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Abstract 

This work outlines a method to register 2D and 3D images taken post-process and in situ 
from 301L stainless steel parts printed by Laser Powder Bed Fusion. The process uses 
DREAM.3D, an open-source software that provides for data transport in a non-proprietary format. 
The Robust Automatic Threshold selection technique is used to create a boundary point cloud of 
the part from each image. The Iterative Closest Point technique is applied to the point clouds for 
both 2D images and 3D image stacks to create an affine transformation matrix for registration. 
Multiple 2D SEM images of the same sampled layer are taken under different settings and imaging 
conditions and registered to a common target. Images from post-process X-ray Computed 
Tomography and an in situ short-wave infrared camera create 3D image stacks, which are directly 
registered in 3D space. Registration accuracy is validated by creating a correspondence list of the 
closest point in the registered point clouds and the matching error is calculated using mean average 
error. Mean average error is computed using point-to-point and point-to-plane methods; the point-
to-plane method is shown to be more reliable. Finally, the registered 3D images are down sampled 
to the lower resolution image dimensions creating arrays of in situ and post-process data at the 
same resolution.  

1.0 Introduction 

Image registration is frequently used in Laser Powder Bed Fusion (LPBF) research to align 
multiple modalities of data, analyze variation in images, and fuse training datasets for 
classification. In registration, a reference dataset is transformed to align with a fixed target dataset 
[1]. There are two broad strategies for registration: 1) manual alignment [2, 3] and 2) automated 
algorithms, the most mainstream being Iterative Closest Point (ICP) [4]. Extensive research has 
been conducted on other registration algorithms that optimize a cost function to minimize error 
between two datasets using methods like defining datums from part features [5], quasi-Newton 
optimization [6, 7], least squares optimization [8], or mean squared difference [1]. Registration 
accuracy can be subjectively estimated by manually inspecting alignment [9] or objectively 
determined by calculating an error metric between points [8], but it is often not discussed in LPBF 
research.  

Fusing in situ data, often multiple modalities, with ex situ X-ray Computed Tomography 
(XCT) and/or destructive testing (DT) sectioned images has become a common area of research 
in quality assurance for metal additive manufacturing, both in industry and academia [10, 11, 12]. 
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This data fusion can be used for statistical analysis or machine learning models that predict 
resulting material characterization based in in situ parameters. There are many existing commercial 
tools for in situ monitoring of LPBF processes that are integrated into commercial systems, can be 
purchased as machine add-ons, or are independent of a particular machine concept [13]. XCT has 
become standard in industrial verification of additively manufactured (AM) parts [12]. XCT is 
advantageous for quality control because it is non-destructive and, depending on the resolution 
required, can relatively quickly capture profiles of a whole part. Micrographs from Scanning 
Electron Microscopes (SEM) can be used for microscopic material characterization but the part 
must be destroyed to use SEM and only samples of the part can be taken [14, 15].  

Many toolboxes have been developed to perform image registration. Some examples are 
Slicer, ImageJ, Elastix, Amira, DREAM.3D, and VGSTUDIO MAX. The Insight Toolkit (ITK) is 
an open-source development framework with an extensive suite of software tools for image 
analysis, including registration [16, 17], and is integrated in several analysis tools like DREAM.3D 
or Elastix. Many of publicly available toolboxes and registration techniques were initially 
developed for medical imaging while LBPF imaging research was still in its infancy [18, 19]. 
There are several image processing libraries, like OpenCV, Pillow, and scikit-image for Python, 
MATLAB, and other languages that can be utilized for 2D image registration. The main 
disadvantages with most available toolboxes are that their application to specific needs of LPBF 
research is limited, they may not work with 3D image sets or triangle geometry, and they are not 
tightly integrated with a standard visualization tool.   

This paper investigates image registration in both 2D and 3D utilizing DREAM.3D, an 
open-source tool kit that allows for construction of customized workflows to analyze data [20]. 
DREAM.3D was developed to process digital instances of microstructure, but many of the tools 
are useful for LPBF data processing and address the disadvantages found in most available 
toolboxes. ParaView, an open-source analysis and visualization platform, is used to render 2D and 
3D visualizations (paraview.org). The main advantages of DREAM.3D are that the reconstruction, 
manipulation, and visualization of 3D data is simple and straightforward, the program is free and 
open-source, over 100 filters from the image processing library ITK are included, data is stored as 
standard HDF5 files by default, additional features are continuously added, and custom filters can 
be created.  

