreasing intensity, pixels 
on the outside of the distribution had to be gradually decreased from full pixel intensity to 
0mW/cm2. Figure 5b shows the experimentally measured feature size of the HDDA ink, as well 
as the pixel-wise approximation. The secondary Y-axis of Figure 5b denotes the number of 
unaltered pixels with respect to UV intensity. With increasing power density, the number of full 
intensity pixels (denoted as unaltered pixels) also increases (48, 58, 63, 70 pixels for 2.31, 5.8, 
9.218, and 17.055mW/cm2, respectively).  

 
Figure 5: (a) 1-D Intensity profile model for pure HDDA Ink (0% HA) at varying power densities. 
Also notes pixels intensities that were modeled and taken out. (b) Experimental lateral curing of 
69-pixel feature from pure HDDA ink and modeled lateral curing feature with increasing power 
density (PD). 
 

Lateral Curing Experimental (All Tested Inks) 

 The axial critical exposure conditions were utilized to help determine ceramic lateral curing 
from UV exposure. Figure 6a shows the excess curing width (Cw) of all tested inks at each ink’s 
axial critical speed. There are two competing factors which affect the lateral dimensional accuracy: 
scattering and the oxygen deadzone-related image blurring. The X-axis in the Cw graph represents 
dimensional accuracy, with the (+) X-axis representing scattering-dominated lateral deviation and 
(-) X-axis being deadzone-dominated lateral deviation. Table 1 shows important lateral curing 
values for the tested inks. The lateral broadening coefficient (Bw) of inks with [HA] > 10% 
increases with increasing HA percentage. The lateral critical UV power density (Pw c) typically 
decreases with increasing HA, except 40% HA. The Pw c of the 40% HA ink ultimately falls 
between 10% and 20% HA inks. To next obtain the ideal curing speed (vwc, dimensionally accurate 
axial and lateral curing), we input the Pw c value into the speed working curves obtained previously. 
The ideal curing speed (Figure 6b) shows a very large decrease from pure HDDA (0% HA) to 10% 
HA ink. The change from 10% HA and above is much more gradual. As shown in Table below, 
the ideal curing energy dosage (Ewc), which is the lateral critical UV power density (Pw c) 
multiplied by the axial critical speed at that intensity (vwc) increases with increasing HA 
concentration, which is expected. Figure 6c and 6d show 3D printed Luneburg lenses made from 
20% HA ink. Figure 6c shows (on left) a Luneburg lens that was printed at the 9.218mW/cm2 and 
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31.8um/s. This exposure, while axially dimensionally accurate (5um curing depth), caused enough 
lateral scattering that the Luneburg lens print resulted in a nearly solid structure. Figure 6c shows 
(on right) a sputter coated Luneburg lens printed at the ideal curing conditions (6.93mW/cm2 and 
22.7um/s). This resulted in a structure that resembled the intended design. Struts of the Luneburg 
lenses were intended to be 60um and 100um in width. Figure 6d shows an SEM micrograph of the 
top section of the Luneburg lens and shows good agreement with the intended design. 

 
Figure 6: (a) Excess Curing Width (Cw) curves for all tested inks. (b) Critical ideal speed curing 
curve (c) 3D printed Luneburg lenses printed via microCLIP (20% HA) printed at high intensity 
high speed and at ideal curing conditions. (d) SEM micrograph of ideal cured Luneburg lens. 
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Table: Lateral and ideal curing conditions for all tested inks. Bw represents lateral broadening 
coefficient; Pwc represents Power density at onset of broadening; vwc represents the ideal curing 
speed for dimensional accuracy in terms of axial and lateral dimensions; and Ewc represents ideal 
curing dosage. 

