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Abstract 

 

 Crumple-formed structures have irregular, multiscale geometric complexity. Similar to 

periodic lattices, crumpled geometries can be tailored to applications requiring a high strength-to-

weight ratio. As an alternative to confinement-based crumple forming, additive manufacturing 

allows for increased geometric control and structural reproducibility to fabricate these structures. 

The inherently irregular geometries of crumple-formed structures decrease the sensitivity of 

macroscale properties to microscale manufacturing defects but pose a unique challenge for the 

analysis of manufacturability using additive processes. Current approaches to manufacturability 

analysis lack techniques suitable for addressing the multiscale geometric complexity and 

irregularity of crumpled structures. This paper presents a preliminary study into the 

manufacturability of crumple-formed structures using a model reduction technique that preserves 

the robust bulk statistical properties of crumpled structures. Manufacturability predicted by the 

reduced order model is assessed against an ideal geometry for additive processes. 

 

Keywords: crumple-forming, additive manufacturing, manufacturability analysis, complex 

network theory, eigenvalue decomposition 

 

Introduction 

 

Layer-by-layer additive manufacturing (AM) processes allow designers to explore 

increasingly complex and irregular geometries for which manufacturing would be impractical with 

subtractive or forming methods. There is continued interest in developing rapid manufacturability 

analysis tools to provide new and experienced designers with preliminary information about 

feasible geometries for AM [1]. Integrating manufacturability analysis tools into the early design 

process will allow designers to iterate through novel geometries prior to physical prototyping. A 

concurrent approach to design and analysis also provides designers with initial understanding of 

the potential for structural deviation between an intended design and the manufactured outcome.  

 

This study explores methods to analyze the manufacturability of complex, irregular, 

crumple-formed structures by additive processes. Crumpled geometries are prevalent in nature, 

from the cortical surface of a mammalian brain [2] to faults along tectonic plate boundaries [3]. 

Recent studies into controlled crumpling include nanoscale graphene-based composites for 

supercapacitor applications [4], lightweight, energy absorbing materials for automobile crumple 

zones [5], and crumple-formed metamaterials for improved biological tissue regeneration [6]. 

Fundamental research into the dynamics of crumpling reveal the presence of irregular yet 

hierarchical architectures with customizable properties such as porosity, stiffness, and surface 

functionalization [7]. While existing publications explore the physical phenomena of crumpling 
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and diverse applications for crumpled geometries, this paper presents a novel investigation into 

the manufacturability of crumpled structures through additive processes. 

 

As an alternative to deformation-based crumpling of thin sheets of material, layer-by-layer 

AM has the potential to provide designers with increased control over crumpled geometries on 

multiple length scales. This elevated control may subsequently enable designers to tailor the 

physical and mechanical properties of crumpled structures. AM also enables the manufacture of 

replicates from simulated, computer-aided design (CAD) models, whereas real deformation-based 

crumpling will always result in a unique internal structure. In turn, AM may provide more 

reproducible and controlled bulk statistical properties than are attainable by deformation-based 

fabrication. However, before AM can be considered a viable alternative for crumpled structure 

fabrication, a suitable manufacturability analysis method must be developed. The multiscale 

complexity and irregular features of crumpled thin sheets pose a challenge for existing 

manufacturability analysis methods. The disordered ridge network in crumpled geometries 

produce an inhomogeneous distribution of voids and overhang regions, and the complex internal 

topology and fine features will not be amenable to the generation or removal of internal support 

structures. 

 

The proposed approach to manufacturability evaluation is based in network theory, 

specifically the topological analysis of complex networks. In this preliminary implementation, a 

reduced-order model of crumpled geometry is achieved by approximating the simulated crumple-

formed structure as a network representation. The network representation is produced by a low-

dimensional model of the crumple-form structure through eigenvalue decomposition (EVD). The 

low-dimensional model eliminates noise produced by randomly distributed geometric features to 

find a set of modes that represent coherent structures in the crumpled form. These coherent 

structures, represented as connected networks, enable manufacturability analysis. Due to the 

exploratory scope of this research, the proposed manufacturability analysis model is currently 

limited to theoretical validation against a simple geometry suitable for additive processes. A case 

study is performed to compare the manufacturability of the ideal geometry against crumpled 

structures with varying degrees of compaction. 

 

Background 

 

Crumpled structures are presently fabricated by deformation of a thin sheet of material 

within a boundary region. Crumpling occurs as the confined thin sheet exhibits a material-

dependent elasto-plastic response that localizes deformation along ridges and vertices [8]. In the 

context of crumpled geometries, microstructure is composed of discrete ridges and vertices. 

Mesostructure arises in the form of a network of ridges and vertices across the thin sheet, and the 

crumpled macrostructure is represented by the external form of the crumpled geometry. 

