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Abstract 

Short carbon fiber composites are used in large-scale polymer deposition additive manufacturing due to 
their increased stiffness and strength and reduced thermal expansion and print distortion. While much 
attention has been given to interlayer properties, less is known about bead microstructure, including the 
effect that suspended fibers have on porosity. This paper develops a model for single fiber motion in a 
purely viscous flow that is simulated with a custom finite element fiber suspension analysis. Our fiber 
simulation is based on Jeffrey’s model assumptions where translational and rotational velocities which zero 
applied forces and moments are computed. Velocity gradients along streamlines within the flow of polymer 
melt through a large-scale polymer deposition additive manufacturing flow field serve as input. The 
pressure distribution around a fiber is computed along the flow path including the die swell expansion at 
the nozzle exit. The simulation provides insight into micro-void formation within printed beads. 

Introduction 

Among various Additive Manufacturing (AM) techniques such as Selective Laser Sintering (SLS) and 
Stereolithography (SLA), Fused Filament Fabrication (FFF) is a fast-growing technique which deposits 
polymer and polymer composite beads enabling rapid prototyping and extensive design freedom at no 
additional cost [1]. Research on bead microstructure formed during large-scale polymer composite 
deposition has gained widespread attention due to the significant impact short carbon fibers have on the 
physical and thermomechanical properties of the composite parts [2]. Among other microstructural 
properties of interest including fiber orientation and fiber volume fraction, micro-voids formed in the 
manufacturing process remain a concern since they negatively impact the stiffness, strength, quality, and 
cost of the components design, and pose severe risk of component failure under in-service loads [3]. There 
has been record of successful implementation of various computational methods such as work done by 
Heller et al. [4] and Wang et al. [5] in simulating the short fiber composite deposition process for Big Area 
Additive Manufacturing (BAAM) and evaluating microstructural properties such as fiber orientation and 
the resulting thermo-mechanical properties. However, little progress has been made in understanding the 
formation and evolution of micro-voids, including the role played by the suspended fibers in their 
development. Vaxman et al. [6] suggest that voids nucleate at fiber ends and the process begins when air is 
entrapped in polymer melt during compounding and processing stages. They also show that the fiber 
volume fraction directly affects the viscosity of the polymer melt which influences void formation in prints 
together with other factors such as the shear rate, flow temperature, and fiber’s aspect ratio. The difference 
in the fiber-matrix thermal expansion coefficient, the die swell/expansion of the free extrudate and 
differential cooling rate between the bead’s external surface and core regions are contributing factors that 
also increase porosity. Yang et al. [7] showed that void percentage is negligible during the filament feed 
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and melt stages within the extruder and nozzle. They also showed that most voids form when polymer melt 
just exits nozzle and that this percentage drops during on-bed deposition due to air escapement.  

The aim of this paper is not to predict void formation but to better understand mechanisms that promote 
void formation within beads produced by BAAM polymer composite deposition. Our hypothesis is that 
voids nucleate in low pressure regions along the fiber surface during the deposition process. Here we present 
a multiscale modelling approach to achieve our objective: first we develop a macro scale-2D planar 
deposition flow model for fiber orientation within the 2D polymer composite melt flow of the BAAM 
nozzle which is used to predict the flow field and fiber orientation tensors in the nozzle. Secondly, we 
develop a micro scale model to simulate the motion of a single ellipsoidal fiber suspended in a polymeric 
melt flow using the computed velocity and pressure from the macro scale model as inputs for the microscale 
model. The micro model is based on the work by Zhang et al. [10] which incorporates Jeffrey's [8] 
assumptions for suspended particles. In this approach, we compute the fiber's linear and angular velocities 
that result in zero net hydrodynamic forces and torques and subsequently determine the fiber evolution 
using an explicit numerical algorithm to track its position and orientation. The resulting pressure 
distribution around the fiber along the flow path, including the die swell expansion at the nozzle outlet 
provides insight into the micro-void formation mechanism within printed beads. We validate the modeling 
approach by benchmarking results for a shear flow with analytical solutions developed by Jeffery [8]. The 
simulation approach presented here is expected to provide unique insight into microstructure development 
during BAAM processing which can be used to improve the quality of manufactured composite parts.  

