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Abstract 

The recent advancements in material extrusion (MEX) have expanded the potential use of 

polymeric and composite structures in a wide range of structural and load-bearing applications. 

However, cyclic loads can induce fatigue, resulting in the development of structural damage and 

potentially leading to catastrophic failure at lower stress levels compared to normal mechanical 

loading. Therefore, it is crucial to thoroughly investigate and understand the fatigue behavior of 

composite parts manufactured using MEX. Predicting the fatigue life of polymeric composite 

components poses a significant challenge due to the complex nature of the materials involved. In 

this research, the aim is to utilize Machine Learning (ML) techniques to predict the fatigue life of 

fiber-reinforced composites produced through the MEX process. ML focuses on developing 

models that can learn from data, recognize underlying patterns within the data, and use those 

patterns to make accurate predictions or decisions. 
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Introduction 

 

MEX is a well-received additive manufacturing (AM) technique used to create 3D objects 

by extruding semi-molten thermoplastic materials from a heated nozzle or nozzles onto a platform. 

The filaments used for the process are usually made of polymeric materials such as epoxy, nylon, 

polycarbonate (PC), polyester, acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and 

polyamide (PA) [1]–[3]. MEX has several advantages including the ability to produce complex 

parts, low cost, minimal material wastage, design flexibility, customization of products for 

individual consumers, and production of small lots of parts [4]–[8]. Its affordability and 

accessibility make it popular for both hobbyists and professionals [9], [10]. It offers a wide range 

of compatible polymeric materials and composites, allowing for different mechanical properties 

and aesthetic finishes [11]–[14]. MEX finds applications in rapid prototyping, manufacturing 

tools, and jigs, functional end-use parts, architectural models, customized consumer products, 

medical and dental applications, and aerospace and automotive parts [15]–[19]. 

 Investigation of the fatigue behavior of composite materials manufactured by MEX has 

become important due to their applications in the structural field. Fatigue testing encompasses a 

range of loading conditions, such as tension, compression, torsion, bending, or their combinations 

which are used to assess the performance and durability of materials under cyclic loading [20], 

[21]. Various parameters affecting the fatigue life of any fiber-reinforced composites include fiber 

material, matrix material, volume or weight percentage of fiber in the matrix, fiber type and length, 

as well as 3D Printing (3DP) parameters such as infill pattern, build orientation, infill density, layer 

height, printing speed, printing plane, nozzle diameter, bed temperature, etc. as shown in figure 1. 

Anisotropy induced due to these 3DP parameters makes it very difficult to analytically predict the 

fatigue behavior of composites. For predicting fatigue life, several researchers have focused on 

various statistical methodologies. Kakiuchi et al. studied the fatigue strengths of the AM Ti-6Al-

4V at room temperature and at elevated temperature evaluated by Murakami’s model [22]. In this 

paper, ML is employed as a statistical method. Bao et al. provided a fatigue life prediction method 

for SLM (selective laser melting) processed Ti-6Al-4 V parts using ML [23]. This paper presents 

a fatigue life prediction methodology for composite tidal turbine blades based on 

combined hydrodynamic and finite element structural models [24].  
 

 
Figure 1: Parameters affecting the fatigue life of AM components 

251

https://www.sciencedirect.com/topics/engineering/fatigue-life-prediction
https://www.sciencedirect.com/topics/engineering/hydrodynamics


 

 

ML is a field of artificial intelligence (AI) that focuses on developing algorithms and 

models that enable computers to learn and make predictions or decisions without explicit 

programming. It involves creating systems that can automatically analyze and interpret complex 

data, recognize patterns, and improve their performance over time through experience. ML 

algorithms learn from large datasets, extracting patterns and relationships to make predictions or 

take actions. The learning process involves training the model on the training set, where it learns 

to recognize patterns and correlations. Once trained, the model can be applied to new, unseen data 

to make predictions or decisions. There are different types of ML algorithms, as follows:   

A) Supervised Learning: In this approach, the algorithm is trained using labeled data, where 

each data point has a corresponding target or output. The model learns to map input features to the 

desired outputs and can then predict the output for new, unseen data [25].  

B) Unsupervised Learning: Here, the algorithm is trained on unlabeled data, and its task is 

to find patterns or structures in the data without explicit guidance. Clustering algorithms, such as 

k-means, are commonly used in unsupervised learning [25].  

