
A Roadmap Towards Parallel Printing for Desktop 3D Printers
Molly Aubrey Carton∗∗, Chandrakana Nandi∗, Adam Anderson∗, Haisen Zhao∗, Eva Darulova∗∗∗,

Dan Grossman∗, Jeffrey Ian Lipton∗∗, Adriana Schulz∗, Zachary Tatlock∗

∗ Paul G. Allen School of Computer Science & Engineering, University of Washington, USA
∗∗ Mechanical Engineering Department, University of Washington, USA

∗∗∗ MPISWS, Germany

Abstract

3D printers with multiple extruders (or multiheaded printers) are common in the desktop fabrica
tion community, but are primarily used for multicolor or multimaterial printing, using only one
extruder at a time. What if these multiheaded desktop printers could also be used for simulta
neous parallel printing? While this is a relatively unexplored direction, we argue that it deserves
further investigation: a flexible, robust, and affordable parallel printing ecosystem could signifi
cantly reduce fabrication time for many applications and further enhance the value of desktop rapid
prototyping.

We propose a research agenda to explore the development of a parallel printing pipeline, and
summarize our observations from a preliminary investigation of simultaneous extrusion. We hope
this vision will encourage and guide future research in developing hardware, firmware, and slicers
to facilitate parallel 3D printing.

1 Introduction

Desktopclass 3D printers are democratizing manufacturing. They are increasingly used for rapid
prototyping, customized manufacturing, casual making, medicine, and education. While there are
numerous styles of affordable printer that are now available, Fused Deposition Modeling (FDM)
printers are perhaps most popular and commonly used. Even though the primary use of FDM
printers is rapid prototyping, in practice, unfortunately, they are often much slower than one would
expect — it can take tens of hours to multiple days to print large models. One way to expedite
the printing process would be to add more extruders that can simultaneously print parts of a large
model. In fact, several desktop 3D printers are already equipped with multiple extruders [7, 34, 9,
3, 26] but their pipelines (CAD tools, slicers, firmware) support only multimaterial or multicolor
printing. Little prior work on desktop printers has demonstrated the use of multiple extruders to
simultaneously print the same object.

This paper motivates further exploration of parallel 3D printing opportunities on desktopclass
machines. We present a research vision for parallelprintingcapable fabrication pipelines by first
identifying the challenges associated with parallelizing each stage of the pipeline and proposing
strategies to address them, and then discussing an early proofofconcept we developed that sug
gests the promise of parallel 3D printing. We view parallelized desktop 3D printing as analogous
to parallel computing — the latter revolutionized computer science and led to new algorithms, par
allelizing compilers, and numerous advances in highperformance computing. More importantly,
even though not all algorithms can be parallelized, the benefits of parallel computing are never
theless indisputable. Similarly, we argue that even though not all designs can be fabricated in

1217

Solid Freeform Fabrication 2021: Proceedings of the 32nd Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

Reviewed Paper

LayersMeshCAD
!"#$%&'()

*"#+,-.'/%#
0,#-%&1 2"#3/'4%

5"#+,-.'/%#
0,#(4,6%

Idea
7"#89')0G-code

———-
———-
———-

Figure 1: A typical 3D Printing Workflow. Once a model is designed using CAD tools, it is com
piled down to a polygon mesh. The mesh is then sliced to generate 2D layers. The layers are
then compiled to Gcode. Ultimately, the Gcode is sent to a printer which has firmware that can
interpret the Gcode to print the model.

parallel, parallel printing still has the potential to significantly reduce print time for a broad class of
designs thereby making desktop 3D printing an even more appealing fabrication option for rapid
prototyping. We hope this paper will encourage researchers to pursue this direction further.

The rest of the paper is organized as follows. Section 2 first provides necessary background
on how typical desktop 3D printing pipelines work. Section 3 then lays out a bottomup research
vision that highlights the challenges for enabling parallel 3D printing at each stage of the pipeline.
Section 4 proposes strategies to mitigate the bootstrapping problem due to the current lack of both
suitable hardware and software. Section 5 discusses preliminary experiments we conducted that
indicate the promise of simultaneous extrusion for parallel printing, Section 6 discussed relevant
related work, and Section 7 concludes our discussion.

