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Abstract

Printed electronics processes are becoming more stable and evolve into first industrial applica-
tions. These industrial applications require proper quality assurance to get a mostly autonomous
production process. In this work, we present a new approach to inspect printed electronics and
ensure their quality. Our hardware setup extends a fused filament fabrication (FFF) printer with
an extruder for direct dispensing of conductive paste, a pick and place unit, and two cameras. The
cameras take multiple images during printing. A trained neural network analyzes these pictures
to separate the electronic wires from the plastic background. All separated images of a layer are
combined to get a full view of the layer. Our algorithms then examine the detected wires to identify
printing flaws. The algorithms currently detect connection breaks, shorts, find points that have not
been reached, and evaluate the width of the printed wires.
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1. Introduction

The global additive manufacturing sector is constantly growing. In 2020, the market revenue was
12.8 billion US-Dollar, and it was growing significantly even during the pandemic [1]. While
other processes are already used on an industrial scale, 3D printed electronics are still evolving
to be reliable enough for industrial applications. 3D printed electronics is a specialized process
to embed electronic circuits and components directly into printed objects. This technique can be
used to print out prototypes or novel objects with integrated components like sensors. Although
this process will never replace classical printed circuit boards (PCB), there are multiple use cases
where 3D printed electronics adds additional freedom to product design. This freedom is also an
issue for quality assurance since integrated wires are inaccessible after creating the object. Shorts
and connection breaks caused by small imprecisions during printing are not detectable anymore.
So, a proper in-situ quality assurance process is needed to use the 3D printed electronics process
in industrial applications.
This paper presents a new approach to verify 3D printed electronics during printing. Our FFF
electronics printer takes multiple images during the printing process. A deep convolutional neural
network then separates the conductive wires from the plastic substrate and the background. The
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algorithms then take the printed G-code and analyze the wires found by the network. The algo-
rithms currently find connection breaks, shorts, points that have not been reached by the printed
wire, and evaluate each wire’s width.
The rest of the paper is structured as follows. First, Sec. 2 summarizes the related work. Sec. 3
shortly describes the used hardware. Sec. 4 explains how the conductive wires are separated from
the plastic substrate using a deep neural network. Sec. 5 introduces the algorithms used to find the
different issues in the printed wires. Sec. 6 shows some results and compares the outcome with
previous works. The paper concludes with a summary and an outlook in Sec. 7.

2. Related Work

There are multiple techniques to integrate electronic wires into printed objects. With direct writing,
a conductive silver paste is applied directly [2, 3]. Another way is directly embedding copper wires
into the surface of an object [4]. Conductive wires can also be applied by aerosol jetting [5] or by
ink-jetting [6]. The Stereolithography (SLA) process is also capable of printing 3D electronics [7].
Image processing is already broadly used for PCB inspection [8]. Multiple works show the detec-
tion of defect lines both on the surface [9] and on inner lines [10]. Faulty drilled holes are identified
[9], and the correct placement of components is inspected [11].
In additive manufacturing, visual inspection is often used to improve the plastic/metal processes.
Different approaches aim to quantify the geometric accuracy using different types of machine
learning [12, 13, 14], inspect individual layers with a neural network [15], or monitor the printing
process itself to detect defects [16, 17, 18]. Oleff et al. [19] presented an overview of the different
approaches for process monitoring in additive manufacturing using different sensors like cameras,
thermal cameras, accelerometers, 3D cameras, microphones, and other sensors. For conductive
wires, Salary et al. [20] showed a method to quantify the attributes in aerosol jetting. This includes
the line width, line density, line edge quality/smoothness, overspray, line discontinuity, and internal
connectivity. They also showed that the estimated resistance could be calculated using shape-from-
shading [21].
This work extends our previous work for optical verification of 3D printed electronics [22]. A
support vector machine (SVM) was trained on every layer to classify the pixels into conductive
or not conductive pixels by only looking at their color value. This classification is a bit noisy and
has problems with dark regions near the conductive material and reflections on top of the wires. A
sliding window is shifted along the planned extrusion, and all conductive pixels are summed up to
find connection breaks. If the number of pixels falls below a threshold, the section is classified as
a connection break, nevertheless if there is a broken connection.

