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Abstract

Triply Periodic Minimal Surfaces (TPMS) are smoothly varying surfaces that exhibit zero
mean curvature at all points on the surface. TPMS can be modeled with high accuracy us-
ing discrete differential geometry techniques. However, generating a useful number of unit
cells with this approach would be computationally expensive, and variable lattices would
be impossible. Level sets of Fourier series approximations are often used instead. While
these approximations have continuous geometry, they no longer retain zero mean curvature
like the exact TPMS. In this paper, we calculate the mean curvature of the commonly used
approximations of the gyroid and D-surface TPMS. Using isosurfaces of the mean curvature
from these approximates, we define, similar but unique surface topologies. The development
of these surfaces expands the list of lattices available to designers, broadening the lattice design
space. Application to other approximations and further study of the application of these new
surfaces is discussed.

1 Introduction

There are several equivalent definitions of a minimal surface [1]. In this paper, we consider the
definition that a minimal surfaces must have zero mean curvature at all points on the surface.
The mean curvature can be calculated from the average of the two principal curvatures and, for
a minimal surface, this mean curvature is always zero. The curvature at all points then must
be defined, finite, and the principal curvatures must be equal but opposite. From this property,
minimal surfaces have no sharp edges or discontinuities in the surface. Minimal surfaces that are
periodic in x, y, and z are known as Triply Periodic Minimal Surfaces (TPMS). The periodicity
(like a sine or cosine function) allows the surface to extend and repeat infinitely in 3D space. We
can define for each unique TPMS a unit cell that represents the smallest element of the topology
that can be patterned to produce the surface. Although there are a number of TPMS that have been
identified [2, 3], we focus on two common TPMS: the Gyroid and D-surface shown in Fig. 1.

Advances in additive manufacturing (AM) have enabled the economical production of
intricate shapes at the “mesoscale”, withing the macro geometry of a component [4]. One type
of complex shape that AM enables is periodic 3D structures known as lattice structures [5]. TPMS
have seen interest in AM literature as a basis for the design of lattice structures. They are attractive
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(a) (b)
Figure 1: Images of the (a) Gyroid and (b) D-surface generated using Surface Evolver with blue and green

showing the two sides of the surface.

as lattice structures because there are no sharp corners and the introduction of stress concentrations
can be reduced or avoided. However, because a mathematical surface has no volume, the infinitely
thin surface of the TPMS must be made solid by either “adding” thickness on either side of surface
or by filling one side (blue or green in Fig. 1) of the surface resulting in different lattice topologies,
effective material properties, failure mechanisms, etc. By applying constant or spatially varying
offset(s) to the surfaces before adding material, the amount of material within the lattice can be
controlled. When one side of the surface is filled, we refer to the result as a skeletal lattice. The
ratio of solid volume to total design volume is commonly used to discuss and compare lattices
structures and is known as the Volume Fraction (VF) of the lattice. The design of the lattice’s
geometry is critically important and implicit design tools (such as nTopology [6]) make it easy to
control the topology to elicit a specific response from the lattice, and so various types of structures
are necessary to address engineering demands.

Literature has provided approximations for TPMS that allow engineers to readily imple-
ment and model these structures in design tools. The Gyroid and D-surface approximations used
in this paper are taken originally from Von Schnering and Nesper [3], where they were derived
by fitting Fourier series to points on the TPMS surfaces. For convenience we define a shorthand
nomenclature for writing sine and cosine functions as:

Sni = sin
(

2πn
Pi

i
)
, (1)

Cni = cos
(

2πn
Pi

i
)
, (2)

where i is a spatial coordinate ∈ {x,y,z}, Pi is the period of the lattice in direction i, and n is the
number of periods of the trigonometric function in one unit cell (e.g. 1,2,3). When n is unity, it is
omitted for simplicity. The approximations of the Gyroid and D-surface can then be written as:

CxSy +CySz +CzSx = t (3)
SxSySz +SxCyCz +CxSyCz +CxCySz = t (4)
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where t is the level set applied to offset the surface from the zero level set. This nomenclature
becomes more useful when writing the mean curvature equations discussed in Section 2. Because
these equations represent approximations of TPMS, they no longer inherently respect the properties
of a minimal surface, including those that ensure there are no sharp corners. However for the
Gyroid and D-surface, the error between the the TPMS and its approximation is small at the zero
level set [7].