2 Background

This section provides a highlevel overview of a typical desktop 3D printing process (shown in
Figure 1). A designer first develops a CAD model for a design [30, 18, 25, 24], then compiles it
down to a polygon mesh. Alternatively, it is also common to download polygon meshes directly
from online repositories [31]. The mesh is then sliced into horizontal layers / slices (each layer is
a set of 2D polygons) using a slicer [1, 29]. Each slice is then compiled to Gcode (perimeter and
infill of each 2D polygon in each layer) which is sent to the printer. The firmware [22, 13] in the
printer interprets the Gcode sequentially to actuate motors and heaters for printing the object.

We argue that researchers must rethink (and potentially redesign) each phase of this traditional
pipeline to enable parallel fabrication in desktop devices, akin to recent developments in indus
trial scale machines [5]. The availability of modular [28] and easily customizable [35] machines
together with opensource firmware packages, slicers, and CAD tools can help realize this vision
as demonstrated by our own early exploration (Section 5) — we show that it is possible to par
allel print basic designs by simple modifications to various stages of the traditional desktop fab
rication pipeline shown in Figure 1. We envision a future where parallel fabrication machines
will be just as common as their sequential counterparts and will be supported by domain specific
languages [33, 32] and frameworks [8] for representing and building nextgeneration fabrication
machines that have recently been proposed.

1218

3 Vision: Parallel Printing Capable Pipelines

Given N extruders, successfully incorporating parallelism in the desktop 3D printing pipeline can
ideally offer an N times speedup in printing which can dramatically improve the utility of desktop
manufacturing for rapid prototyping. This section proposes a bottomup approach for solving the
challenges involved in each phase of the pipeline for enabling parallel fabrication.

• Machine design. Printer configurations vary in terms of factors like number of extruders, the
dimensions of the print bed, the distance between the extruders, and the degrees of freedom
among extruders. Each of these factors adds constraints that the printer must always satisfy
during printing. These constraints also affect the parallel Gcode generation — the relative
arrangement of the extruders impacts the available parallelism because somemovementsmay
be prohibited by construction, and some for safety and correct printing. Below we classify
FDM printers in terms of the number of extruders and their allowed movements:

– N extruders in a fixed arrangement. All extruders move simultaneously “in lockstep”
and extrusion is possible at any time by one or more. The most common variant of
this is the fixedwidth dual extrusion printer, which has several commercial variants
available.

– N extruders with a single independent axis which can be the x, y, or z axis. The most
common variants of this is a dual extrusion printer with independent x.

– N extruders with two independent axes, which can be with (x, y), (y, z), or (x, z).
– N extruders with three independent axes. Such printers could be implemented using
multiaxis robotic arms.

Several optimizations that are valid in the single extruder scenario (e.g., moving at a 45 de
gree angle with respect to both X and Y axes to maximize velocity) must be reevaluated
and potentially modified to be applicable for multiple extruder machines. The machines
may be designed to be modular and reconfigurable depending on the part being printed —
for example changing the angle or distance between the extruders if it provides more par
allelism. Additionally, currently available multihead machines [7, 9, 3] are much more
expensive compared to their singlehead counterparts [2], making prototyping and experi
mentation difficult. More affordable machines [35] can be used as alternatives as we show
in Section 5.1.

• Firmware support. Currently, most 3D printer firmware packages are designed to support
printing by a single extruder. For printers with multiple extruders [34, 7], the firmware can
support multimaterial or multicolor printing but it only allows extrusion by a single extruder
at a time. The closest to parallel printing that common multihead printers can currently
accomplish is “ditto printing” [21], where two identical objects are simultaneously printed.
Without adequate firmware extensions, parallel printing cannot be accomplished, even if
appropriate hardware is available. Designing firmware packages for parallel printing is chal
lenging— it involves solving both geometric and physics constraints that becomemore com
plex as the number of extruders increases. A firmware package for parallel printing must
additionally also check for safety constraints such as collision avoidance; these are typically

1219

not checked by current firmware packages since a single extruder cannot collide with itself
(printers do have limit switches to prevent the extruder from “going off the rails”). Further,
for reconfigurable machines, the firmware will also require reconfigurability so that it is
still compatible with the hardware after adjustment. With recent advances in programming
language design for machines [33, 32], optimizing compilers for fabrication [36], and pro
gram synthesis directed towards fabrication [17, 16, 6], we hope that in the future, critical
components of firmware code can be automatically synthesized given a specification of a
machine and its associated constraints. In the meantime, we have found that preliminary
forms of parallelism can already be accomplished by simple modifications to opensource
firmware [13] (Section 5.2).