Macrostructure often approximates the shape of the boundary region, particularly at high 

compaction ratios (Figure 1). Macrostructure is also represented in the bulk statistical properties 

of the crumpled geometry. When a thin sheet of material is crumpled, its macrostructure transforms 

from a flat, thin sheet to a low-density three-dimensional structure with improved impact 

absorption capabilities [8]. Despite an inherently disordered distribution of ridges and vertices, 

approximating the bulk statistical properties of crumpled geometries has been demonstrated to 

correlate to macroscale properties [9]. Also, unlike periodic lattice or origami structures which are 
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highly sensitive to mesoscale manufacturing imperfections, crumple-formed geometries 

demonstrate reduced sensitivity to microscale and mesoscale structural defects [6], [8]. This 

unique, robust characteristic of crumpled geometries minimizes the impact of small-scale 

manufacturing defects on macroscale properties. Moreover, the robust macrostructure may exhibit 

less sensitivity to the part-to-part variability shown in many AM fabrication processes. 

 

 
Figure 1 Crumpled thin sheet formed by simulated spherical confinement, compaction increasing from 20% to 100% in 20% 

increments (left to right). 

While AM methods are capable of producing delicate geometries and complex internal 

features that are not feasible for subtractive or forming manufacturing methods, each AM process 

imposes a unique set of design constraints. A common topological constraint in many AM methods 

are overhangs, or material deposited over a void space that is not sufficiently supported from below 

[10]. Overhang regions may sag or break during fabrication, resulting in defects in the structure. 

Other AM constraints include dimensional parameters such as minimum feature size and 

maximum build volume [11], which respectively constrain the microscale and macroscale 

geometry. Continued interest in manufacturability analysis techniques is driven by the 

incorporation of AM knowledge and constraints into the early design process to reduce down-

stream design changes. 

 

Existing approaches to manufacturability analysis vary depending on the structure, metrics, 

and AM process of interest. One existing approach to evaluate the manufacturability of complex, 

multiscale geometries is through model reduction by homogenization using a representative 

volume element or unit cell. This approach is suitable for the periodic complexity found in ordered 

lattice structures [12]. However, crumpled geometries do not possess a uniform, representative 

volume element necessary for model reduction by homogenization. Other approaches range from 

case-by-case design heuristics [11] to neural networks for topological feature recognition [13]. It 

is not feasible to rely on a set of crisp heuristics to evaluate crumpled geometries due to the inherent 

disorder and hierarchical geometric complexity in these structures. The computational cost of 

applying design rules on multiple length scales becomes intractably expensive to model, and the 

inter-scale effects of topological changes can be difficult to predict.  

 

Emergent techniques for the reduction of structures with multi-dimensional complexity 

into low-dimensional models have applications ranging from materials design to systems design. 

On the materials level, Li et al. developed a dimensionality reduction technique to lower the 

computational expense of modeling polycrystalline microstructures while retaining their statistical 

properties [14]. In the realm of Design for Additive Manufacturing (DfAM), Coatanéa et al. 

developed a low-dimensional model to rank part geometries and their performance based on 

multiple manufacturability metrics [15]. Like the case study presented in this paper, Coatanéa et 
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al. demonstrate their manufacturability analysis method by evaluating multiple alternative 

geometries against an ideal form. However, the analysis approach by Coatanéa et al. is more 

prescriptive than predictive, as their model requires prior evaluation of individual parts’ 

performance based on each manufacturability metric. Due to the hierarchical complexity and 

limited experimental data on additively manufactured crumple-formed geometries, model 

reduction in this paper is performed directly on a network representation of the part geometry 

rather than reducing a matrix of multiple geometries with pre-determined manufacturability 

metrics. Integration of network theory and model reduction has been previously demonstrated by 

Dong et al., in which network theory and singular value decomposition (SVD) were implemented 

to model the complexity of a knowledge structure associated with emergent technology [16]. The 

network topology properties were then evaluated to forecast the product innovation potential. 

Sarkar et al. also employed network theory and eigenvalue decomposition (EVD) to analyze the 

modularity of complex product architectures in terms of their implications for system resilience 

[17]. These studies have developed an understanding how eigenvectors behave under variations in 

the underlying structure. Coherent structures calculated from the eigenmodes serve as the basis for 

predicting microscale structures up to the macroscale, and their associated functions. This research 

extends those insights to determine whether coherent network structures can be leveraged to 

propose generative approaches to form irregular geometries with multiscale complexity. 

 

Research Aim and Hypotheses 

 

In the proposed manufacturability analysis approach based in complex network theory, 

crumpled geometries are approximated as network representations based upon a low-order 

network approximations through eigenvalue decomposition. Topological properties of the 

reduced-order networks are evaluated in terms of geometric complexity of the crumpled structure. 