DREAM.3D processes two broad types of data: 1) image geometry and 2) triangle 
geometry [21]. Image geometry is a structured grid of constant resolution with data values assigned 
to each cell. The pixel makeup of a computer screen is an example of image geometry. Triangle 
geometry consists of vertex points, edges forming lines between points, and faces forming a mesh 
between lines (faces could be triangles, quads, etc). A geodesic dome is a physical example of 
triangle geometry. Figure 1 shows a 2D example of a triangle geometry structure (a) with vertices, 
edges, and faces and an image geometry structure (b) with grayscale values in each cell of the grid.  
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Figure 1: Triangle Geometry (a), Image Geometry (b) 

Datasets from many LPBF in situ and ex situ platforms are often structured voxel/pixel-
based image geometry [13, 12]. The datasets used in this study are structured image datasets in 
both 2D and 3D. Currently, the DREAM.3D filter Apply Transformation to Geometry cannot apply 
a pre-computed transformation matrix to image-type geometries, so a workaround has been 
implemented utilizing Python for 2D images and a not-fully-automated process involving manual 
rotation for 3D images. 

2.0 Experimental Setup 

For this study, an ASTM E8 tensile specimen [22] has been printed in 304L stainless steel 
using a Renishaw AM250. The test specimen is 50 mm tall and has a 4 mm diameter neck. The 
nominal laser power for this build was 200W and a section of lettering (“Missouri S&T”) was 
printed at 100W inside the neck of the part to induce defects. The point distance, dp, and the hatch 
spacing, dh, were held at constant 60 μm and 85 μm, respectively. In-situ data was captured using 
a Short Wave Infrared (SWIR) camera, XCT imaging was used to generate a 3D array of the part 
density, and 2D SEM images were taken of extracted sections of the test specimen. 

 

Figure 2: ASTM E8 tensile specimen (a), low power lettering printed in the neck to induce 
defects (b), the final tensile bar printed by LPBF (c), 3D reconstruction of in situ SWIR imaging 

(d), and 3D reconstruction of XCT imaging (e). 
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2.1 SWIR Imaging 

The purpose of SWIR imaging for this study was to establish a 3D profile of an in situ 
dataset to register with an ex situ dataset. The SWIR camera set up and thermal feature extraction 
has been performed in other work [23]; the process is summarized in this section. An FLIR SC6201 
SWIR camera measured visible light emitted from the melt pool. The camera was installed at an 
observation angle of 15⁰ above the build chamber to observe the build. The camera pixel array was 
reduced to an 80 × 80 pixel window enabling high frame rate recording (∼2500 Hz). The x-
direction instantaneous field of view of the SWIR camera was ∼130 μm/pixel. The y-direction 
instantaneous field of view was ∼135 μm/pixel due to the observation angle (θ = 15°) of the SWIR 
camera shown in Figure 3. A non-uniformity correction (NUC) was performed to account for 
differences in the SWIR measurements across the imaging area due to the observation angle. The 
final corrected pixel dimensions were 125 μm x 125 μm for each layer.  

           

Figure 3: Schematic of SWIR camera observations [23]               

Thermal features from a multi-frame time-series recording are extracted to a single image 
representation of each layer. Each 2D layer is concatenated to create a 3D voxel-based 
reconstruction of the tensile specimen in HDF5 format. The layer height of this build was 50μm. 
An image geometry container was created in DREAM.3D with the X, Y, and Z dimensions of the 
voxels (125 μm, 125 μm, 50 μm) and the HDF5 thermal feature file was imported using the Import 
HDF5 Dataset filter and can be visualized in ParaView. 

2.2 X-Ray Computed Tomography Imaging 

Post-process XCT inspection was performed by NSI using a custom radiograph tool. NSI 
scanned the test piece with a MeVX6™ High Energy system using a 6 MeV linear accelerator 
(LINAC) at 450 kV and performed 360⁰ step scan imaging with a focal spot size of 24.15 μm. The 
full geometry of the tensile piece was captured in 291 x 281 x 1706 voxels. Each voxel is a cube 
with dimensions 29.96 μm in X, Y, and Z. The XCT array was directly imported into DREAM.3D 
using the Import North Star Imaging CT (.sihdr/.nsidat) filter. 
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2.3 SEM Imaging 

The tensile bar was cut perpendicular to the long axis via wire EDM as shown in the cut 
plan in Figure 4 (a). The “M” section in the text printed at lower power was extracted between 
36.65 and 31.65 mm and mounted in conductive mounting resin then metallographically prepared 
to a final polish of 0.05 µm for SEM analysis. During the metallographic preparation, 331 μm of 
material was removed, resulting in a cross section containing the targeted “M” low power region. 
Imaging parameters were selected to generate good contrast between the polished surface metal 
and the defect interior to facilitate registration in DREAM.3D. Images were captured with the 
Through-Lens Detector (TLD) in Backscatter Electron (BSE) mode biased to -150V voltage to 
eliminate the associated secondary electron (SE) edge effect. Integration of eight frames with a 
dwell time of 1 µs were used. The orientation of the 0⁰ imaging position was chosen to align to the 
orientation of the CT data. Images were taken in a 5x5 grid pattern starting from row 3, column 1 
in increments of 1000 µm in the X-direction and 800 µm in the Y-direction. Increments were 
chosen to ensure sufficient overlap for stitching the images together. Once the images were 
captured, the stage was rotated to establish a new imaging position. The imaging process was 
repeated until the eight imaging positions, shown in Figure 4 (b), were captured. An image 
manipulation program was used to stitch the images together. The images were imported as layers 
and overlayed using the overlapping features. Layers were ordered such that lower rows 
overlapped higher rows and interior columns overlapped exterior columns. For example, row 1 is 
overlapped by row 2, and column 3 overlaps both columns 2 and 4, which overlap columns 1 and 
5, respectively. Pixel sizes of these images are 1.25 μm x 1.25 μm. 