Methodology 

We consider the following multiscale modelling approach: 

1. A Macro scale model is used to compute the velocity and pressure solution along streamlines within
a 2D polymer composite melt flow of the BAAM nozzle. Fiber orientation tensors are then
computed along each streamline from the velocity solution.

2. A Micro model is used to simulates the motion of a single ellipsoidal fiber suspended and compute
the pressure field near a fiber in a polymeric melt flow using inputs from the velocity streamlines
from the macroscale model as boundary conditions.

Macro Model - 2D Planar Deposition Flow 

In the macro model [9], we compute the velocity flow field within the 2D planar flow of a BAAM nozzle 
(cf. Figure 1) using ANSYS Polyflow software. The fiber presence is ignored during the flow computation. 
The polymer melts in the barrel and is forced through the nozzle and extruded onto the moving plate or 
predeposited material below (relative to the nozzle).  The relevant polymer melt properties used in this 
study are for 13% carbon fiber filled ABS evaluated for a shear rate of 100 𝑠ିଵat 230oC where the density 
is  1154 𝑘𝑔𝑚ଷ and the viscosity is 817𝑃𝑎 ∙ 𝑠. 
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(a)     (b) 
Figure 1: a) Polymer Deposition Process, b) Extrusion Die Schematic. [9] 

The governing equations based on the assumption of incompressible, isothermal, viscous, low Reynolds 
number, and Newtonian fluid flow are the Stokes equation for mass and momentum conservation of the 
polymer melt flow given as 

𝛻 ∙ 𝒖 ൌ 0 1 

𝛻 ∙ 𝝈 ൅ 𝒇 ൌ 0 2 

where 𝒖  is the flow velocity vector, 𝒇 is the body force vector and 𝝈 is the Cauchy stress tensor given as 

𝝈 ൌ 𝝉 െ 𝑝𝑰 3 

In the above, 𝑝 is the fluid hydrostatic pressure, 𝑰 is the identity tensor and 𝝉 is the deviatoric stress tensor 
given as 

𝝉 ൌ 2𝜇𝑫 4 

where 𝜇 is the viscosity of the Newtonian fluid, and 𝑫 is the second-order rate of deformation tensor. 

The two-dimensional (2D) planar deposition flow domain consists of the extrusion nozzle’s hollow section 
and a single bead layer deposited on the moving bed with the relevant prescribed boundary conditions as 
shown in Figure 2. 

1404



Figure 2: 2D Planar deposition flow model with relevant boundary conditions 

The computed velocity contours and streamlines from the macro scale simulation appear in Figure 3. Of 
particular interest are streamlines 10, 15 and 18 with deposition times of 1.112, 1.487, and 2.780 seconds, 
respectively, which serve as basis for the microscale analysis. The velocity contours are characterized by 
sharp transitions of velocity gradient as the polymer exits the nozzle. Within the extruder itself, the 
transverse velocity variation across the width is nearly linear, but the longitudinal velocity is seen to 
increase significantly towards the center and downstream towards the nozzle. 

Figure 3: Velocity Streamlines – fully coupled solution 
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(a) (b)

Figure 4: Velocity contours a) horizontal velocity 𝑣௫ b) vertical velocity 𝑣௬ 

Micro-Model – 2D Single Fiber Evolution Model 

Our micro model is based on the work of Zhang et al. [10] using a custom finite element analysis (FEA) 
code written in MATLAB to simulate the motion of a single ellipsoidal fiber in the polymeric melt flow. 
Inputs to the micro model include velocity, velocity gradients, and pressure which are computed in the 
macroscale model as described in the preceding section. The equation governing the model development are 
the same Stokes’s equation utilized in the macro-model based on similar assumptions of steady state, 
incompressible, low Reynolds number, isothermal flow with an isotropic, homogenous, symmetric, and 
Newtonian fluid property. The micro model assumes a no slip boundary condition at fluid and fiber interface 
and no flux through the fiber surface. The micro model has the same polymer melt properties as the macro 
model.  