• Slicer extensions. Currently, slicers can already be configured for the type of printer be
ing used (e.g., delta vs. Cartesian configurations) [1]. To support parallelism, slicers must
extend parameterizability to account for number of extruders, their degrees of freedom, and
how they move with respect to each other. To achieve parallelism, slicers must solve com
plex constraint satisfaction problems similar to path planning in robotics. Unlike sequential
printing, the slicer must ensure that the generated Gcode does not lead to collision between
extruders, or overlapping printing, i.e., one extruder extruding over material extruded by an
other extruder on the same layer. A single sweep from one corner of a slice to the other,
which tends to be correct (even if not necessarily the most efficient) for sequential printing,
is no longer guaranteed to work for parallel printing — the slicer may be required to move
the extruders around, turn on/off one or more extruders, and even adopt new path planning
algorithms to achieve parallelism.
Achieving maximum parallelization also constrains layer and infill paths. Where creating
a solid layer with a single toolpath may be most efficient with a spacefilling path such
as a Hilbert curve or double spiral (https://www.scientific.net/AMM.190-191.790),
these paths are not necessarily the most efficient use of multiple extruders, because achieving
maximum ”extruder uptime,” with all extruders actively printing, places requirements on the
spatial repetition of toolpath shapes.
The slicing process can be broken down into two phases: (1) generating 2D slices from the
3D mesh of a model, (2) generating parallel Gcode for each 2D slice. Within each layer,
there are again roughly two different types of extrusion paths (1) perimeters, and (2) infill.
Since infill takes the majority of time in most models, we propose that infill Gcode should
be the first target for parallelism. Perimeter Gcode can also be parallelized but will likely
require more complex algorithms than infill. Slicers for parallel Gcode must also support
reorienting the part on the print bed to maximize the simultaneously extrusion time.

• CAD analysis. While early prototypes for parallel printing should focus on firmware and
slicers, CAD tools may also be able to assist a designer in making their design more suitable
for parallel fabrication. Similar to parallel computing where not all programs are suitable for
parallelization, not all designs may be printable in parallel. A CAD level analysis can iden
tify parts of a design that are parallelizable or recommend modifications that may make the
design easier to print in parallel without sacrificing user intent or the stability of the printed
model. Such a design analysis tool will ultimately solve a multiobjective optimization prob
lem where the objectives include fabrication time, stability of the design, proximity of the

1220

(https://www.scientific.net/AMM.190-191.790)

Figure 2: Extruding from both nozzles to create a maximally parallel diamond shape. The model
is oriented in a way that allows both extruders to simultaneously extrude half of the design.

final result to original designer intent, etc.

As an simple example of parallel printing, consider the large diamondshaped model in Figure 2
and Figure 3 — this shape is oriented so that maximum parallelism can be obtained by allowing
both extruders to extrude simultaneously and each print half of the shape. Indeed, a preliminary
estimation of the print time using an online Gcode simulator [20] indicates that it would take
approx. 17 minutes to print this model with a single extruder whereas with two extruders it reduces
to approx. 8.5 minutes at the same print speed.

4 A Research Plan

For an endtoend parallel fabrication system to be successful, the strategies in Section 3 cannot be
developed in isolation because the phases in the fabrication pipeline are interdependent and inte
grating the individual components to build the entire pipeline comes with its own challenges such
as compatibility, reproducibility, and interoperability. These challenges also lead to a bootstrap
ping problem for facilitating parallel 3D printing research — without adequate hardware parallel
printing cannot be accomplished, and without software and firmware support the necessary code
for running on the hardware cannot be obtained. We propose the following three criteria that future
work in parallel printing should consider.