When the images were arranged, the image was flattened and exported as a TIF file. The 
images were integrated into DREAM.3D using the ITK:Image Reader filter. The Set Origin & 
Spacing (Image) filter was used to input the spacing based the pixel dimensions.  

 

Figure 4 Extracted section for SEM imaging: Cut Plan (a), 8 SEM imaging positions (b) 

3.0 Registration  

This section outlines the processes used to register multiple modes of data in a single affine 
space. Boundary point clouds from each image were generated by sampling points along the 
surface of the part created using the Robust Automatic Threshold Selection (RATS) algorithm. An 
affine transformation was found to directly register two sets of point clouds using the ICP 
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algorithm. Finally, DREAM.3D, Python, and ImageJ was used to transform the 2D and 3D datasets 
in a not-fully-automated process.  

3.1 Boundary Point Cloud 

DREAM.3D was used to create point clouds representing the boundary of each 2D and 3D 
image array. The Robust Automatic Threshold Selection (RATS) algorithm, an automatic 
thresholding method based on gradients in the image, was used to define the boundary of the part 
and point clouds were created by sampling from the boundary. RATS is an automated edge 
detector algorithm that identifies a threshold for greyscale images based on the image’s gradients, 
often at the maximum gradient [24, 25]. The gradient array was calculated using the ITK::Gradient 
Magnitude Image Filter. The magnitude of the image gradient is:  

𝐺𝐺(𝑥𝑥,𝑦𝑦) =  ‖𝑓𝑓(𝑥𝑥,𝑦𝑦)‖2  =  �𝑓𝑓𝑥𝑥(𝑥𝑥,𝑦𝑦)2 + 𝑓𝑓𝑦𝑦(𝑥𝑥,𝑦𝑦)2  

The direction of the image gradient is:  

𝜃𝜃(𝑥𝑥,𝑦𝑦) = tan−1
𝑓𝑓𝑥𝑥(𝑥𝑥,𝑦𝑦)
𝑓𝑓𝑦𝑦(𝑥𝑥,𝑦𝑦)

 

Eliminating the square root of the magnitude yields suitable results without the added cost 
of a final scan across the image to compute the root. In the ITK plugin, the gradient is simply the 
sum of the squares of the partial derivative operations.  

𝑔𝑔(𝑥𝑥, 𝑦𝑦) =  𝐺𝐺(𝑥𝑥,𝑦𝑦)
2  =  𝑓𝑓𝑥𝑥(𝑥𝑥,𝑦𝑦)2 + 𝑓𝑓𝑦𝑦(𝑥𝑥,𝑦𝑦)2 

With the Robust Automatic Threshold filter, DREAM.3D creates a new array that is false 
where the input array is less than the threshold and true otherwise. A regional threshold is 
computed as the gradient weight sum of the input array, A. 

𝑇𝑇 =  
∑ �𝑔𝑔(𝑥𝑥,𝑦𝑦) ∙ 𝐴𝐴(𝑥𝑥,𝑦𝑦)�𝑛𝑛
𝑖𝑖=1

∑ 𝑔𝑔(𝑥𝑥,𝑦𝑦)𝑛𝑛
𝑖𝑖=1

 

This threshold is generally where the gradient magnitude is highest.  

The ITK::Grayscale Fillhole Image filter, with the FullyConnected parameter set to true, 
is used to isolate and fill the part mask. To create a point cloud in the 2D images, the Find Boundary 
Cells (Image) filter is applied to the part mask and vertex geometry of each boundary cell is 
extracted to a point cloud. A visualization of the process is shown in Figure 5 for a 2D array using 
the 0⁰ TLD BSE SEM image.  
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Figure 5: TLD BSE 0⁰ SEM image: Raw image (a), gradient magnitude array (b), part mask after 
applying RATS and filling holes (c), and boundary point cloud of the image (d). 

For both SWIR and SCT 3D datasets, triangle surface arrays were created from the surface 
of the mask array using the Quick Surface Mesh filter. Approximately four and a half million 
triangles were created for each surface. 3D point clouds were generated by sampling points from 
the triangle surfaces using the Point Sample Triangle Geometry filter. For registration, one hundred 
thousand sample points were chosen for both SWIR and XCT datasets. A visualization of the 
process in 3D is shown in Figure 6 using the XCT array.  