In the micro model FEA code, we assemble each element stiffness matrix derived from the Galerkin 
formulations of the governing equations (cf. Equations 1-4) into a global system and solve for unknown 
nodal velocities, pressures, and nodal reactions. Using the FEA algorithm, we iteratively determine the 
fiber’s translational and angular velocities based on a Newton Raphson’s algorithm that zero’s the net 
hydrodynamic force and torque acting on the fiber’s surface due to the action of the surrounding fluid. In 
this computational approach, the fiber’s evolution (translation and rotation) is computed at each time step 
using an explicit 4th order Runge-Kutta scheme. 

We consider 3 prescribed essential boundary conditions for primary variable 𝒖ഥ [10] & [11].  as shown in 
Figure 5. 

BC 1: The far-field velocity at the fluid boundary 𝑈஻஼ଷ, which are derived from the velocity profiles and 
gradients of the streamline obtained from the macro-model are implemented as (where x and y are the 
distance from the fiber center to the far-field boundary at each node) 

1406



𝑈஻஼ଵ ൌ  𝑈଴
ᇱ ൌ ൤

𝑢ట
𝑣ట൨ ൅ ൦

𝜕𝑢ట
𝜕𝑥ൗ 𝜕𝑢ట

𝜕𝑦൘

𝜕𝑣ట
𝜕𝑥ൗ 𝜕𝑣ట

𝜕𝑦൘
൪ ൤
∆𝑥
∆𝑦൨ 5 

BC 2: The fluid pressure constraint 𝑝஻஼ଶ is prescribed by imposing the far-field streamline pressure 𝑝଴
ᇱ  on 

a node on the fluid surface according to Eqn. 6 

𝑝஻஼ଶ ൌ 𝑝଴
ᇱ 6 

BC 3: The velocity prescribed at the fiber’s edge 𝑈஻஼ଷ is obtained from the equation of rigid body motion 
(Eqn. 7) and is comprised of the fiber’s center velocity and the component of the relative motion of the fiber 
surface referenced to its center.  

𝑈஻஼ଷ ൌ 𝑈௖ᇱ ൅ 𝜔ᇱ ൈ 𝑟ᇱ 7 

Figure 5: Micro-model showing prescribed boundary conditions [10]

For the Finite Element model discretization, we use a radial seed of 13 cell units with a geometric radial 
bias of 1.2 and circumferential seed of 50 cell unit leading to a total of 2 ൈ 13 ൈ 25 ൌ 650 triangular 
elements as shown in Figure 6(a). A sensitivity analysis was performed to determine the sufficient number 
of elements such that our results accurately predict Jeffery’s orbit (cf. Figure 7). 

(a)      (b) 

Figure 6: a) Fluid domain discretization b) Element type with velocity and pressure DoF 
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In the FEA formulation, we employ the mixed method approach with ሺ𝑢, 𝑣, & 𝑝ሻ as the primary nodal 
variables. As shown in Figure 6 (b), a 6-node quadratic, iso-parametric triangle serendipity element, with 
three degrees of freedom at each corner node ሺ𝑢, 𝑣, & 𝑝ሻ  and two degrees of freedom at the mid-side nodes 
ሺ𝑢, 𝑣ሻ is used which has been found to give accurate results for low Reynolds number fluid flow problems 
[13].   

The discretized linear algebraic equations derived though the finite element formulation yields the system 
matrix equation 

𝐾 𝑈 ൌ 𝐹 8 

where 𝐾 is the global system ‘stiffness’ matrix, 𝑈 is the primary dependent variable vector containing the 

nodal velocities and pressures and 𝐹 is the secondary variable vector containing the associated nodal 
reaction forces and flow rates.  We partition the system matrices based on the essential (denoted by an ′𝑒′ 
post subscript) and free (denoted by an ′𝑓′ post subscript) degrees of freedom as 

൤
𝐾௙௙ 𝐾௙௘
𝐾௘௙ 𝐾௘௘

൨ ቂ
𝑢௙
𝑢௘
ቃ ൌ ൤

𝐹௙
𝐹௘
൨ 9 

such that the unknown independent and dependent variables are computed from [10] 