3. Hardware Setup

Our new hardware setup to fully automatically print 3D electronics is a modified E3D ToolChanger
[23]. The open-source ToolChanger is a platform that can attach four different tools to a motion
system. These tools can be parked and picked up again. Fig. 1 shows our printer with the different
tools used for conductive printing. All tools only move along the X-, Y-plane while the printbed
moves along the Z-axis. A camera is attached to the toolhead facing downwards to move around
with the attached tools permanently. Currently, two FFF extruder printheads are attached to the
printer. One is directly driven, and the other is a bowden driven extruder. A pneumatic conduc-
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Figure 1 – The modified E3D ToolChanger with the FFF printhead, the vacuum pickup tool, the rotating
conductive extruder, the camera attached to the toolhead, and the component tray with the second camera
next to it.

tive ink dispenser can extrude conductive silver paste to create electronic wires when pressure
is applied. A vacuum pick and place tool is used to grab components from the component tray
and place them into the objects. The component tray can be moved up and down to pick up the
components. The second camera is used to align components and calibrate the printer’s different
tools, similar to our previous work [24]. Since all tools have a different length, the camera can be
moved up and down to shift the focus to the tool’s tip. Both cameras are a Raspberry Pi Camera
Module V2 with a resolution of 3280 × 2464 pixels, a short focus distance, and an attached led
ring to have reproducible light conditions. Since these cheap cameras tend to produce distorted
images, we calibrated the intrinsic parameters of the cameras and corrected every image before
further processing.

4. Wire Segmentation

The images for the verification of the 3D printed electronics are taken during printing each time a
layer is finished. The camera in the print head takes multiple images per layer to cover the whole
printed object. The pictures are aligned and recorded automatically by our software [22]. For
better matching, the tiles are taken with an overlap to align them automatically. This is necessary
because of positioning inaccuracies from the belt-driven gantry system. The tiles are combined
into a large image where each pixel covers 20 µm × 20 µm.
The images are then fed into the neural network to separate the conductive wires from the plastic
substrate and the background. Such a large image can not be feed directly into the network, and
scaling it down to a usable size would lead to a loss of detail. So the image of the whole layer is
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Figure 2 – The structure of the U-net with a 512 × 512 pixel input and output. All layers use ReLu as an
activation function except the output layer, which uses Sigmoid.

again split up into multiple tiles where each tile is 512 × 512 pixels. Because convolution layers
with active padding add zeros on the edges to keep the input and output size the same, the detection
from the network is wrong along the edges of the tiles. This is compensated by adding an overlap
of 32 pixels to the tiles. The overlap is removed when rearranging the output tiles back into one
image after all tiles are processed.
Different network architectures were implemented and tested with the same dataset to find the
best working network architecture. The tree architectures are U-net [25], DenseNet56 [26], and
DeepLabv3+ [27], all implemented with TensorFlow. While all architectures performed similarly
in detection rates, the U-net architecture was chosen because it performed best on small detail
regions like plastic strings and small gaps in the material. The U-net takes an image with the tree
color channels as an input. The contraction part contains four blocks, each with two convolution
layers and a max-pooling layer. The bottleneck only contains two convolution layers. The layers
are then expanded with four blocks to get back to the input resolution. Each block starts with a
transposed convolution, followed by the concatenation with the bypass and two convolution layers.
All convolution layers use Relu as an activation function. Lastly, a convolution layer outputs three
probabilities for each pixel using a Sigmoid activation function. The three classes are conductive
wire, plastic substrate, or background. Fig. 2 illustrates the layout of the network as described
previously.
The training data for the network is generated from images recorded for documentation purposes
in previous prints. The images are extracted from six different prints. They are printed in white
and black plastic. The image tagging of the electronic wires, the plastic, and the background was
done by hand. To get the images in the same size as the network, they are split up into 512 × 512
pixel sub-images with an overlap of 256 pixels. Since the dataset has only two colors, a copy of
the images is added where the color of the plastic was changed with GIMP. Printing more colors
with the printer instead of artificially creating images was planned but could not be realized due to
a closed lab during the pandemic. More data augmentation is added by rotating a small proportion
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Figure 3 – The plotted loss of the training and validation sets during the epochs.