 

3.2 Iterative Closest Point 

The ICP algorithm iteratively revises a transformation to minimize the sum of squared 
differences between the coordinates of matched pairs and register two-point clouds to the same 
affine space [26]. There is a wide body of research to improve the algorithm by minimizing 
different error metrics, performing point-to-plane registration, or creating various search 
algorithms to reduce time to identify matched pairs [4, 27, 28]. This study used the DREAM.3D 
implementation of ICP to find an optimal affine transformation. The Iterative Closest Point filter 
finds a rigid transformation that rotates and transforms the reference data set. The filter does not 
change the distance between any two points in the transformed point cloud so there is no scale or 
shear component in the transformation. 
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An affine transformation is a map between two different affine spaces that preserves lines 
and parallelism [25]. The transformation matrix created in DREAM.3D is a 4x4 array, T, that 
transforms each point in an array, A, to a new position, A’:  

[𝐴𝐴′] = 𝑇𝑇 [𝐴𝐴] 

Or:   

�

𝑥𝑥′
𝑦𝑦′
𝑧𝑧′
1

� = 𝑇𝑇 �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1
� 

The optimal transformation, T*, is one that minimizes the Euclidean distance between 
every pair of points in the reference point cloud, M, to points in the target point cloud, S.    

𝑇𝑇* = arg min
𝑇𝑇
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇(𝑀𝑀),𝑆𝑆) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇(𝑀𝑀), 𝑆𝑆) =  � ‖𝑚𝑚− 𝑠𝑠𝑚𝑚‖22
𝑚𝑚∈𝑇𝑇(𝑀𝑀)

,  𝑠𝑠𝑚𝑚 = arg min
𝑠𝑠∈𝑆𝑆

‖𝑠𝑠 − 𝑚𝑚‖22 

Where T is all possible transformations the optimization algorithm searches for.  

For SEM, a ninth image where defects in the image are human labeled, was used as the 
target and, for the 3D datasets, the XCT array was designated as the target. This implementation 
of ICP may get stuck at a local minimum so an initial guess of alignment was be provided before 
implementation. The initial guess for rotation was done using the Rotate Sample Reference Frame 
filter and translation was done using the Set Origin & Spacing (Image) filter. After the initial guess 
was applied, a transformation matrix was found with ICP and the reference point clouds were 
transformed in DREAM.3D. Figures 7 and 8 show the 2D and 3D point cloud alignment before 
and after transformation.  

 

Figure 7: 2D point cloud registration: SEM with TLD BSE 0⁰ before (blue), after (red), and the 
target point cloud (white) 
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Figure 8: 3D point cloud registration before/after: SWIR (white) and XCT (red) before (a), 
SWIR and XCT after registration (b and c) 

3.3 Apply Transformation to Geometry 

The DREAM.3D filter, Apply Transformation to Geometry, can apply any 4x4 
transformation to triangle geometry but, in this study, all three datasets (SEM, SWIR, XCT) are 
structured image geometries so the transformations computed in section 3.2 cannot be directly 
applied in DREAM.3D. Registration for the 2D dataset relied on ImageJ and Python as a patch 
and registration for the 3D dataset relied on manual rotation before ICP.  

Unlike a point cloud, image geometry must be interpolated in the original grid size after it 
is transformed. Interpolation finds a value between two points on a line so, for this case, the 
interpolation algorithm determines the value to assign each voxel between two known points. In 
multidimensional interpolation, an estimate of y(x1, x2, …, xn) is made from an n-dimensional grid 
of tabulated values y and n one-dimensional vectors giving the tabulated values of each of the 
independent variables x1, x2, …, xn [29]. Bi-linear interpolation was used for all interpolations in 
this study.  

3.3.1 Apply Transformation to 2D Geometry 

The eight SEM imaging positions are transformed with a combination of ImageJ, Python, 
and DREAM.3D. Before the images were imported into DREAM.3D they were all rotated to 
roughly align with the 0⁰ image position. As an example, Figure 9 (a) and (b) show the initial 60⁰ 
imaging position before and after the rotation. Bilinear interpolation was used, and the result was 
saved as a .tiff file which was could be read by DREAM.3D.   

  

Figure 9: TLD BSE 60⁰ SEM image: Raw image (a), image rotated to 0⁰ with ImageJ (b) 

Next, the ICP operation in DREAM.3D to determine a transformation matrix, as outlined 
in section 3.2, was performed. Python was used to apply the transformation to each of the eight 
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SEM imaging positions. The DREAM.3D file was read into Python using the h5py library 
(h5py.org) and the applicable transformation matrix was read as a Numpy array (numpy.org). The 
image was then transformed with skimage.transform.warp using bilinear interpolation (scikit-
image.org) and the final image was output as an .h5 file. The final image was read back into 
DREAM.3D and a surface point cloud was created in the final position.  