𝑢௙ ൌ 𝐾௙௙
ିଵ ቀ𝐹௙ െ 𝐾௙௘𝑢௘ቁ , 𝐹௘ ൌ 𝐾௘௙𝑢௙ ൅ 𝐾௘௘𝑢௘ 10 

The resultant fiber’s hydrodynamic force vector 𝐹ு   and couple 𝑇ு   due to the impingement of the 
surrounding fluid on the fiber’s surface is computed by summing the nodal reactions force vectors and 
summing the cross product of the nodal position vectors and corresponding reaction force vectors over the 
fiber surface ሺ𝐵𝐶3ሻ, respectively, as 

𝐹ு   ൌ െ∑ 𝐹௘,௡
஻஼ଷ

௡∈ ே , 𝑇ு ൌ െ∑ 𝑟௡ ൈ 𝐹௘,௡
஻஼ଷ

௡∈ ே  11 

where 𝑟௡  and 𝐹௘,௡
஻஼ଷ are the position vector and nodal reaction force vectors at the nth node on the fiber’s 

surface ሺ𝐵𝐶3ሻ, and N is the total number of nodes on the fibers surface. To obtain the fiber’s translational 
and rotational velocities, the hydrodynamic forces and torque are zeroed using a Newton-Raphson (NR) 
iteration scheme written as  ሾ11ሿ 

𝑋 
ା ൌ 𝑋 

ି െ 𝐽ି\𝑅ି 12 

In the above, the residual vector  𝑅 contains the fiber hydrodynamic forces 𝐹ு  and couple 𝑇ு  which are 

functions of the fiber’s velocity vector 𝑋 
  which in turn depends on the translational ሺ𝑢௖ , 𝑣௖ሻ and angular 𝜔 

velocity components, i.e.  𝑅 ൌ ൣ𝐹ு൫𝑋 
 ൯ 𝑇ு൫𝑋൯൧

்
and  𝑋 ൌ ሾ𝑢௖ 𝑣௖ 𝜔ሿ். The Jacobian 𝐽 is the derivative 

of the residual vector 𝑅 with respect to the fiber’s velocity vector 𝑋 which may be written as  

𝐽 ൌ
డோ

డ௑ 
  
ൌ ൦

డிಹ

డ௑ 
 

డ்ಹ
డ௑ 

 

൪ ൌ ൦
െ∑

డி೐,೙
ಳ಴య

డ௑ 
 ௡∈ ே

െ∑ 𝑟௡ ൈ
డி೐,೙

ಳ಴య

డ௑ 
 ௡∈ ே

൪  13 

The derivative of the nodal reaction force vector with respect to the fiber’s velocity vector is given as 
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డி೐ 

డ௑ 
 ൌ

డ௄೐೑
 

డ௑ 
 𝑢௙ ൅ 𝐾௘௙

 డ௨೑
డ௑ 

 ൅
డ௄೐೐ 

డ௑ 
 𝑢௘ ൅ 𝐾௘௘ 

డ௨೐
డ௑ 

 14 

where: 

డ௨೑
డ௑ 

 ൌ 𝐾௙௙
ିଵ ቆ

డி೑
 

డ௑ 
 െ

డ௄೑೑
 

డ௑ 
 𝑢௙ െ

డ௄೑೐
 

డ௑ 
 𝑢௘ െ 𝐾௙௘

 డ௨೐
డ௑ 

 ቇ  15 

The linear finite element analysis is based on a Newtonian fluid resulting in a stiffness matrix and force 
vector that are independent of the solution variable, i.e. 

𝐾 ് 𝐾൫𝑋 
 ൯ ,   

𝜕𝐾

𝜕𝑋  ൘ ൌ 0  and 𝐹௙ ് 𝐹௙൫𝑋 
 ൯,

𝜕𝐹௙
 

𝜕𝑋 
 ൘ ൌ 0

such that Equation 14 reduces to  

డி೐ 

డ௑ 
 ൌ ቀ𝐾௘௘ െ 𝐾௘௙

 𝐾௙௙
ିଵ 𝐾௙௘

 ቁ
డ௨೐
డ௑ 

 16 

At each stage, we begin the process with an initial guess value for the fiber’s velocity vector 𝑋 
 
 

଴
  and

iteratively determine 𝑋 
  using the Newton Raphson method in Equation 12, that results in a zero residual 𝑅 

solved for at each iteration based on the FEA algorithm. The iteration process is terminated when a desired 
error 𝜖ௗ ൌ ห𝑅ା െ 𝑅ିห criterion is satisfied.  