• Reproducibility. Readily available (e.g., open source) and customizable solutions help with
reproducing results. Opensource firmware [13] and slicers [27], and customizable and af
fordable hardware [35] are examples of tools that may be suitable for early investigations.

• Simulators. Even before hardware is available, building accurate simulators can guide the
design of each phase of the pipeline thereby resolving the “chicken and egg” bootstrapping
problem. Simulators also make debugging and prototyping easier.

1221

Figure 3: Full layer of the maximally parallelprinted simple diamond shape. With both nozzles
printing for the entire shape, we can achieve maximum speedup.

• Interoperability. Common interfaces between different phases of the fabrication pipeline
should be established to enable interoperability. For example, both the firmware packages
and slicers should use the same language for geometric (and physical) constraint formal
ization, and Gcode should have unified semantics [23] that corresponds to what firmware
packages support.

5 Preliminary Experiments

Guided by the strategies from the previous sections, this section describes simple modifications to
the fabrication pipeline (Figure 1) that we implemented in order to fabricate example test parts in
parallel. While we did not explore how changes to the rest of the pipeline (e.g., CAD analysis)
can facilitate parallel 3D printing, we hope these early experiments will provide a starting point for
future research to build on.

5.1 Hardware

As discussed in Section 3, easily customizable / affordable devices like MPCNC [35] help facilitate
research and early prototyping because these open source systems are relatively easy to redesign
and update as required. Each of the printer configurations in Section 3, for example, can be designed
using MPCNC or other open hardware. To demonstrate, we built an early prototype of such an
MPCNCbased 3D printer and modified it to support parallel 3D printing. Figure 4 shows the
setup — most of the hardware modification is in the extruder mount, whose original design holds

1222

Figure 4: MPCNCprinter withmodifications (dual extrudermount) to support basic dual extrusion.

Figure 5: Our design for a dualMK extruder mount for 1/2 EMTbased scaledMPCNC. The designs
for both these parts are publicly available on Thingiverse [4].

1223

; Part 1
T1 ; switch to extruder T1
G1 X40.00 Y0.80 Z0.00 E2.40 ; extrude with T1 up to (40.00, 0.80, 0.00)
; Part 2
M605 S2 ; turn on dual extrusion mode
G1 X80.000 Y0.80 Z0.00 E2.40 ; extrude with both up to (80.00, 0.80, 0.00)
M605 S2 ; turn off dual extrusion mode
; Part 3
T0 ; switch to extruder T0
G1 X120.00 Y0.80 Z0.00 E2.40 ; extrude with T0 up to (120.00, 0.80, 0.00)

Figure 6: Snippet of parallel Gcode that the firmware changes in Section 5.2 can run on the printer
described in Section 5.1 (retraction lines removed for clarity). T0 and T1 are the two extruders.
The semantics of G1 is the same as described in the Marlin documentation [11]. A T0 indicates that
the following G1 command will be executed only by extruder T0, and same holds for T1. Each G
code command wrapped by an M605 S2 is executed by both extruders simultaneously. To disable
extrusion from both extruders, we simply set no extrusion value for the active E axis.

a single extruder.
We started our setup with a scaled version of the original MPCNC designed to use one inch

electrical conduit, producing a maximum build space of about 200 mm in each axis. We designed
and 3D printed a holder that can carry a second extruder and attached it to the gantry. These
models are shown in Figure 5 and our designs, as well as the scaled MPCNC parts, are available on
Thingiverse [4]. This printer setup is equivalent to a fixedwidth dual extrusion model (Section 3).
The initial positions of the two extruders are T0: (0, 0, 0) and T1: (49.5, 49.5, 0), i.e., the second
extruder is at a 135 degree angle with the xaxis, with a diagonal spacing of about 70 mm between
the extruder heads. The amount of parallelism offered is limited — both extruders must move
together as they are connected. Future research should explore recent 3D printer models [28] that
are modular, increasing the freedom for experimentation with not only two fixed width extruders,
but additional extruders and more degrees of freedom.