The rotation components of an affine transformation are:  

 

The translation components of an affine transformation are:  

 

Table 1 shows the transformation matrix, computed by ICP, for the 60⁰ imaging position. 
This transformation matrix indicates this is a 2D transformation as the third row and column are 
each [0, 0, 1, 0]. This transformation has a 2.16⁰ rotation about the Z-axis, as indicated by the four 
cells in the upper left quadrant of the matrix: cos-1(.999289) = sin-1(0.37712) = 2.16⁰ (Equation X). 
The translation components are tx = -0.067751 mm and ty = 0.08299 (Equation X). There are not 
scaling or shear components in this transformation matrix. All eight of the transformation matrices 
computed for the different SEM imaging positions follow the same format of 2D transformation, 
rotation about the Z-axis, and a small x and y translation.   

TLD BSE 60⁰ 
0.999289 0.0377521 0 -0.067751 

-0.0377521 0.999289 0 0.08299 
0 0 1 0 
0 0 0 1 

Table 1: The transformation matrix computed by ICP for the TLD BSE 60⁰ SEM image. 
Dimensions are in mm.  

Figure 10 shows the initial location (a) and the transformed final location (b) of a section 
of the point clouds created from imaging positions. The improvement in registration is clear to see. 
A technique to measure the error in registration between the point clouds is outlined in Section 4.  
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Figure 10: Initial location (a) and final location (b) of a section of the eight SEM imaging 
positions 

3.3.2 Apply Transformation to 3D Geometry 

As discussed earlier, the Apply Transformation to Geometry filter in DREAM.3D does not 
work on image-type datasets. ImageJ and the Python libraries that were explored (scikit-image, 
Pillow, and OpenCV) only work on 2D images and cannot apply 4x4 transformations to 3D image-
type datasets like what was done in Section 3.3.1 for the SEM imaging positions.  

3D images can, however, be manually translated and rotated in DREAM.3D using the Set 
Origin & Spacing (Image) and the Rotate Sample Reference Frame filter. At iterative process 
where the SWIR array was manually rotated across all three axis, ICP was run to register the 
resulting point cloud to the XCT point cloud, and the computed transformation matrix compared 
to the translation-only matrix in equation X. This time-consuming process was stopped when a 
satisfactorily close solution to the translation-only matrix was achieved. Table 2 shows the 
resulting transformation matrix from this iterative manual-rotation/ICP process.  

SWIR 
0.999995 0.0052380 -0.00070846 0.0873794 
-0.00523 0.999988 0.000629 -1.04344 
0.000712 -0.00063 1.00001 0.472003 

0 0 0 1 

Table 2: The transformation matrix computed by ICP for the SWIR image. Dimensions are in 
mm.  

The SWIR image array was translated to its final location with the Set Origin & Spacing 
(Image) filter using the translation components of the transformation, tx=0.08978 mm, ty=-1.04344 
mm, and tz=0.472003 mm. Figure 11 (a) shows the application of the translation components in 
DREAM.3D, (b) shows the SWIR array with the XCT array before the transformation, and (c) 
shows the SWIR array with the XCT array after the transformation. 
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Figure 11: Translation components to register SWIR with SCT in DREAM.3D (a), SWIR array 
(red) before transformation to XCT (blue) (b), and SWIR array (red) after transformation to XCT 

(blue) (c). 

Applying only the translation components of the transformation in Table 2 will introduce 
some error in the final alignment because the rotation components are not accounted for. Some 
error, where the two edges are not integrated, is visible at the bottom (-Z) end of the neck of the 
tensile piece in Figure 11 (c).  

The registration accuracy can be interrogated by slicing the registered array in ParaView 
and examining internal or external reference features between the two arrays (Figure 12). Internal 
features were imbedded into the tensile specimen by printing specific volume at lower laser power. 
Slices on the XY plane are shown in (a) at or three different reference features, slices on the YZ 
plane are shown in (b), and slices on the XZ plane are shown in (c). The internal features are visible 
in both the SWIR array and the XCT array. Both internal and external features were correlated 
across the SWIR and XCT arrays showing general alignment between the two datasets.  

 

Figure 12: Subjective verification of registration accuracy by comparing internal and external 
features in both arrays showing alignment along the Z axis (a), the X axis (b), and the Z axis (c). 

The slice number is shown with each image. 
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4.0 Registration Accuracy 

This study found individual errors by calculating the Euclidian distance between matched 
points. The point clouds used in this section were derived, following the process outlined in Section 
3, from the final position of the transformed image arrays. Individual errors are calculated for both 
the point the point-to-point error metric and the point-to-plane error metric.  

𝑒𝑒𝑖𝑖 =  �𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� =  �(𝑚𝑚𝑥𝑥 − 𝑠𝑠𝑥𝑥)2 + �𝑚𝑚𝑦𝑦 − 𝑠𝑠𝑦𝑦�
2

+ (𝑚𝑚𝑧𝑧 − 𝑠𝑠𝑧𝑧)2 

4.1 Point-to-Point Error 

The total error for the point cloud registration is found by calculating the Mean Absolute 
Error (MAE) for each individual error, ei. Where n is the number of points in the reference point 
cloud, M. The standard deviation, σ, for the errors was also calculated.  