We use an explicit fourth order Runge-Kutta (RK4) numerical scheme to track the fibers evolution and 
update the fiber’s position ൫𝑥௖௜ ,𝑦௖௜൯ and orientation angle 𝜙 

௜ at each 𝑖௧௛ time step starting with an initial 
position ሺ𝑥௖଴,𝑦௖଴ሻ and orientation 𝜙଴ ሾ11ሿ, updating the input values of the responses obtained from the 
macro model at each RK4 stage when solving the for the fiber’s velocities. Likewise, we update at each 
𝑖௧௛ step, the geometry’s mesh (nodal coordinate’s) for a particular fiber position ൫𝑥௖௜ ,𝑦௖௜൯ and orientation, 

𝜙 
௜, according to the equation 

ቈ
𝑥 
௜

𝑦 
௜቉ ൌ ቈ

𝑥௖௜

𝑦௖௜
቉ ൅ ቈ

𝑐𝑜𝑠 𝜙 
௜ െ𝑠𝑖𝑛 𝜙 

௜

𝑠𝑖𝑛 𝜙 
௜ 𝑐𝑜𝑠 𝜙 

௜ ቉ ቈ
𝑥଴
௜

𝑦଴
௜ ቉ 

Model Verification 

Model validation of the micro-scale algorithm was performed in a 2-step process for an ellipsoidal fiber 
translating and rotating in simple shear flow with an initial fiber position 𝑥௖଴ ൌ 𝑦௖଴ ൌ 0 𝑚𝑚,  and orientation 
angle 𝜙଴ ൌ 0 𝑟𝑎𝑑. The velocity distribution of the undisturbed fluid motion employed in the validation 
was   𝑈஻஼ଵ ൌ  𝑈଴

ᇱ ൌ ሼ0 0 𝛾ሶ𝑦ሽ with,  𝛾ሶ ൌ 1𝑠ିଵ and a far field pressure 𝑝஻஼ଶ ൌ 𝑝଴
ᇱ ൌ 0. A fiber aspect 

ratio of 𝑟௘ ൌ 𝑎 𝑏⁄ ൌ 6 was used and with a sufficiently large ratio of the fluid domain to fiber size 𝜀 ൌ
2ℎ 𝑎⁄ ൌ 40 ≫ 1. 

In the first step, we benchmark results of the orientation and angular velocities from the simulation with 
those obtained from well-established Jeffery’s analytical solution [8]. Jeffery assumed a zero resultant force 
and couple on an ellipsoidal particle suspended in a simple shear, homogenous, incompressible, Newtonian 
laminar flow. Jeffery’s analytical solution is based on the assumptions that the particle center translates 
with the same translational velocity as the undisturbed fluid at that location.
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Our 2D analysis is restricted to in-plane motion reducing the unknown rotation to a single angle, 𝜙ሺ𝑡ሻ and 
its derivative, i.e., the angular velocity 𝜔 ൌ 𝜙ሶ  given as  

𝜙ሺ𝑡ሻ ൌ tanିଵ ൬𝑟௘ tan
ఊሶ ௧

௥೐ାଵ ௥೐ൗ
൰ 17 

𝜙ሶ ൌ
ఊሶ

௥೐మାଵ
ሾ1 ൅ ሺ𝑟௘ଶ െ 1ሻ cosଶ 𝜙ሿ 18 

The Jeffery’s period  𝑇 for fiber tumbling motion is given as 

𝑇 ൌ
ଶగ

ఊሶ
ൣ𝑟௘ ൅ 1 𝑟௘ൗ ൧ 19 

The justification for our 2D simplification is based on 

- It accurately predicts Jeffery’s orbit, and provides a bases for us to study pressure distribution on the
fibers surface

- Despite its inability to account for out-of-plane fiber’s rotation, it provides insight into the pressure
response which indicates potential void nucleation sites.