The implications of geometric complexity for predicting structural defects during AM processes 

are also examined. This exploratory study aims to address the following research questions: 

 

1. What does network topology reveal about the crumple-formed mesostructure and the 

likelihood of structural deviation between the designed and additively manufactured 

geometry? 

2. How does model reduction impact network topology and the subsequent 

manufacturability evaluation? 

 

To address these research questions within the scope of this preliminary study, a case study 

is performed to evaluate the mesostructure complexity of crumpled geometries at varying 

compaction ratios in relation to a solid sphere. Crumpled structures evaluated in this study 

approximate a spherical macrostructure (Figure 1), so a solid sphere is selected to highlight 

geometric variation on sub-macro length scales. A solid sphere manufactured from homogeneous 

material does not contain any complex or irregular internal features that may give rise to 

manufacturing defects, whereas thin sheets crumple-formed by spherical confinement contain 

complex, inhomogeneous internal topology. Mesostructure complexity in crumpled geometries 

may include thin features, intersecting faces, and internal overhangs. In response to the first 

research question, it is hypothesized that manufacturability increases as the mesoscale network 

topology approximates that of a solid sphere. 

 

1279



In response to the second research question, it is hypothesized that the reduced-order 

network representation reveals underlying geometric complexity in the crumpled structure that is 

obscured by noise in the high-order network approximation. By examining the eigenvalue 

spectrum obtained from the network adjacency matrix and reducing the network representation to 

its significant eigenvalues, the resulting network no longer contains spatial ‘noise’ represented by 

insignificant eigenvalues. Therefore, by removing redundant or insignificant geometric 

information from the network approximation, underlying coherent structures may become more 

apparent. In turn, the reduced-order network may provide a more sensitive depiction of complexity 

present in the crumpled geometry.  

 

Methodology 

 

This section details the proposed procedure for describing complex, crumple-formed 

hierarchical geometries through reduced-order network models for manufacturability analysis. The 

methodology for this research was developed to address the hypotheses put forth in the previous 

section and restated as follows: 

 

i. ‘Manufacturability increases as the mesoscale network topology 

approximates that of a solid sphere.’ 

ii. ‘The reduced-order network representation reveals underlying geometric 

complexity in the crumpled structure.’ 

 

The methodology starts with the computational simulation of a crumple-formed mesh 

geometry. The specific CAD software and physics simulation process are not integral to the 

network approximation, so the crumpling method employed in this paper is briefly described 

herein. The crumpled geometries are generated in Rhinoceros 3D CAD software using the 

integrated Grasshopper visual programming language and Kangaroo live physics engine. 

Kangaroo is a Grasshopper plugin used to simulate the dynamic spherical confinement of a thin 

sheet. This is achieved by shrinking a spherical shell around a two-dimensional triangular mesh 

‘sheet’. Self-avoidant collision spheres are centered at each vertex in the triangular mesh during 

crumpling to reduce self-intersection as the mesh is deformed. The self-avoidant sphere diameter 

is equal to the distance between vertices (0.25 mm) and serves as the thickness dimension for the 

planar mesh. Similar approaches to simulated crumpling by spherical confinement of a triangular 

mesh have been employed by Tallinen et al. [18], and Vliegenthart et al. [19]. The case study 

analyzed in this report investigates the effects of varying the compaction ratio of the crumpled 

geometry. The self-avoidant spheres centered at each vertex provide thickness to the mesh sheet, 

so the compaction ratio is the total volume of self-avoidant spheres in the mesh to the final 

confinement sphere volume. The fully dense sphere is approximated for the case study by 

generating a spherical confinement mesh and filling it with tightly packed self-avoidant spheres. 

 

To generate the initial network approximation, coordinate positions at each vertex in the 

triangular mesh are extracted from the crumpled geometry to generate network nodes. In the 

network approximation of a solid sphere, nodes are generated based on the centroid positions of 

each self-avoidant sphere in the structure. A list of edges is generated by measuring the radial 

distance between each node and connecting nodes within a specified radius (in this case, 0.3 mm 

because this length includes the 0.25 mm sheet thickness and nodes from adjacent layers). This 
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dimension may be modified based on the minimum feature size capabilities of the 3D-printer and 

material of interest. This method of spatial edge generation is employed rather than extracting 

edges directly from the CAD model, because triangular mesh edges in the crumpled geometry 

are identical to the node connections in the flat mesh sheet prior to spherical confinement. 