Traditional ICP algorithms, including the one used in this study to find the transformation, 
attempt to minimize the Mean Square Error (MSE) of the distance between corresponding points 
in two point clouds [26, 30]. MSE, as a cost function in ICP algorithms, is advantageous over MAE 
because larger errors are penalized exponentially. MSE is in squared units which is a problem as 
an error metric because squared length units are not particularly useful in determining the distance 
error between point clouds. Root Mean Square Error (RMSE) is in the same unit length as the 
dataset so it reports a useable error metric. MAE is used in this study because it is in the same units 
of length as the dataset and is simpler to calculate. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
�𝑒𝑒𝑖𝑖

𝑛𝑛

𝑖𝑖=1

, 𝑀𝑀𝑀𝑀𝐸𝐸 =  
1
𝑛𝑛
�𝑒𝑒𝑖𝑖2
𝑛𝑛

1

, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
1
𝑛𝑛
�𝑒𝑒𝑖𝑖2
𝑛𝑛

1

, 𝜎𝜎 =  �
∑(𝑒𝑒𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀)2

𝑛𝑛
 

The point-to-point error metric developed in this study first searched each point in the 
reference point cloud, M, for the closest point in the target point cloud, S. A correspondence array, 
C, was created to store the matched points from S. Some points in S may appear in C zero or 
multiple times but the correspondence array always has the same length as the reference point 
cloud. Python was used to read point clouds from DREAM.3D and implement the error algorithm. 

A summary of the point-to-point error process:  

1. Create list of correspondence points, C. 
a. For all points in the reference point cloud, M, match closest point in target 

point cloud, S. 
2. Calculate individual errors, ei. 

a. Find the Euclidian distance between matched pairs in M and C 
3. Calculate accuracy metrics 

a. Standard Deviation, MAE, MSE, RMSE 
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4.1.1 Point-to-Point Error with 2D Images 

Point-to-point error was measured for each of the eight SEM imaging positions. Point 
clouds for the eight SEM imaging positions were the reference point clouds and the ninth human-
labeled SEM image was the target point cloud. Table 3 below shows the accuracy metrics, standard 
deviation, MAE, MSE, RMSE, for the original and final point cloud positions. The table also 
shows the number of points, n, in each point cloud. MAE is improved in each point cloud using 
the registration technique from Section 3. The TLD 180⁰ imaging position has the closest final 
registration to the target, at MAE of 4.18 μm, and the 270⁰ imaging position has the worst final 
registration to the target, at MAE of 7.99 μm. The point-to-point average MAE for all eight final 
positions is 6 μm and the length and width of each pixel in the images are 1.25 μm.  

 

Table 3: Point-to-point error results for all eight SEM imaging positions 

The point cloud size of each SEM image, n, is between 22 and 23 thousand points. When 
the target point cloud or the target and the reference point cloud are randomly down sampled, the 
distance between matched points becomes larger. Error is unreliable if there are not a significant 
amount of points in the target point cloud. MAE diverges exponentially as the target and reference 
point cloud are down sampled as seen in Figure 13 (a) shown with a logarithmic scale. Figure 13 
(b) shows the effect on MAE of down sampling only the reference point cloud. MAE is effectively 
unchanged as the reference point cloud is down sampled because the reference points are still able 
to find matched neighbors in the large target point cloud. As the number of points in the target are 
increased, the point cloud starts to act as a plane. For a point-to-point error metric to be effective, 
it is vital to select a high number of points in the target point cloud. 

  

 

Figure 13: Change in MAE when the target point cloud is down sampled (a) and when the 
reference point cloud is down sampled (b) 

Original Final Original Final Original Final Original Final Original Final Original Final Original Final Original Final
STDV (μm) 26.38 1.86 11.10 3.75 18.83 4.15 16.56 3.71 26.18 1.74 10.50 3.85 18.59 4.96 10.45 4.03
MAE (μm) 48.51 4.82 13.01 5.75 27.65 7.05 22.39 6.12 49.06 4.18 12.49 5.96 28.91 7.99 12.80 6.42

MSE (μm^2) 3,049.1 26.7 292.4 47.2 1,119.4 67.0 775.6 51.2 3,092.8 20.5 266.3 50.4 1,181.2 88.4 273.0 57.4
RMSE (μm) 55.22 5.16 17.10 6.87 33.46 8.18 27.85 7.16 55.61 4.53 16.32 7.10 34.37 9.40 16.52 7.58

n

TLD BSE 240⁰ TLD BSE 270⁰ TLD BSE 300⁰

22,968 22,595 22,677 22,978 22,934 22,773 22,546 22,718

TLD BSE 0⁰ TLD BSE 60⁰ TLD BSE 90⁰ TLD BSE 120⁰ TLD BSE 180⁰
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4.1.2 Point-to-Point Error with 3D Images 

Point-to-point MAE of the 3D data set, where the reference is the SWIR point cloud and 
the XCT is the target point cloud, was determined in the same way as the 2D SEM images in 
Section 4.1.1. Each point cloud had 100,000 points that were sampled off the surface as outlined 
in Section 3.1. Figure 14 shows a ParaView visualization of the two point clouds when the points 
are randomly down sampled to the same effect as the SEM images.  