- It enables us utilize input along streamlines from the 2D macro model within the flow of polymer melt
through a large-scale polymer deposition additive manufacturing flow field.

Figure 7 shows good agreement between our simulation and Jeffery’s analytical solution for orientation 
angle and angular velocity for one complete Jeffery’s period in simple shear flow. The noticeable 
discrepancy is attributed to the discretization employed in the FEA model, which was chosen to obtain the 
best solution at minimal computational cost. 

Figure 7: Fiber’s angular velocity (green) and orientation angle (purple) for both Custom FEA code 
(dashed) and Jeffery’s Solution (straight) 

The maximum and minimum pressure near the fiber rotating in simple shear flow appears in Figure 8. As 
seen here, the minimum pressure around the fiber surface drops to a low point near -5kPa at the fiber’s edge 
relative to the far field pressure of 0kPa. As such, the fiber experiences significant low pressure drops along 
it surface as it travels through Jeffery’s orbit which suggests the likelihood of potential void nucleation at 
these low-pressure sites.
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(a) (b)

(1) (2) (3) 

Figure 8: Minimum and maximum pressure profiles on the fiber’s surface plotted against (a) time (b) fiber 
angle and pressure contours at indicated plot positions 1), 2), &3). 

In the second step, we compare the velocity and pressure distributions computed from the custom FEA 
simulation to values calculated from a similar model developed in COMSOL Multiphysics for the initial 
fiber position and orientation (not shown here). Using similar discretization, triangle element type with 
quadratic order for both analysis we adopt an unbiased seed of 10 radial unit cell and 20 circumferential 
unit cells leading to a total of 400 elements for the entire domain. The discrepancy in both responses were 
seen to be only less than an order of 1%. 

Results & Discussion 

The fiber aspect ratio plays an important role in the pressure distribution on the fiber surface as it travels 
through Jeffery’s orbit. Using simple shear flow conditions as described above, the pressure distribution 
for two aspect ratios were consideration 𝑟௘  

 ൌ 3 & 𝑟௘  
 ൌ 6.  ; (b) 𝑟𝑒  =3;(a) 𝑟௘  

 ൌ 6, 

 shows that the pressure drop is more significant for higher aspect ratio ellipsoids. The shorter fibers 
tumble faster with a period 𝑇ଷ

 ൎ 1 1.85⁄  𝑇଺
  due to a shorter dwell time as its axis comes into and out of 

alignment with the flow direction. The maximum rotational velocity occurs as the geometry becomes 
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spherical when 𝑟௘  
 ൌ 1  with a period 𝑇ଵ

 ൎ 3 5⁄  𝑇ଷ
 , which also has no significant pressure variation 

during rotation.   (a)        (b) 

Figure 11 shows the results for 2 different shear rates, 𝛾ሶ  ൌ 1 & 2𝑠ିଵ with other factors being constant. 
Computed results show that a higher rotational velocity occurs under higher shear rates, as expected. The 
minimum and maximum pressure appearing in Figure 11 also shows a greater drop in minimum pressure 
value as the velocity gradient increases.  Overall, these simple shear flow results show that a higher velocity 
gradient and aspect ratio generate lower minimum melt pressures which is expected to be more likely to 
form voids which is consistent with conclusion drawn from [6]. 

Figure 9: Minimum and maximum pressure profiles for various aspect ratio (𝑟௘  
 ൌ 1,3, 6) 

(a)    (b)    (c) 

Figure 10: Pressure Distribution  around fiber surface (a) 𝑟௘  
 ൌ 1; (b) 𝑟௘  

 ൌ 3;(a) 𝑟௘  
 ൌ 6, 

1412



 (a) (b) 

Figure 11:Results for different shear rates (𝛾ሶ  ൌ 1 & 2𝑠ିଵ) (a) Min. and max Pressure (b) Angular 
velocity 

The results presented above are based on a constant shear rate flow field. For subsequent analyses, we 
present simulation results for a fiber traveling through the extrusion deposition flow and use the pressure, 
velocity and velocity gradients along select streamlines (𝜓ଵ଴

 ,𝜓ଵହ
 ,𝜓ଵ଼

 ) from the 2D planar BAAM nozzle 
deposition flow simulations described above  appearing in Figure 12. 