Therefore, the triangular mesh edges alone do not provide sufficient information to approximate 

the crumpled geometry. This limitation is resolved in the spatial, radial distance approach to edge 

generation because it simultaneously connects nodes along the triangular mesh sheet and across 

narrow voids or ridges in the structure, providing additional information about the crumpled 

mesoscale geometry. 
 

The collection of nodes and edges in the crumpled geometry may be plotted as a network 

graph using the NetworkX Python library [20]. NetworkX is a software package developed for the 

creation, manipulation, and study of complex networks. Table 1 displays network graphs drawn in 

NetworkX for each structure analyzed in the case study. An adjacency matrix, A is generated from 

the network representation. The number of rows and columns in the (n × n) adjacency matrix 

represent each node in the crumpled geometry, where n is the number of nodes in the network. In 

the unweighted adjacency matrix, Aij = 1 if there is an edge connecting the node pair, or Aij = 0 if 

the pair is not connected. A is a symmetrical matrix because the edge connections are undirected.  

 

The adjacency matrix, A is decomposed by EVD into the form A = VDVT, where A is the 

(n × n) adjacency matrix, V is the (n × n)  orthonormal eigenvector matrix of A, and D is the (n × 

n) diagonal eigenvector matrix of A. As demonstrated in reference [17], each edge in the network 

approximation is expressed as a vector in space, a linear combination of the eigenvector vi and 

corresponding eigenvalue λi 

 

 𝒂𝑖 = [𝑣𝑖1𝜆0, 𝑣𝑖2𝜆1, … 𝑣𝑖𝑛𝜆𝑛−1]  (1) 

 

Dong et al. and Sarkar et al. have previously shown that eigenvalue decomposition, or 

singular value decomposition for non-square adjacency matrices, are useful for the detection of 

hierarchical modularity in complex network representations [16], [17], [21]. Plotting eigenvalues 

or singular values in order of descending magnitude reveals characteristics about the modularity 

of the spatial network representation (Figure 2 in the case study). The goal of dimensionality 

reduction is to eliminate spatial noise in the form of low-magnitude eigenvalues, while preserving 

significant geometric information about the crumpled structure by retaining the k largest 

eigenvalues and eigenvectors. The k-reduced approximation is then 

 

 𝒂𝑖
(𝑘) = [𝑣𝑖1𝜆0, 𝑣𝑖2𝜆1, … 𝑣𝑖𝑘𝜆𝑘−1]  (2) 

 

The number of eigenvalues retained in the reduced-order representation may be determined 

by selecting the largest magnitude eigenvalues before the characteristic ‘elbow’ in the eigenvalue 

spectra. After the elbow, the magnitude change between eigenvalues decays more gradually. 

Removing low-magnitude eigenvalues has the effect of removing redundant spatial information 

from the network approximation. Subsequent research will investigate the balance between 

removing redundant spatial information and minimizing information loss about fine features in the 

crumpled mesh. By eliminating spatial redundancy, the network is described with fewer edges and 
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the reduced-order network approximation may reveal geometric complexity that was previously 

obscured by noise or redundancy in the high-order approximation.  

 

Three topological network properties are evaluated to identify geometric complexity in the 

network approximations. The first is the size of the giant component. The size of the giant 

component is evaluated across multiple layers, sliced along one axis in the network. This metric 

provides an indication of how the deposited layers of material will vary in a layer-by-layer AM 

process. In the solid sphere, each layer is a fully connected component, so the layer-by-layer 

variation of the giant component will closely approximate an inverted U-shape when plotted with 

respect to depth in the structure. In crumpled geometries, the size of the giant connected component 

will vary depending on the distribution of material in each layer. An ideal, in this case inverted U-

shape, distribution of the giant component through the depth of the structure indicates fewer voids 

or internal overhangs that may give rise to mesostructure manufacturing defects. To compare the 

crumpled structures to a solid sphere, the geometric ratio of the area under the curve (plotted as 

giant component size versus depth in the structure, Figure 3) is calculated for the crumpled 

geometries versus that of a solid sphere. An area ratio approaching 1 indicates that the structure 

may be suitable for manufacture, while ratios much less than 1 predict that the overall structure 

may be difficult to manufacture. 

 

 The second topological property analyzed in the network approximations is the average 

shortest path length (ASPL), l, Equation 3. ASPL is the average distance d(i, j) measured as the 

number of edges along the shortest path between each node pair, over the total nodes n in the 

network [22].  

 

 
𝑙 =  

1

𝑛(𝑛 − 1)
∑ 𝑑(𝑖, 𝑗)

𝑖≠𝑗

 (3) 

 

The network representation becomes disconnected after k-reduction. In a disconnected 

graph ASPL is infinite, and so after model reduction the ASPL is measured for the giant component 

rather than the entire network. ASPL is an indication of spatial connectivity in the crumpled 

geometry. Shorter ASPL may relate to a more homogeneous distribution of ridges and fracture 

surfaces in the crumpled sheet. In terms of manufacturability, shorter ASPL may lead to a more 

uniform distribution of material across the crumpled mesostructure. More uniform mesoscale 

material distribution may in turn minimize the risk of structural manufacturing defects propagating 

across the mesostructure and altering the as-designed macroscale geometry. 