of the images, changing their brightness and contrast. The resulting dataset has roughly 20,000
images split into 80% training set and 20% validation set. The network was trained for 30 epochs
and converged pretty fast. The resulting training and validation loss from the Sparse Categorical
Cross Entropy (SCCE) function is plotted in Fig 3.

5. Wire Verification

With the separated image from the network, the verification algorithms can be applied. First,
the printed wires are extracted from the G-code file. Then they are converted into the image
coordinate system. This is possible because the positions where the corrected pictures are taken
and the pixels per mm are known. Fig. 4 shows the output from the neural network overlayed with
the G-code instructions. Since the wires in the G-code have no information about the relationship
of the different lines, they are grouped before starting the verification. The grouping algorithm
tests every line if one endpoint is near any other endpoint of another line. If two points are closer
together than a threshold (1/2 wire width), they belong to the same wire and are grouped. If a line
has points close to two groups, they are merged because they belong to the same wire. When all
lines are grouped, the printed wires can be evaluated. The following paragraphs describe how the
different appearing problems can be identified. All tests are repeated for all grouped wires that
were extracted from the G-code.

Shorts are unwanted connections between two or more wires often caused by too much con-
ductive material, imprecise movement, or a leaking conductive extruder. A short can be found by
checking if any other wire can be reached from the current wire. To test this, the segmented image
from the network is taken and the starting point of the wire is flood-filled. Flood-fill recursively
marks every neighbor pixel that is classified the same as the starting pixel. Then, every point of all
other wires is checked if they got filled. If they got filled, these two wires are connected and have
a short.
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Figure 4 – Left: The output of the wire segmentation where gray areas are identified as wires and black
areas are plastic substrate. Right: The overlayed wires extracted from the G-code in red.

Connection breaks are unwanted interruptions in the conductive material. Unconstant extru-
sions or small plastic strings often cause these issues. Connection breaks are also checked with the
flood-fill technique. The starting point of the wire is flood-filled and then every point of this wire
that got extracted from the G-code is checked if they got filled correctly. If a point got not filled,
there is no connection between the starting point and this point, so there must be a connection
break somewhere in between. The part of the wire that is broken can be found by looking for the
line extracted from the G-code where one end of this line is filled and the other is not.

Points that are not reached often appear on sharp corners when the material is slightly off due
to an imprecise motion system or on the ends of a wire due to inconsistent material flow. They can
be found by checking if all points from the G-code of a wire are classified as conductive material.
If not, this point is not reached during printing. While a connection break or a short is a clear fault,
a point that was not reached can still be tolerable since there is a general connection in the wire,
and reaching this exact point might not be important.

Wire width is often crucial since the width of the wire influences its resistance. A wire can
be connected but have a thin section along its path. To measure a single wire and not accidentally
include another one nearby, all other wires are removed from a copy of the segmented image. Then
each wire segment from the G-code is extracted into a single image and rotated vertically. So the
image only contains a segment from one corner to another. The width is limited to four times the
configured extrusion width of the conductive wire to reduce the impact of the corners. Then all
pixels are then summed up in every pixel row to get the width of the wire in this pixel row. The
pixel values are then converted into mm to get real-world values. Fig. 5 illustrates the evaluation
of one wire segment.

313



Figure 5 – Left: The isolated wire group. Middle: The cropped and rotated wire segment. Right: A plot of
the summed-up pixel rows representing the wire segments width (mm) in printing direction.