Figure 12: Velocity gradient contours near extrusion-deposition transition - 𝜕𝑣௫ 𝜕𝑥⁄  (top-left), 𝜕𝑣௬ 𝜕𝑥⁄  

(top-right), 𝜕𝑣௫ 𝜕𝑦⁄  (bottom-left), 𝜕𝑣௬ 𝜕𝑦⁄  (bottom-right) 
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Velocity gradients computed in the macro scale simulation (cf. Figure 12) shows that the dominant gradient 
is the vertical shear component -𝜕𝑣௬ 𝜕𝑥⁄  which increases radially outward from the centerline towards the 
outside of the nozzle, i.e., the velocity gradients increase between streamline 10 to streamline 18. Velocity 
contours in Figure 12 also expose the singularity at the edge of the nozzle where the polymer melt flow 
transitions from a no-slip to a free surface boundary condition. After the melt leaves the nozzle and turns 
onto the plate, it has a uniform velocity, and the shear rates go to zero.  

Figure 13 shows the relative increase in shear rates at the nozzle exit from the center streamline to 
streamlines closer to the nozzle edge. As the fiber moves along the center streamline from the inlet through 
the nozzle to the bed fiber rotation is relatively low (about 45o) due to the low velocity gradient as compared 
to streamlines closer to the edge that have much higher gradients (about 170o for 𝜓ଵହ

  and 290o for  𝜓ଵ଼
 ). 

(a)         (b)

Figure 13: (a) Streamline velocities (𝜓ଵ଴
 ,𝜓ଵହ

 ,𝜓ଵ଼
 ), (b) Velocity gradients (𝜓ଵ଴

 ,𝜓ଵହ
 ,𝜓ଵ଼

 ), 

(a) (b) 

Figure 14: (a) Fiber’s orientation angle (𝜓ଵ଴
 ,𝜓ଵହ

 ,𝜓ଵ଼
 ), (b) Fiber’s angular velocity (𝜓ଵ଴

 ,𝜓ଵହ
 ,𝜓ଵ଼

 ), 

The minimum pressure drop on the fiber’s surface at the nozzle exit is seen to be higher for the center 
streamline as compared to those farther away as we see in Figure 15where the minimum pressure on 
streamline 𝜓ଵ଴

  drops to about -0.5MPa pressure, whereas for streamline 𝜓ଵହ
  though minimum pressure 
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stays beneath the far field pressure, the drop is just about 0.8MPa gauge pressure and almost no noticeable 
dip on streamline 𝜓ଵ଼

  which is very near the nozzle’s edge.  The micro-model solution along streamline 18 
exhibits numerical instability near 2.4sec where the polymer exits the nozzle due to singularities in the 
macro-model velocity solution at this point. Additional work is needed to fully understand the effect of the 
singularity. 

(a) (b)

(c) 

Figure 15: (a) (b) (c), Minimum, maximum and streamline pressure for Streamline - 𝜓ଵ଴
 ,  𝜓ଵହ

 ,& 𝜓ଵ଼
  

respectively

Conclusion 

In conclusion, we have successfully developed and implemented a multiscale approach for predicting fiber 
motion and fluid pressure around a single suspended fiber in polymer composite deposition flow. Computed 
results show that the single fiber model accurately predicts Jeffrey’s orbit in simple shear flow and provides 
expected trends as the aspect ratio and shear-rates are increased. Also, the results show significant minimum 
pressure on the fiber surface during BAAM polymer composite deposition, which is seen to be streamline 
dependent, and serves as pointers that indicate the likelihood of void formation near fibers in BAAM 
deposition flow. 
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As a future endeavor, we plan to extend the multi-scale modeling approach to 3D flow simulation and 
investigate the effect of other geometry and flow parameters on minimum pressure prediction. We also plan 
to develop a relationship between print processing parameters and likelihood of void formation, implement 
a generalize Newtonian fluid model in the nozzle flow and single fiber model and establish a relationship 
between minimum pressures and void initiation. 
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