  

The third and final topological property analyzed in the network approximation is node 

degree centrality. In an undirected network, node degree centrality is calculated as the number of 

edges connected to a node. Edges in the high-order network approximations are generated based 

on radial proximity between nodes, so node degree distribution will provide a preliminary 

indication of the distribution of material density in the structure. In a homogeneous network, most 

of the node degrees cluster around the mean [22]. High node degree indicates a dense collection 

of nodes. In the reduced-order representations, high node degree may indicate a particularly 

significant region of the crumpled geometry. In terms of manufacturability, a structural defect in 

this region may have a significant impact on the surrounding mesostructure. It is therefore 

preferred for the structure to have a homogenous distribution of node degree. 
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Case Study 

 

The proposed network approximation and model reduction methodology is implemented 

in a case study investigating the relationship between varied compaction ratio and 

manufacturability. The crumpled geometries’ mesostructure is also evaluated in relation to a solid 

sphere. A solid sphere is selected as an ideal geometry for AM because it has a homogeneous 

mesostructure with no internal voids, fine features, or complex topology. Five crumpled structures 

are generated with identical mesh parameters, varying only the final radius of the confinement 

sphere to achieve 20%, 40%, 60%, 80%, and 100% compaction. Simulated sheet thickness is 0.25 

mm. Graphs of the high-order network approximations for the solid sphere and crumpled 

geometries are displayed in Table 1. In the high-order network approximation edges are generated 

by spatial proximity by connecting nodes that are less than or equal to 0.3 mm apart. 

 
Table 1 Network approximations of solid sphere and crumpled thin sheets with varying compaction ratio. Nodes represented by 

blue dots, edges represented by black lines. Geometries are not shown to scale. 

Label 
High-Order Model Reduced-Order Model 

Network Approximation Edges Network Approximation Edges 

Solid Sphere 

 

86713 

 

48308 

100% 

Compaction 

 

3238 

 

1711 

80% 

Compaction 

 

2911 

 

1412 
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60% 

Compaction 

 

2653 

 

1252 

40% 

Compaction 

 

2410 

 

1084 

20% 

Compaction 

 

2220 

 

904 

 

 To compute reduced order network approximations (also shown in Table 1), an adjacency 

matrix is generated for each of the high-order network approximations. Eigenvalue decomposition 

is performed on each of the unweighted, undirected adjacency matrices. The eigenvalue spectra 

are plotted in Figure 2. A perfectly modular network would exhibit a single, discrete discontinuity 

between non-zero singular values and singular values with zero magnitude [17]. However, the 

eigenvalue spectra in Figure 2 reveal a relatively smooth decay for the solid sphere, down to an 

elbow that encompasses the first 20-25% of eigenvalues in the sphere representation. Hierarchical 

modularity is evident in eigenvalue spectra as distinct gaps between clusters of eigenvalues of the 

same magnitude. Hierarchical modularity is most noticeable in the eigenvalue spectra of the 

crumpled geometry with 60% compaction, and to a lesser extent it also visible as shorter ‘steps’ in 

the crumpled geometries with 80% and 100% with compaction. The crumpled geometry with 40% 

compaction does not show eigenvalue hierarchy, but the modularity is shown by distinct gaps 

between the first 7 eigenvalues. Finally, the crumpled geometry with 20% compaction does not 

reveal any significant modularity; instead, the eigenvalues gradually decay to an elbow at 30% and 

then trail off more gradually afterward. In this case study, a conservative reduction is performed 

by retaining the first 25% of eigenvalues and eigenvectors in the model. Subsequent investigation 

into the effect of varying the degree of eigenvalue reduction will be performed in follow on 

research to examine the extent to which the network representation may be reduced without 

sacrificing significant information about the geometric complexity.  
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Figure 2 Overlay of eigenvalue spectra full scale (left), and detail (right). 

The reduced order network representations are shown in Table 1. After reducing each 

network to the first 25% of eigenvalues and eigenvectors, the low-dimensional networks no longer 

retain the same edge connections shown in the high-order approximations. Instead, the redundant 

spatial information has been eliminated. The reduced networks in Table 1 are plotted with the 

nodes in their original coordinate positions to visualize the outcome of model reduction; however, 

the edge lengths and node positions will not impact the subsequent network topology calculations. 