5.2 Firmware

While some firmware packages provide basic support for ditto printing, most do not implicitly
support the simultaneous extrusion required for parallelizing printing. Our early experiments have
shown that adaptable, opensource firmware packages like Marlin [13] can be modified to switch
between “single” and “simultaneous” extrusion modes. This section describes how we added sup
port for simultaneous extrusion in Marlin for the dual extruder MPCNC 3D printer (Section 5.1)
we built. Marlin has a special instruction (disabled by default) M605 [12] which can be used to (1)
move two xcarriages either completely independently (using the S0 argument), (2) move a single
carriage while the other is parked (using the S1 argument), or (3) move two carriages in unison
(using the S2 argument). We found that using the command M605 S2 allows us to extrude through
both extruders (T0, T1) in the following four ways:

1. only T0

1224

Figure 7: Printing in three modes: T1, M605 S2, and T0, corresponding to Part1, Part 2, and Part
3 in Figure 6 respectively. T0 is the extruder above and T1 is the extruder below.

2. only T1

3. both T0 and T1

4. neither T0 or T1

This mode is called the “dual nozzle duplication mode” [12]. All four above settings are essential
— the printer should be able to use both extruders during simultaneous printing (i.e., both are inside
the shape’s perimeter), or turn one or both off if they are outside the shape. We activated this feature
of Marlin with less than 20 lines of change 1. We made two significant changes:

• By default, Marlin disables the stepper motor of the inactive extruder [10]. We set the field
DISABLE_INACTIVE_EXTRUDER to false, so that none of the extruders are disabled, even
when inactive.

• We modified the implementation of M605 to make it a toggle, i.e., an M605 followed by
another M605 disables extruder duplication whereas a single M605 enables it.

We then flashed the printer with our updated Marlin firmware. While this simple modification
allows us to use our fixedwidth dual extruder MPCNC for simultaneous extrusion, we empha
size that for more complex models / printer configurations (e.g., with independent axes of mo
tion), additional changes will be required. Figure 6 shows a small example of parallel Gcode that
demonstrates how simultaneous extrusion works and Figure 7 shows our MPCNCbased parallel
3D printer extruding those Gcode commands.

5.3 Gcode Generator

We built an early prototype of a code generator for parallel Gcode that can be run on our MPCNC
(Section 5.1) using the modified firmware (Section 5.2). As described in Section 3, we broke
down the codegeneration into two steps, (1) slicing, and (2) generating Gcode for each slice. For
(1), we used an offtheshelf geometry processing library [19], and implemented a parallel Gcode
generator for (2). The latter works by computing the intersection of (1) rays starting at each extruder
and (2) the perimeter of the layer. The angle of extrusion, θ the rays make with the extruder axis
can be set by the user. The extruder axis in this case is the line joining the two fixedwidth extruders

1Our changes are publicly available at https://github.com/chandrakananandi/gayatri-marlin.

1225

https://github.com/chandrakananandi/gayatri-marlin

δ θ

p00

p10

p01

p11

r0

r1

T1

T0

Turn on T1

Turn off T1

Figure 8: T0 and T1 are two extruders and δ is the distance between them (i.e., length of the extruder
axis). θ is the angle between the infill and the extruder axis. r0 and r1 are two rays starting from
the their initial positions respectively. The points of intersection of the rays and the perimeter of
the shape (a triangle) indicate the positions where the extruders should be started/stopped. For
instance, the red parts of r1 show no extrusion by T1 and the green part shows that T1 is extruding
inside the shape.

(T0, T1). Let the distance between them be δ. Below we explain how the code generator works for
simple shapes and Figure 8 shows an illustration.