6. Evaluation

The wire segmentation is evaluated by comparing the detection performance of the neural network
with our previous work [22]. Multiple images are processed by the neural network and the SVM
and then compared with a manually labeled version of the images. Table 1 lists the correct classi-
fied pixels, the false-negative pixels, and the false-positive pixels for both approaches. Note that the
summed-up pixels are only classified as conductive wire by the different approaches and the per-
centage rate is compared to the actual number of existing conductive pixels in the manually labeled
images. False-positive means that pixels are marked as wires but are no wires. False-negative is
the other way round where wire pixels are marked as plastic or background. Both cases are a prob-
lem since false positive pixels tend to indicate a short when there are none and can lead to missed
connection breaks, while false-negative pixels might lead to missed shorts and detect connection
breaks that are nonexistent. The results show that the rate of correctly classified and false-negative
pixels stays similar to the SVM approach while the false-positive rate drops significantly. When
inspecting which regions are wrongly classified, it shows that dark regions are generally less often
wrongly classified. However, when the dark region lies between two conductive wires, the classi-
fication sometimes fails and marks the region between these two wires also as wire. Reflections
are less problematic, but very bright ones are still sometimes wrongly classified.

Table 1 – Pixel classification of conductive wires in absolute pixels and the detection rate.

correct false-positive false-negative
U-net 916304 (96.6%) 60008 (6.3%) 32407 (3.4%)
SVM 904626 (95.4%) 279645 (29.5%) 44085 (4.6%)
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Figure 6 – Four different defects and the output from the verification algorithms. From top left to bottom
right: A connection break created by a plastic string over the conductive material, a connection break from
missing material, a short from an accidentally printed line, and a short from a misplaced conductive line.
In the results, connection breaks are marked red, shorted wires are drawn yellow, and points that are not
reached by the conductive material are marked orange.

To evaluate the verification algorithms, we created images with intentional defects that these algo-
rithms should find. The defects are connection breaks due to inconsistent extrusions, connection
breaks produced by thin plastic strings from leaking plastic extruders, and different shorts. Since
we had no pictures of shorted connections, we created shorts using GIMP to test our algorithms.
Fig. 6 shows different defects with the output of the wire verification algorithms. It can be seen
that our algorithms detect connection breaks correctly and marks the broken wire segments in red.
The shorts from the accidentally printed line and the misplaced conductive line are also identi-
fied and marked in yellow to indicate that these two wires are shorted. The algorithms also found
three points that are not reached and marked them with orange circles. While the point on the first
short is not reached because the material is not printed until the end, the other two are not reached
because the conductive material is not in its intended position.
The extra time that it takes to run the whole verification process is crucial. The wire segmentation
with the neural network takes ∼6 seconds, while the wire verification takes ∼1 second for one
layer. Both measured on a notebook with a 4 core 3.6 GHz CPU. So the influence on the print time
per layer is less than 1% which is similar to our previous work and does not increase the printing
time significantly. However, capturing the images during the printing still takes about 10% extra
time on every layer, increasing the printing time significantly.
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7. Conclusion and Outlook

In this work, we showed our new approach to verify 3D printed electronic wires while printing
it. The approach focuses on FFF printed plastic objects with pressure extruded conductive silver
ink but could also be applied to different printing techniques, substrates, and wire embedding
techniques. It compares the G-code instructions with the actual printed object without any needed
supervision and stores all data for a high-resolution documentation. A professional can look at the
found errors and decide if the device can be used or not. Knowing the wire width of each wire can
be used to improve the printing process.
Our future work will focus on improving the wire verification to identify the exact position of a
short or connection break. A found connection break could be printed again to get a stable connec-
tion during printing and close the control loop. Since shorts and connection breaks can also appear
between layers, we want to connect these individual layers to find defects that appear between two
adjacent layers. The correct placement of SMD components also needs further inspection. Here,
the printed footprints and the placement of the components need to be verified. The wire thickness
measurement can also be fed back into the printer to adjust the material flow during printing.
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