To demonstrate the effect of visualizing the same network with different node positions, the 

reduced order model of the crumpled geometry at 80% compaction is plotted in Figure 3. First the 

network is plotted with the original coordinate node positions, and then with a spring layout that 

is commonly used in NetworkX. 

 
Figure 3 Alternative node positions of the same reduced-order network approximation of the crumpled geometry with 80% 

compaction. 

The first topological network property measured in this case study is variation in the size 

of the giant component with respect to depth in the structure. For this measurement, the network 

approximations are segmented based on the coordinate positions of each node. Network nodes are 

binned by their z-coordinate position to generate subgraphs approximating AM layers of deposited 

material. Each layer in this case study is 0.25 mm thick, equivalent to the thickness of the 

simulated, crumpled thin sheet. Giant component size is measured as the largest number of 

connected nodes across each layer in the structure. Figure 4 displays the giant component size 

distribution across an ideal homogeneous mesostructure for AM, estimating a solid sphere. The 

distribution of giant components along the solid sphere approximates an inverted U-distribution 

because the nodes are densely packed, resulting in a fully connected component across each slice 

in the structure. Figure 5 displays the giant component size distribution across each layer in the 
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five crumpled geometries listed in Table 1, before and after dimensionality reduction. In crumpled 

geometries with 60%, 80%, and 100% compaction, the giant component distributions begin to 

approximate the inverted U-distribution of the solid sphere in Figure 4. This trend indicates that 

crumpled geometries at higher compaction ratios more closely approximate the homogeneous 

mesostructure of a solid sphere. However, after dimensionality reduction through EVD eliminates 

spatial redundancy in the crumpled geometries, only the geometry at 100% compaction approaches 

an inverted U-distribution. This discrepancy before and after model reduction in Figure 5 indicates 

that the reduced-order network approximation may reveal significant geometric complexity by 

eliminating spatial redundancy in the network.  

 

 
Figure 4 Variation in the size of the giant component across the high-order network approximation of a solid sphere. 

 
Figure 5 Variation in the size of the giant component across each crumpled network approximation, before and after model 

reduction. 

 Figure 6 displays ratios for the area under the curves in Figure 5, comparing the giant 

component sizes across each crumpled geometry to that of a solid sphere (Figure 4). An area ratio 

of 1 indicates that the crumpled mesostructure exactly approximates the mesostructure of a 

homogeneous, solid sphere. The giant component area ratios are monotonically increasing with 

respect to compaction of the crumpled sheets, both before and after model reduction. Based on this 

topological network property, crumpled geometry at 100% compaction most closely approximates 

an ideal mesostructure for AM. This may be due to the dense network of nodes at elevated 

compaction ratios, approaching homogeneous distribution by reducing void space in the crumpled 

structure. Comparison of the high-order and reduced-order network approximation in Figure 6 

reveals a wider gap in the giant component area ratio between geometries at 80% and 100% 

compaction in the reduced-order approximation. Therefore, prior to dimensionality reduction this 

network property may provide an overly optimistic evaluation of the manufacturability of 

1286



crumpled geometries at less than 100% compaction. This is attributed to redundant edges in the 

high-order network approximation obscuring nonhomogeneous geometric features, and artificially 

increasing the size of the giant component in each layer whereas dimensionality reduction 

effectively decreases spatial redundancy and reveals underlying geometric complexity in the 

crumpled geometries.  

 

 
Figure 6 Area ratio under the curves plotted in Figure 5, ratio of the distribution of giant component sizes in each crumpled 

structure against that of the solid sphere. Results compared for each crumpled geometry before and after model reduction. 

 The second topological network property analyzed in the case study is the average shortest 

path length (ASPL). ASPL reveals the average number of network edge connections that span 

from any node position to any other node in the crumpled geometry. In the event of a disconnected 

network, ASPL is calculated for the giant component accounting for the full span of z-coordinate 

positions, rather than the layer-by-layer sub-networks analyzed in the previous metric. In Figure 

7, every structure aside from the crumpled geometry at 20% compaction exhibits a longer ASPL 

after model reduction. This occurs because eliminating redundant spatial information in the 

network may remove edges that are found along the shortest path between nodes in the structure. 