The (x, y) coordinates where each extruder will be turned on/off is determined by observing
the parity of the points of intersection of the rays and the perimeter. This assumes that initially both
extruders are turned off. We consider T0 to be the primary extruder and T1 to be the secondary. First,
the algorithm casts two parallel rays, r0 and r1 from the origin points of T0 and T1 respectively, and
computes all the points of intersections with the perimeter of the slice. Let {p00, p01, p02, ..., p0n}
be the points of intersection of r0 with the perimeter of the slice. Similarly, let {p10, p11, ..., p1n}
be the points of intersection of r1 with the perimeter of the slice. We compute the starting/stopping
points of extrusion for both extruders in terms of the primary extruder by projecting the points of
intersection of r1 on r0. The points of intersection for both rays will be interleaved in most cases.
Let us consider an interleaving like so: {p00, p10, p11, p01, ...}. T0 starts extruding at p00 which will
be indicated by a Gcode like:

T0
G1 Xxpos1 Yypos1 Zzpos1 Eepos1 Frate1

where xpos1 and ypos1 are the x and y components of the projection of the next point of
intersection in the list (p10) on r0, and zpos1 is the z height of the current slice. At p10, T1 will also
start extruding, which will be indicated by an instruction wrapped by M605 S2:
M605 S2
G1 Xxpos2 Yypos2 Zzpos2 Eepos2 Frate2
M605 S2

1226

where xpos2 and ypos2 are the x and y components of the of the projection of the next point of
intersection in the list, p11 on r0. This instruction indicates simultaneous extrusion by both T0 and
T1. Once both extruders reach the projection of p11 on r0, T1 stops extruding while T0 continues
until p01. Once the entire list of points is visited, the extruders repeat this process in the opposite
direction (shifted by some amount determined by the infill percentage). Throughout this infill
process, the extruded lines of T0 and T1 are separated by δsin(θ).

While our prototype is only a proof of concept, it demonstrates the potential of parallel printing
on desktop 3D printers. We focused only on infill with linear moves for simple shapes; perimeter
parallelization is much more challenging (but also usually corresponds to a smaller percentage of
the total print time, particularly for large prints, because area scales faster than perimeter). Further
more, for complex shapes, especially with multiple components or holes in the design, this simple
approach does not generate parallel Gcode; there is much room for improvement and exploration!
We hope future research will help build a more general code generator that works on different
machines and complex designs, potentially taking into account the shape of the model and how it
might best be parallelized.

6 Related Work

Nandi et al. [15] presented early ideas on parallel 3D printing but did not propose concrete strategies
for implementing such a system. Mhatre et al. [14]’s work on concurrent multihead extrusion
explores various extruder arrangements and the constraints they introduce for the printing direction.
They target a 4axis 3D printer where rotational motion is required, whereas our current prototype
is a 3D printer with only x, y, and z movements. More importantly, our approach does not require a
rotational axis to achieve parallelism, although we discuss other potential machine configurations
in Section 3. The authors also support parallel printing the perimeter — they assume that each
layer will have two perimeters (which is a common scenario) and use two extruders to print them
simultaneously. Our system does not currently support parallel perimeters; we leave that for future
work. Mhatre et al. [14] define a new tool in the firmware that indicates all nozzles should be
turned on simultaneously which is different from our approach of using M605 S2. One of the
biggest differences between our approach and Mhatre et al. [14] is that their toolpath generator
performs a postpass on the Gcode for a 3axis printer whereas we directly generate the parallel
toolpath for each slice by computing the start and end positions of the extruders. This entails a very
different approach to toolpath computation.

7 Conclusions

This paper sets out a research vision for investigating parallel fabrication techniques for desktop
3D printers. We proposed a concrete plan including challenges and mitigation strategies for each
stage of the desktop fabrication pipeline. We presented our findings from an early investigation
of this research direction that we hope will inspire further research in design and implementation
of hardware, firmware, slicer, and CAD tools for allowing parallel 3D printing, thereby making
desktop fabrication faster and more scalable.

1227

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No.
1813166. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National Science Founda
tion.

References

[1] SIMPLIFY3D, 2021. https://www.simplify3d.com/.

[2] All3DP. Dual Extruder (3D Printing): All You Need to Know, 2021. https://all3dp.com/
2/dual-extruder-extrusion-3d-printer-simply-explained/.

[3] BNC3D. BNC3D SIGMAX R19, 2020. https://www.bcn3d.com/bcn3d-sigmax-r19/.

[4] M. Carton. Dual extruder mount for minimpcnc (1/2 emt variant), 2021. https://www.
thingiverse.com/thing:4883743.