 

Figure 14: The effect on MAE of down sampling both point clouds. SWIR in red and XCT in 
white. 

When both point clouds are down sampled, MAE increases exponentially as seen in Figure 
15 (a) shown with a logarithmic scale. Figure 15 (b) shows the effect of down sampling each point 
cloud separately. When the reference point cloud (SWIR) is down sampled the error effectively 
stays the same but when the target point cloud (XCT) is down sampled the error rises. The same 
effects were seen with the 2D SEM images. The point-to-point MAE for the 3D registration was 
112 μm with 100,000 CT points and 86 μm with 1,000,000 CT points. 
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Figure 15: Change in MAE when the target point cloud is down sampled (a) and when the 
reference point cloud is down sampled (b) 

4.2 Point-to-Plane Error 

ICP registration of multiple images by point-to-plane has been developed to attempt to 
improve registration over traditional ICP [30]. The point-to-plane registration method is not used 
for this study, but the derivation of the error metric for point-to-plane registration has distinct 
advantages over the point-to-point error metric discussed in Section 4.1. The main advantage is 
the target is a triangle surface instead of a point cloud so point-to-plane does not depend on the 
number of points in the target. The second advantage is that DREAM.3D can calculate the 
individual point-to-plane errors using the Find Vertex to Triangle Distances which significantly 
simplifies the implementation of the algorithm and makes it more repeatable across platforms. 
Python is only used to calculate the array-level metrics (standard deviation, MAE, MSE, RMSE) 
which is a very straight forward calculation.  

Like point-to-point, the point-to-plane metric matches the closest triangles in the target 
surface for each point in the reference point cloud. Individual errors are calculated using the 
distance between each source point and the tangent plane at its corresponding destination point 
[27, 30].  

Unit normals from the face of each triangle in the target surface are added to the triangle 
surface array in DREAM.3D with the Generate Triangle Normals filter. The error between the 
target surface and sampled points from the reference surface is shown in Figure 16 as ei.  

 

Figure 16: Point-to-plane error from a target surface and points on a source surface. 
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A summary of the point-to-plane error process 

1. Read reference vertex points and the target triangle geometry surface in 
DREAM.3D 

a. Downsample the reference vertex points. 
2. Calculate individual errors, ei. 

a. For all points in the reference point cloud, M, calculate Euclidian distance 
to the closest triangle in the target surface 

3. Calculate accuracy metrics 
a. Standard Deviation, MAE, MSE, RMSE 

4.2.1 Point-to-Plane Error with 2D Images 

A triangle surface plane was created in DREAM.3D from the target SEM image. This was 
done by extrapolating the mask created by the RATS algorithm to several layers and creating a 3D 
array. The same process in Section 3.1 for 3D images was followed to create a triangle surface of 
the target image. The mask is shown in Figure 17 (a) and the target surface with a point cloud from 
one of the SEM imaging positions (red) is shown in (b).  

  

Figure 17: An extruded target image mask (a) and a triangle boundary plane, based on the SEM 
target image, with one of the SEM imaging position point clouds (b). 

The triangle surface plane was the target and the boundary point clouds of each SEM 
imaging position were the reference point cloud. With this method, there was effectively no change 
in the MAE when the reference point clouds were down sampled. This is shown in Figure 18. 
Average MAE across all SEM imaging positions with no down sampling and with all down 
sampled results are both 2.4 μm.  
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Figure 18: Point-to-plane MAE for SEM images with down sampling 

4.2.2 Point-to-Plane Error with 3D Images 

The point-to-plane error for the 3D images used the triangle surface created for the XCT 
array in Section 3.1 to sample the boundary point cloud. The XCT triangle surface was the target 
and the SWIR point cloud was the reference. Like the 2D images, Figure 19 (a) shows the MAE 
stays effectively the same when the number of points in the SWIR point cloud were down sampled. 
The point-to-plane MAE for the 3D registration was, on average with five different levels of down 
sampling, 75 μm. 

Figure 19 (b) highlights the convergence of increasing the points in the target point cloud 
until it becomes a plane. The scale is logarithmic, making the exponential trend toward the point-
to-plane MAE results as the XCT point cloud is increased from 10 points to 1,000,000.  