In this case, the ASPL relationship to compaction ratio does not follow the same trend before and 

after model reduction. Prior to model reduction, ASPL is monotonically decreasing with increasing 

compaction of the crumpled geometry, so the crumpled geometry at 20% compaction has the 

longest ASPL. However, after model reduction the crumpled structure at 60% compaction has the 

longest ASPL. The increase in ASPL at 60% compaction in the reduced-order data, is further 

indication that removing redundant edges and spatial noise reveals underlying complexity in the 

crumpled geometries. Additionally, maximum ASPL at 60% compaction implies discontinuity in 

the crumpled mesostructure at intermediate compaction ratios. The results indicate that the 

crumpled ridge network undergoes a transition phase of an inhomogeneous distribution of ridge 

lengths between 40% and 80% compaction. A shift in ridge length distribution may occur as the 

mesostructure transitions from a more homogeneous distribution of long ridges at low compaction 

(< 40%), to a more homogeneous distribution of short ridges at high compaction (> 80%). ASPL 

of the ‘ideal’ mesostructure, a solid sphere, is also plotted in Figure 7. ASPL of the solid sphere 

before and after model reduction is displayed as a straight line in Figure 7 to facilitate visual 

comparison against the ASPL of the crumpled geometry at each compaction ratio. The results in 

Figure 7 conflict with the proposed hypothesis that manufacturability increases as the mesoscale 

network topology approximates that of a solid sphere, because the ASPL of the solid sphere is 

longer than the ASPL of the crumpled geometries. Instead of relating the crumpled geometries’ 
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ASPL to that of an ideal geometry, it may be sufficient to pursue a minimum ASPL for this 

manufacturability metric. 

 
Figure 7 The average shortest path length between each node pair, before and after model reduction. 

The final topological network property measured in this case study is node degree 

centrality, measured as the frequency distribution of the number of edges per node in the network. 

In the high-order network approximation, high node degree occurs along narrow ridges and tightly 

folded layers in the crumpled sheet. In the solid sphere, higher node degree is expected at the center 

of the homogeneous structure, with lower node degree near the perimeter of the solid sphere. 

Performing model reduction on the network representation of the solid sphere (Figure 8) reveals a 

more normal frequency distribution of node degrees by eliminating noise in the high-order 

network. In Figure 9, the crumpled geometries also shift to a more normal distribution of node 

degrees in the reduced-order network approximations. Comparing the reduced-order node degree 

distribution in Figure 8 and Figure 9, crumpled geometry at 80% compaction most closely 

approximates the node degree distribution of the solid sphere. Geometries at 60% and 100% 

compaction also approach a more normal node degree distribution than is achieved at 20% or 40% 

compaction.  

 

 
Figure 8 Node degree distribution, solid sphere before and after model reduction. 
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Figure 9 Node degree distribution, crumpled geometries before and after model reduction. 

Conclusions 

 

This study serves as a preliminary exploration into the application of complex network 

theory in conjunction with eigenvalue decomposition for the manufacturability analysis of 

irregular, crumple-formed geometries with hierarchical complexity. The research questions 

examine: (1) ‘What does network topology reveal about the crumple-formed mesostructure and 

the likelihood of structural deviation between the designed and additively manufactured 

geometry?’; and, (2) ‘How does model reduction impact network topology and the subsequent 

manufacturability evaluation?’. The following hypotheses were proposed to answer the research 

questions, (i) ‘manufacturability increases as the mesoscale network topology approximates that 

of a solid sphere’, and (ii) ‘the reduced-order network representation reveals underlying geometric 

complexity in the crumpled structure’. The hypotheses are addressed in a case study demonstrating 

the proposed framework for network approximation and model reduction. Model reduction is 

achieved through analysis of the eigenvalue spectra and reduction of a network approximation of 

the CAD geometry, eliminating insignificant eigenvalues in the model to reduce spatial 

redundancies. The case study compares the mesostructure geometry of five crumpled structures 

with varying compaction ratios ranging from 20% to 100% compaction. The crumpled geometries 

are also analyzed in comparison to an ideal, solid mesostructure for AM. Topological network 

properties are measured and evaluated in terms of manufacturability. Topological network 

properties and manufacturability evaluation results from the case study are summarized in Table 

2.  
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Table 2 Summary of manufacturability evaluation metrics and observed outcomes of the case study. 

Index 

Topological 

Network 

Property 

Relationship to 

the Crumpled 

Geometry 

Manufacturability 

Evaluation 

Observations 

from the Case 

Study: 

High-Order 

Model 

Observations from 

the Case Study: 

Reduced-Order 

Model 

1 

Geometric area 

ratio of the giant 

component size 

across the 

structure, 

comparing  

crumpled 

geometries to an 

‘ideal’ 

mesostructure, a 

solid sphere 

(Fig. 5, 6). 

An indication of 

layer-by-layer 

material 

deposition, 

uniform 

distribution of the 

giant component 

across the 

structure indicates 

fewer voids and 

internal 

overhangs. 

More 

manufacturable as 

the area ratio 

approaches 1 (fully 

dense 

mesostructure). 

Area ratio is 

monotonically 

increasing with 

compaction. 

Results indicate 

that the crumpled 

geometry at 100% 

compaction most 

closely 

approximates the 

ideal 

mesostructure. 