[5] DesignNews. Project Escher Applies Parallel Processing to 3D Printing,
Augut, 2016. https://www.designnews.com/design-hardware-software/
project-escher-applies-parallel-processing-3d-printing.

[6] T. Du, J. Priya Inala, Y. Pu, A. Spielberg, A. Schulz, D. Rus, A. SolarLezama, and W. Ma
tusik. Inversecsg: automatic conversion of 3d models to csg trees. pages 1–16, 12 2018.

[7] Flashforge. Flashforge creator dual extruder 3d printer, 2020. https://flashforge-usa.
com/products/creator-dual-extrusion-3d-printer-certified-refurbished.

[8] F. H. Fossdal, J. Dyvik, J. A. Nilsson, J. Nordby, T. N. Helgesen, R. Heldal, and N. Peek.
Fabricatable machines: A toolkit for building digital fabrication machines. In Proceedings of
the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction,
TEI ’20, page 411–422, New York, NY, USA, 2020. Association for Computing Machinery.

[9] LeapFrog. Bolt pro, 2020. https://www.lpfrg.com/products/leapfrog-bolt-pro/.

[10] Marlin. Configuring Marlin, 2021. https://marlinfw.org/docs/configuration/
configuration.html.

[11] Marlin. G0G1 Linear Move, 2021. https://marlinfw.org/docs/gcode/M605.html.

[12] Marlin. M605 Dual Nozzle Mode, 2021. https://marlinfw.org/docs/gcode/
G000-G001.html.

[13] Marlin. Marlin Firmware, 2021. https://marlinfw.org/.

[14] P. S. Mhatre. Process planning for concurrent multinozzle 3d printing, 2019. https://
scholarworks.rit.edu/theses/10075/.

1228

https://www.simplify3d.com/
https://all3dp.com/2/dual-extruder-extrusion-3d-printer-simply-explained/
https://all3dp.com/2/dual-extruder-extrusion-3d-printer-simply-explained/
https://www.bcn3d.com/bcn3d-sigmax-r19/
https://www.thingiverse.com/thing:4883743
https://www.thingiverse.com/thing:4883743
https://www.designnews.com/design-hardware-software/project-escher-applies-parallel-processing-3d-printing
https://www.designnews.com/design-hardware-software/project-escher-applies-parallel-processing-3d-printing
https://flashforge-usa.com/products/creator-dual-extrusion-3d-printer-certified-refurbished
https://flashforge-usa.com/products/creator-dual-extrusion-3d-printer-certified-refurbished
https://www.lpfrg.com/products/leapfrog-bolt-pro/
https://marlinfw.org/docs/configuration/configuration.html
https://marlinfw.org/docs/configuration/configuration.html
https://marlinfw.org/docs/gcode/M605.html
https://marlinfw.org/docs/gcode/G000-G001.html
https://marlinfw.org/docs/gcode/G000-G001.html
https://marlinfw.org/
https://scholarworks.rit.edu/theses/10075/
https://scholarworks.rit.edu/theses/10075/

[15] C. Nandi, A. Caspi, D. Grossman, and Z. Tatlock. Programming language tools and techniques
for 3d printing. In B. S. Lerner, R. Bodík, and S. Krishnamurthi, editors, 2nd Summit on
Advances in Programming Languages, SNAPL 2017, May 710, 2017, Asilomar, CA, USA,
volume 71 of LIPIcs, pages 10:1–10:12. Schloss Dagstuhl LeibnizZentrum für Informatik,
2017.

[16] C. Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, and Z. Tatlock. Functional
programming for compiling and decompiling computeraided design. Proc. ACM Program.
Lang., 2(ICFP):99:1–99:31, July 2018.

[17] C. Nandi, M. Willsey, A. Anderson, J. R. Wilcox, E. Darulova, D. Grossman, and Z. Tatlock.
Synthesizing structured cad models with equality saturation and inverse transformations. In
PLDI ’20, PLDI ’20, 2020.

[18] OpenScad. OpenScad. The Programmers Solid 3D CAD Modeller, 2021. http://www.
openscad.org/.