 

Figure 19: Point-to-plane MAE for 3D images with down sampled SWIR point cloud (a) and 
comparing point-to-point and point-to-plane MAE  

5.0 Data Fusion 

To fuse each 3D dataset on a common grid, the DREAM.3D Fuse Regular Grids (Nearest 
Point) is used. The XCT array, along with the final position of the SWIR array, are fused together. 
The grid of cells in the reference data container (SWIR) is overlaid on the grid of cells in the 
sampling (XCT) data container. Each cell in the reference container is associated with the nearest 
point in the sampling container. The values of the nearest point in the sampling container are 
assigned to that cell in the reference container. This is a nearest neighbor operation as the values 
of the sampling voxels are not interpolated to the reference voxels. As a result, the sampling array, 
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XCT in this case, is in the same resolution as the reference array, SWIR. Fusing all data on to the 
same grid allows for any follow-on statistics or machine learning model to directly interpret each 
voxel of training data discretely.  

The 2D SEM images are roughly the same resolution and have the same pixel dimensions 
so the data fusion process is insignificant in what it changes. The 3D arrays, however, are quite 
different with the XCT resolution at 29.96 x 29.96 x2 9.96 μm before fusion and 125 x 125 x 50 
μm after the fusion process. Figure 20 below shows the difference in resolution of an XCT slice 
before (a) and after (b) the fusion process with the same layer in the SWIR array (c).  

    

Figure 20: XCT before (a) and after (b) fusion with the same layer in the SWIR array (c). 

6.0 Discussion of Results and Conclusions 

This study outlined a registration technique that can be used to rapidly register and fuse 
datasets between multiple sensors and input types and measure the registration accuracy. The 
process works for both 2D and 3D datasets from multiple data modes and can be extended to other 
sensor modalities including on- and off-axis optical and thermal images. The publicly available 
platform, DREAM.3D, provides repeatability and scalability to this technique so the process can 
be used for analytics in future work.  

A point-to-point method has been outlined based on the error distance between matched 
corresponding points in two-point clouds, and a second point-to-plane method has been outlined 
based on the error distance between points in one-point clouds to the surface of target dataset. The 
error metric can be used in DREAM.3D in any type of 2D or 3D dataset, making it easy to 
objectively judge registration performance in the same units as the dataset.  

For a point-to-point error metric to be effective, it is vital to select an extremely high 
number of points in the target point cloud for an effective point-to-point error metric. The point-
to-point error metric converges as the number of points in the target are increased but this study 
was never able to get enough points in a point cloud to reach the MAE of the point-to-plane 
method. As more points are added, computing time is exponentially increased. The point-to-plane 
error metric eliminates this concern because the target is a triangle surface and there is no sampling 
required.  
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Figure 21 provides a visualization of the errors at 10,000 randomly chosen SWIR points 
using point-to-plane method at the final registered position. The values at each point reflect the 
point-to-plane error for each point in the SWIR array from the XCT surface with blue and red both 
reflecting larger error, while white reflects small error (error units are in μm). The largest error is 
seen at the bottom of the part because the because the SWIR camera did not record during the first 
ten layers of the build. This visualization does indicate that the IR registration has a very slight 
shift along the negative-Y and positive-Z axis. This may be due to the misalignment of arrays in 
the first ten layers or the inability to apply a calculated transformation matrix to the image 
geometries. Future development to apply calculated transformation matrices to image geometries 
is expected to improve registration accuracy.  

     

Figure 21: Visual representation of the error in the final 3D registration. 

There is always some variation in the MAE because the down sampled point clouds are 
randomly chosen. Each time a new down sampled point cloud is selected there will be a slight 
difference in the MAE. This variation increases as the number of points in the point clouds 
decrease because the impact that each randomly chosen point has on the whole result is increased. 
This is particularly noticeable in the figures where the down sampling is 0.001 (roughly 23 points) 
for SEM images or 10 points for the 3D images. 

The registration accuracy for all eight final SEM positions is 2.4 μm, found with the point-
to-plane error metric. The length and width of each pixel in the images are 1.25 μm meaning that 
the SEM images were registered within two pixels. Future work will be done to combine the eight 
SEM imaging positions for an improved defect labeling technique. Registration accuracy is vitally 
important to this work.  

The registration accuracy for the 3D registration was 75 μm. The voxel size of the fused 
3D dataset is 125x125x50 μm so the registration is within a voxel. Future work will be done to 
train a machine learning model on the fused data using SWIR parameters as model. A method to 
label defects in the XCT array is needed for ground truth labels in supervised machine learning. 
Registration accuracy is vitally important to this work as well.  

DREAM.3D currently cannot apply the transformations that are computed internally. 
Further development of the Apply Transformation to Geometry filter to work with image-type 
datasets and apply interpolation would fully integrate registration into a single application and the 
process would be faster. Adding this capability to DREAM.3D should increase registration 
accuracy because there is known variation between the applied transformation and the calculated 
optimal transformation.  
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The 3D images were directly aligned to each other and the 2D images were aligned to a 
common target. Using this registration technique and error metric future, work can be done to 
compare the direct alignment of 3D images to aligning to a common target such as a CAD profile.  
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