The existing work done by Von Schnering and Nesper [3] and Gandy et al. [7] to generate
the approximations and characterize them was performed at a single constant level set that best
fit the approximation to the TPMS. However, in application, that same level set value is rarely
if ever used to generate lattices. The mean curvature of any approximations to TPMS have not
been described as a function of level set to the best of the authors’ knowledge, and the actual
surface curvature of the lattice structures being used is unknown. Because the mean curvature
has implications on the performance of the lattice, characterizing this metric is highly relevant.
Große-Brauckmann [8] does discuss methods for generating offset gyroid companion surfaces
that exhibit constant (or near constant) mean curvature using Surface Evolver [9]. However, for
use in engineering applications, generation of these surfaces throughout the design volume is not
feasible with this technique as convenient approximations of these surfaces were not presented.
Li et al. [10] generated a piecewise modification of the Gyroid that maintained the connectivity
of the structure at large level set values, allowing connected Gyroid lattices with lower VF to be
generated. The approach was not extended to other surfaces.

In this paper, we explore the analytical derivation of mean curvature for the aforementioned
approximations to the Gyroid and D-surface at non-zero level set values with a general method
that can be applied to any equation-based lattice. We explore defining new lattices using the
analytically determined mean curvature of existing TPMS approximations to study the resulting
surface’s curvature, topology, and geometry relative to their original approximation.

2 Methods

The surfaces modeled using Eqs. 3 and 4 are implicitly defined functions (i.e. f (x,y,z)). The cur-
vature of an implicit field f (x,y,z) can be calculated using the divergence of the unit normal [11]:

H =−1
2

∇ ·
(

∇F
|∇F |

)
(5)

In our exploratory study, we make the simplifying assumption that the periodicity in each unit
cell is equal and constant (Px = Py = Pz = 1). This allows for the derived curvature equation to
be simplified and easily interpreted even if they are only accurate for cubic unit cells of constant
size. These assumptions are only for presenting the results — the method works without these
simplifications.

Using the MATLAB symbolic toolbox, we compute the mean curvature of the implicit
TPMS approximations. The mean curvature equations were algebraically simplified and are pre-
sented in appendix A. We visualize the 3D curvature field by plotting the Gyroid (Fig. 2) and D-
surface (Fig. 3) approximations at fifteen level set values ranging from 5% of the fields minimum
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value, to 95% of the fields maximum value, overlaying a color map of the surface’s curvature. This
allows us to visualize what the curvature of the surfaces of lattice structures are across the range
of volume fractions. The level sets of zero in Figs. 2 and 3 are the original fits of the TPMS. The
larger the magnitude of the level set, the larger the observed variation in mean curvature across the
surface. For example, the Gyroid in Fig. 2 shows non-constant mean curvature at level sets far from
zero; the D-surface has similar behavior. This behaviour is not unexpected, as the Fourier fit to the
TPMS was at only the zero level set value and any deviations from this level set are inherently less
accurate.

The mean curvature of the surface approximations can be used to generate implicit fields,
and by taking isosurfaces (aka level sets) of the mean curvature field, we generate new variants on
the Gyroid and D-surface TPMS. We refer to these new surfaces (and the lattices generated with
them) as the Mean Curvature Gyroid (MC Gyroid) and Mean Curvature D-Surface (MC D-surface)
to differentiate them from the existing Gyroid and D-surface approximations. Appendix B contains
code to calculate the mean curvature of both the TPMS approximations and the MC surfaces
symbolically. The mean curvature equations were also implemented in nTopology for comparison
to the original approximations and to enable efficient lattice modeling. These nTopology notebooks
are made available at https://github.com/jwf23/Mean-Curvature-Surfaces and can be
imported as custom blocks to utilize the MC lattice topologies.

By computing the mean curvature defined in Eq. 5, applied to the MC Gyroid and MC
D-surface equations (Eqs. A.1 and A.2), the mean curvature of the MC Gyroid and MC D-surface
is determined. We visualize the MC Gyroid and MC D-surface colored with their respective
curvatures in Figs. 4 and 5.

3 Results & Discussion

The skeletal lattices of the MC and traditional variants of the two surfaces where compared at
the same volume fractions to assess the level of difference within the lattices produced (Table 1).
The two models were aligned to the same reference frame as the unit cell, and the MC variant was
subtracted from the traditional. The percent difference was computed by dividing the volume of the
subtracted model by the volume of (either equal volume) unit cell. This represents the percentage
of the MC Gyroid or MC D-surface that is not shared by the their traditional variants.