[19] PyMesh. PyMesh — Geometry Processing Library for Python, 2021. https://pymesh.
readthedocs.io/en/latest/index.html.

[20] N. Raynaud. Gcode q’n’dirty toolpath simulator, 2021. https://nraynaud.github.io/
webgcode/.

[21] Repetier. Ditto printing, 2020. https://forum.repetier.com/discussion/4140/
ditto-printing-mixing-extruder.

[22] Repetier. RepetierFirmware, 2021. https://www.repetier.com/documentation/
repetier-firmware/.

[23] RepRap. Gcode, 2021. https://reprap.org/wiki/G-code.

[24] Rhinoceros. Rhinoceros, 2021. https://www.rhino3d.com/.

[25] SketchUp. SketchUp, 2021. http://www.sketchup.com/.

[26] M. A. SkylarScott, J. Mueller, C. W. Visser, and J. A. Lewis. Voxelated soft matter via
multimaterial multinozzle 3d printing. Nature, 575(7782):330–335, 2019.

[27] Slic3r. Slic3r: Open source 3d printing toolbox, 2021. https://slic3r.org/.

[28] Snapmaker. Modular 3in1 3d printers, 2020. https://snapmaker.com/platform/
?gclid=EAIaIQobChMIp7-KlZPy5wIVbRitBh3H-QvvEAAYASABEgJk_fD_BwE.

[29] C. Software. Cura Software, 2021. https://ultimaker.com/en/products/
cura-software.

[30] Solidworks. Solidworks, 2021. http://www.solidworks.com/.

[31] Thingiverse. Thingiverse, 2021. https://www.thingiverse.com/.

1229

http://www.openscad.org/
http://www.openscad.org/
https://pymesh.readthedocs.io/en/latest/index.html
https://pymesh.readthedocs.io/en/latest/index.html
https://nraynaud.github.io/webgcode/
https://nraynaud.github.io/webgcode/
https://forum.repetier.com/discussion/4140/ditto-printing-mixing-extruder
https://forum.repetier.com/discussion/4140/ditto-printing-mixing-extruder
https://www.repetier.com/documentation/repetier-firmware/
https://www.repetier.com/documentation/repetier-firmware/
https://reprap.org/wiki/G-code
https://www.rhino3d.com/
http://www.sketchup.com/
https://slic3r.org/
https://snapmaker.com/platform/?gclid=EAIaIQobChMIp7-KlZPy5wIVbRitBh3H-QvvEAAYASABEgJk_fD_BwE
https://snapmaker.com/platform/?gclid=EAIaIQobChMIp7-KlZPy5wIVbRitBh3H-QvvEAAYASABEgJk_fD_BwE
https://ultimaker.com/en/products/cura-software
https://ultimaker.com/en/products/cura-software
http://www.solidworks.com/
https://www.thingiverse.com/

[32] J. Tran O’Leary, K. Lee, and N. Peek. A grammar of digital fabrication machines. In Extended
Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, CHI EA ’21,
New York, NY, USA, 2021. Association for Computing Machinery.

[33] J. Tran O’Leary and N. Peek. Machineomatic: A programming environment for prototyping
digital fabrication workflows. In The Adjunct Publication of the 32nd Annual ACM Sympo
sium on User Interface Software and Technology, UIST ’19, page 134–136, New York, NY,
USA, 2019. Association for Computing Machinery.

[34] Ultimaker. Reliable 3d printers that simply work for you, 2020. https://ultimaker.com/
en/resources/52867-dual-extrusion.

[35] V1Engineering. The mostly printed CNC, 2021. https://docs.v1engineering.com/
mpcnc/intro/.

[36] C. Wu, H. Zhao, C. Nandi, J. I. Lipton, Z. Tatlock, and A. Schulz. Carpentry compiler.
volume 38, pages 195:1–195:14, 2019.

1230

https://ultimaker.com/en/resources/52867-dual-extrusion
https://ultimaker.com/en/resources/52867-dual-extrusion
https://docs.v1engineering.com/mpcnc/intro/
https://docs.v1engineering.com/mpcnc/intro/