HA 
Concentration 

(%) 
Bw 

(um) 
Pwc 

(mW/cm2) 
vwc 

(um/s) 
Ewc = Pwc*vwc 

(mJ/cm2) 
0 38.7 17.1 101.7 0.84 

10 27.2 10.8 45.7 1.19 
20 35.7 6.9 22.7 1.53 
30 42.3 6.7 17.6 1.91 
40 55.6 7.4 10.5 3.52 

 

Discussion 

 CLIP process is the 3rd generation of stereolithography. microCLIP, in contrast to the 
scanning and projection stereolithography, integrates oxygen diffusion in the light path to 
continuously fabricate parts. The photopolymerization is dependent on energy input into the 
system. If axial curing is the most important criteria for users, there are many UV exposure 
parameters (UV power and stage speed) that can be employed to attain a desired curing depth 
(Figure 1). If only axial curing depth is considered, the user has large flexibility in fabrication 
conditions. It is important to note feature lateral resolution for high resolution applications. The 
oxygen diffusion in the CLIP process is governed primarily by the photon-flux (UV power density, 
PD) through the oxygen permeable membrane, rather than just by total energy dosage (PD*texp).[2, 
11] While axial curing depth is important, lateral calibration for microCLIP for high resolution 
applications is important. If resin bath and build platform positions are held constant and UV 
exposure conditions are varied between prints, the lateral print dimensions will also be varied. This 
is brought about by image blurring along the projected edges, where edge pixels gradually decrease 
power density depending on oxygen dead zone thickness. This effect can be overcome by 
offsetting the resin bath and build platform from its initial focus position by the oxygen dead zone 
thickness.  

With the introduction of ceramics into a polymer, lateral dimensional accuracy is of 
concern immediately. Ceramic-induced light scattering was shown to affect dimensional curing 
accuracy of the photopolymer ink. With increasing [HA], the lateral broadening coefficient (Bw) 
increased and axial critical curing energy dosage increased. This is consistent with other works 
that have utilized stereolithography for ceramic fabrication.[3, 10] Stereolithography users, when 
utilizing ceramics slurries, must characterize lateral curing and curing depth with respect to energy 
to determine dimensional accuracy. The user can then utilize the energy dosage at onset of 
broadening (EWC) to perform the polymerization and remain dimensionally accurate.[3] The 
introduction of the oxygen dead zone lateral effect causes a “negative” lateral broadening within 
the excess lateral curing graphs (Figure 6a) which counteracts the scattering brought on from the 
ceramics. Balancing the two effects yields the ideal curing conditions UV power density and stage 
speed (Pwc , vwc, and Ewc respectively) for axial and lateral curing for microCLIP.  
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An unfortunate downside of the specific dimensionally accurate parameters is this negates 
fabrication flexibility. Fabrication flexibility is sometimes desired. Typically, higher resolution 
features are easier to fabricate at lower UV intensities and stage speeds, as the features are 
subjected to tensile and shear forces and only partial crosslink during printing process. If the ideal 
curing conditions are relatively high for the desired ink, high resolution features (sub 100um) could 
be difficult to fabricate. With the characterization methods noted herein, one could modify the 
projected bitmaps adding/subtracting pixels to offset shrinkage or broadening brought about 
through the oxygen dead zone and ceramic effects.  

Conclusions 

 microCLIP was used to 3D print parts with varying amounts of ceramic content. Axial 
Ideal Curing Speed for the tested inks with 20% HA and below resembled a linear increasing 
relationship with increasing UV power. This indicated that a single UV energy dosage could be 
used to approximate the dimensionally accurate condition. For inks containing [HA] greater than 
20%, the speed working curves resembled a logarithmic relationship in relation to UV power. 
Lateral curing for all tested inks appeared to have competing effects: oxygen deadzone thickness 
related defocus and ceramic-induced scattering. From pixel-wise numerical simulation the oxygen-
induced defocus could be represented as edge pixels being grayscale or essentially black pixels. In 
calibration with respect to lateral curing, the excess curing width graph for microCLIP showed 
that the (-) Y axis represented defocus-dominated feature shrinkage from the oxygen deadzone and 
the (+) Y axis represented scattering-dominated feature broadening. Critical ideal curing 
conditions (dimensionally accurate for both axial and lateral curing) could then be obtained from 
placing the UV power value into the speed working curves, which resulted in a complete exposure 
condition. Utilizing the ideal curing conditions allowed for high resolution design-intended 
fabrication. 
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