Table 1: Computed volumetric differences between the MC and traditional Gyroid and D-surface skeletal
lattices at different volume fractions.

Gyroid D-surface
VF % Difference VF % Difference

50% 1.5% 50% 2.1%
25% 5.2% 25% 5.3%
10% 12% 10% 11%
5% 17% 8.5% 15%

We present a visual representation of row three of Table 1 in Figs. 6 and 7 to illustrate the
similar but unique geometry of the lattices. The skeletal lattices of the two variants of the Gyroid
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Figure 2: Gyroid mean curvature across a range of level sets showing existing nonzero mean curvature,
especially when deviating from the zero level set.

Figure 3: D-surface Mean curvature across a range of level sets showing existing nonzero mean curvature.
The limits of the color bar were fixed to match Fig. 5 for a more direct comparison and for greater
contrast when |level|≤ 0.909. The minimum and maximum mean curvature values are ±5.05.
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Figure 4: Level-set sweep of the surface defined by the mean curvature of the Gyroid. The limits of the
color bar were fixed to match Fig. 2 for more direct comparison. The minimum and maximum
mean curvature values are ±3.03.

Figure 5: Level-set sweep of the surface defined by the mean curvature of the D-surface.
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and D-surface are shown separately as well as overlaid. Regions that appear blue in Figs. 6c and 7c
exist in the MC surface and those that are gray exist in the original surface. This mass redistribution
contributes to the skeletal lattices of the MC variants reaching lower volume fractions before the
lattice becomes discontinuous, and when the other side of the surface is filled, higher volume
fractions can be reached by the MC variants before internal voids form. The traditional gyroid
skeletal lattice becomes discontinuous at a VF of 1.9% (level set of 1.41), where the MC gyroid
skeletal lattice remains continuous until a VF of 0.04% at a level set of 12. We note that for the
MC Gyroid, at low VF (high level set values) the “thin” regions of the lattice do exhibit a high
aspect ratio cross section, which could impact manufacturability. Similarly, we can look at the
D-surface which becomes discontinuous at a VF of 8% (level set of 1.76). Compared to the MC
D-surface which is continuous until a VF of 0.6% at a level set of 3.8. The extension of the range
of volume fractions is comparable to those demonstrated by Li et al. [10] for the Gyroid. However,
where Li et al. used a piecewise function to maintain the same geometry as the Gyroid generated
by Equation 3, the MC variants are new surfaces that share the same general topology, but unique
geometry.

(a) (b) (c)
Figure 6: Comparison of geometry at 10% volume fraction showing (a) the Gyroid, (b) the MC Gyroid, and

(c) the Gyroid and MC Gyroid overlaid.

(a) (b) (c)
Figure 7: Comparison of geometry at 10% volume fraction showing (a) the D-surface, (b) the MC D-

surface, and (c) the D-surface and MC D-surfaces overlaid.

The MC D-surface exhibits more pronounced “necking” compared to the traditional D-
surface (see Figure 7). The impact that this has on the properties of the lattice have not yet been
explored, but has the potential to produce structures with more consistent failure mechanisms or
tuned failure criteria.
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4 Conclusion & Future Work

We have defined two new surfaces using an implicit field generated by analytically determining the
mean curvature of approximations of two commonly used TPMS – the Gyroid and D-surface. We
computed the mean curvature of these two new surfaces which we define as the MC Gyroid and
MC D-surface. The geometric differences between skeletal lattices generated with the original and
MC equations were quantified at equal volume fractions. Although similar in topology, the MC
variants have different material distributions, and the percent difference increases as the level set
moves away from zero. In addition, the MC variants remain connected for larger ranges of volume
fractions than the original surfaces. The value of these new lattices for engineering applications has
yet to be explored, although the geometric differences between the new surfaces and the original
could prove valuable.