Area ratio is 

monotonically 

increasing with 

compaction ratio. 

Dimensionality 

reduction reveals a 

prediction of lower 

manufacturability at 

≤ 80% compaction. 

2 

Average shortest 

path length 

(ASPL), the 

average number 

of edges along 

the shortest path 

between each 

node pair (Fig. 

7). 

Shorter ASPL 

indicates a more 

homogeneous 

distribution of 

ridge lengths in 

the crumpled 

sheet and a more 

uniform 

distribution of 

material across 

the mesostructure. 

More uniform 

material 

distribution may 

in turn minimize 

the risk of 

manufacturing 

defect propagation 

across the 

structure. 

Shorter ASPL is 

associated with 

more 

homogeneous, and 

subsequently more 

manufacturable, 

mesostructure 

geometry. 

ASPL 

monotonically 

decreasing with 

compaction ratio, 

indicate that the 

crumpled 

geometry at 100% 

compaction has 

the most 

homogeneous 

mesostructure, 

and is therefore 

the most 

manufacturable. 

ASPL decreases 

between 20% to 

40% compaction, 

increases at 60% 

compaction, and 

decreases again at 

80% and 100% 

compaction. 

Shortest ASPL is 

achieved at 100% 

compaction. 

Results indicate an 

inhomogeneous 

transition point in 

the distribution of 

ridge lengths, 

between 40% and 

80% compaction. 

3 

Node degree 

distribution, the 

number of edges 

per node (Fig. 8, 

9). 

High node 

degrees occur 

along narrow 

ridges and tightly 

folded layers in 

the crumpled 

sheet. Normal 

distribution of 

node degrees is 

expected to 

produce a more 

uniform 

mesostructure. 

More 

manufacturable as 

the frequency of 

node degrees 

across the network 

approach a normal 

distribution. 

None of the 

geometries 

approach a 

normal 

distribution prior 

to dimensionality 

reduction, due to 

spatial 

redundancy in the 

high-order 

representation. 

The crumpled 

geometry at 80% 

compaction 

(followed by 100% 

and 60% 

compaction) most 

closely 

approximates the 

normal node degree 

distribution of the 

solid sphere. 

  

The results in Table 2 are not entirely consistent in predicting a compaction ratio that will 

reduce the likelihood of structural defects during AM. Even so, the crumpled structure at 100% 
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compaction performs well with respect to each metric. This performance is attributed to the more 

uniform distribution of material at high compaction ratios, closely approximating the 

homogeneous mesostructure of a solid sphere. Manufacturability metric 1 and 3 in Table 2 accord 

with the first hypothesis, in which the crumpled mesostructure that most closely approximates the 

solid sphere (in this case, 100% compaction) is predicted to be the most manufacturable by additive 

processes. Metric 2 diverges from the first hypothesis because shorter ASPL is attributed to 

increased manufacturability, but the solid sphere exhibits longer ASPL than the crumpled 

geometries (Figure 7). This discrepancy is attributed to the lack of an analogous ridge network in 

the solid sphere to compare to the crumpled geometries. Subsequent research may identify an ideal 

geometry that is suitable for all three metrics listed in Table 2, but at present it is sufficient to 

minimize ASPL of the crumpled geometry, rather than comparing it to a solid sphere. The results 

in Table 2 suggest that multiple topological properties should be measured to gain a more 

comprehensive understanding of the manufacturability of a crumple-formed structure, because 

each property provides information on a different aspect of the mesoscale geometry. 

 

 The second hypothesis states that dimensionality reduction reveals underlying complexity 

in the crumpled geometry. Comparison of the topological network properties before and after 

dimensionality reduction summarized in Table 2 demonstrate that the low-dimensional 

approximation achieved through eigenvalue decomposition provides a more coherent 

representation of mesoscale complexity by eliminating redundant spatial information in the 

network representation. Subsequent research will include a more exhaustive investigation of the 

relationship between the degree of eigenvalue reduction and the resulting network approximation, 

balancing spatial redundancy, computational expense, and information loss. In following research, 

complex network theory will also be applied to study the relationship between design inputs and 

the resulting macroscale properties of crumpled geometries, allowing designers to tailor crumpled 

geometries to meet specific design requirements. Furthermore, experimental model validation will 

be performed to analyze how the predicted manufacturability relates to physical defects in AM 

crumpled structures. X-ray computed tomography and image analysis techniques will be applied 

to characterize structural deviation between designed and manufactured mesostructure, and to 

quantify the robust relationship between mesoscale defects and macroscale properties of additively 

manufactured crumpled geometries. Finally, further research will assess the generality of the 

proposed manufacturability analysis approach when applied to other geometries with multiscale 

complexity. 
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