We have demonstrated the theory behind generating new surfaces using this approach, as
well as the means to implement these new surfaces in design software. The performance of these
lattices needs to be evaluated to understand their applicability to different engineering applications,
but is beyond the scope of this work. Numerical and experimental methods should be applied to
study the mechanical response of the lattices generated using the new MC variants. Our methods
employed here to generate new surfaces from the mean curvature should be applied to other TPMS
approximations beyond the Gyroid and D-surface. In addition, other pathways, along with mean
curvature, should be considered to produce additional new surfaces for lattice generation, such as
the Gaussian curvature and the derivatives of the field. The greater variety of lattice structures
available will expand design freedom and allow for more informed design decisions.
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A mean curvature equations for the Gyroid and D-surface

Mean curvature of the Gyroid approximation given in (Eq. 3):

−
(

C3
x Sy −2CzSx −2CySz −2CxSy +C3

z Sx +C3
y Sz

+2CxC2
y Sy +2C2

xCzSx +3CxC2
z Sy +3C2

xCySz +3C2
yCzSx

+2CyC2
z Sz −3C2

xC3
y Sz −3C3

xC2
z Sy −3C2

yC3
z Sx

−3C2
xC2

yCzSx −3CxC2
yC2

z Sy −3C2
xCyC2

z Sz +6CxCyCzSxSySz

)
/(

2
(
(CxCz −SxSy)

2 +(CxCy −SySz)
2 +(CyCz −SxSz)

2
)3/2

)
= t (A.1)

Mean curvature of the D-surface approximation (given in Eq. 4):(√
2
(

3CxCySz +3CxCzSy +3CyCzSx +3SxSySz

−C3xC3ySz −C3xC3zSy +C3xS3yCz +C3xS3zCy

−C3yC3zSx +C3yS3xCz +C3yS3zCx +C3zS3xCy

+C3zS3yCx −S3xS3ySz −S3xS3zSy −S3yS3zSx

))
/(

2
(
3C2xC2yC2z −S2xS2z −S2yS2z −S2xS2y +3

)3/2
)
= t (A.2)
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B MATLAB code for generating mean curvature

This appendix contains the code used to generate equations for the mean curvature of the traditional
surfaces as well as the MC surfaces. The equations are converted into MATLAB functions prior to
evaluation for improved performance.

Code 1: MATLAB Code for generating the MC equations and their curvature
1 % DEFINE A SYMBOLIC FUNCTION
2 syms f(x, y, z)
3 % KEY IN THE EQUATION OF THE LATTICE
4 % Gyroid
5 f(x, y, z) = cos(x).*sin(y) + cos(y).*sin(z) + cos(z).*sin(x);
6 % D−surface
7 %f(x, y, z) = sin(x).*sin(y).*sin(z) + sin(x).*cos(y).*cos(z) + cos(x).*sin(y).*cos(z) + cos

(x).*cos(y).*sin(z);
8
9 % TAKE A DERIVATIVE WRT EACH INDEPENDENT VARIABLE

10 Dfx = diff(f, x); Dfy = diff(f, y); Dfz = diff(f, z);
11 % GET THE LENGTH OF THE GRADIENT
12 Dflen = sqrt(Dfx^2 + Dfy^2 + Dfz^2);
13 % COMPUTE THE MEAN CURVATURE BY DIVERGENCE DEFINITION
14 meancrv = −(1/2)*(diff(Dfx / Dflen, x) + diff(Dfy / Dflen, y) + diff(Dfz / Dflen, z));
15
16 % REPEAT PROCESS FOR MC SURFACE
17 clear Dfx Dfy Dfz Dfx Dflen
18 % TAKE A DERIVATIVE WRT EACH INDEPENDENT VARIABLE
19 Dfx = diff(meancrv, x); Dfy = diff(meancrv, y); Dfz = diff(meancrv, z);
20 % GET THE LENGTH OF THE GRADIENT
21 Dflen = sqrt(Dfx^2 + Dfy^2 + Dfz^2);
22 % COMPUTE THE MEAN CURVATURE BY DIVERGENCE DEFINITION
23 meancrvofMC = − (1/2)*(diff(Dfx / Dflen, x) + diff(Dfy / Dflen, y) + diff(Dfz / Dflen, z));
24
25 % CONVERT SYMBOLIC EQUATIONS INTO MATLAB FUNCS FOR FAST EVALUATION
26 cFH = matlabFunction(meancrvofMC);
27 mFH = matlabFunction(meancrv);
28 fFH = matlabFunction(f);
29
30 % SIMPLIFY THE MC EQUATION TO COMBINE TERMS FOR VIEWING
31 meancrv = simplify(meancrv);
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