C) Reinforcement Learning: This type of learning involves training an agent to interact 

with an environment and learn from the feedback it receives. The agent learns to take actions to 

maximize rewards and achieve a specific goal through a trial-and-error process [25].  

ML has numerous applications across various domains including image and speech 

recognition, fraud detection, healthcare and medicines, financial forecasting, etc. In recent studies, 

various researchers have focused on predicting the additively manufactured component’s 

properties such as roughness, porosity, size of voids, etc. by using ML [26], [27]. However, there 

is no study reported to predict the fatigue behavior of composites manufactured by MEX. This 

paper presents a novel way of predicting fatigue life with the aid of ML on the experimental data 

which is available in the journal by Pertuz et. al. [28]. On this collected data, the random forest 

algorithm which is a type of supervised learning is applied to classify the data. The following 

sections are divided into Random Forest, Materials and Methods, Results and Discussion, and 

finally Conclusion.    

 

Random Forest 

 

Random Forest excels in capturing intricate patterns, making it well-suited for materials 

prediction tasks. Another factor that contributed to selecting Random Forest is its robustness to 

noisy data and missing values. In materials datasets, incomplete or noisy data are not uncommon 

due to measurement errors or variations in experimental conditions. Random Forest's inherent 

resilience to such challenges enhances its suitability for our study's objectives. While other ML 

algorithms like Support Vector Machines or Neural Networks have their merits, they may require 

more intricate parameter tuning, larger training datasets, or greater computational resources. 

Random Forest, on the other hand, strikes a favorable balance between predictive power and ease 

of implementation, making it an optimal choice for our specific materials prediction study. 

Random Forest is a supervised learning algorithm [29]. It falls under the category of 

supervised learning because it requires labeled data during the training phase. In supervised 

learning, the algorithm learns from input-output pairs, where the input data is accompanied by 

corresponding target labels or outputs. In the case of Random Forest, during the training process, 

each decision tree within the forest is trained on a labeled dataset. The training data consists of 

input features and their corresponding target values or labels. The algorithm learns to map the 

input features to the desired outputs based on the provided labels. Once trained, the Random Forest 
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model can make predictions or classify new, unseen data based on the patterns learned from the 

training data. The generalized form of the random forest decision tree is shown in Figure 2. The 

precision of a random forest depends on the number of trees. The higher the number of trees in the 

forest, the higher the accuracy of the outcome. The greater number of trees in the forest also helps 

in preventing the challenges of overfitting the data set. Jayasudha et. al. [30] in their study used 

the five predictive models including random forest to estimate the tensile strength of 3DP objects. 

The results from each ML model were compared using several statistical metrics such as mean 

squared error (MSE), mean absolute error (MAE), maximum error, and median error. 

 

 
Figure 2: Random Forest decision tree 

 

Materials and Methods 

 

Due to the complex characteristics of the manufactured components and the significant 

expenses associated with 3DP, it becomes crucial to develop precise prediction models for 

estimating the fatigue behavior of these parts. The data utilized in this particular case study 

originates from Pertuz et. al. [28]. They reported the fatigue behavior of continuous fiber-

reinforced thermoplastic composites made of a nylon matrix with fiberglass, Kevlar, and carbon 

fibers. Fatigue tests were conducted following the ASTM D7791 for composite parts, on 

specimens produced by MEX, under tensile fatigue loading conditions to obtain the S-N curves. 

Effects of the filling percentage, filling pattern of the nylon matrix, fiber materials, and fiber 

orientation, as well as the number of concentric rings used in the printing configuration are also 

reported. 

The process workflow of the research is shown in Figure 3. The data is collected and saved 

in an Excel file and a CSV file is created to give input to WEKA software [31]. The total instances 

meaning total experimental values obtained are 200 and those are categorized into 8 attributes. 

Attributes and their assigned values or properties are shown in Table 1. The matrix material for all 

the data is nylon. Reinforcing materials considered are Carbon Fiber, Kevlar, Fiberglass, and None 

(for the neat polymer). Infill densities taken into account are 20 and 50. Hexagonal, Triangular, 

Triangular 2 Layers 4 Rings, and Triangular 4 Layers 2 Rings are assigned for the infill pattern. 

Infill orientations considered are 0°, 45°, and 60°. For tensile strength and load applied to the 
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specimens are given the numerical values as given in the referred paper. Finally, the fatigue cycles 

are taken as output and those are categorized as class type 1 and type 2. For type 1, the fatigue 

cycles are classified as low for 1 to 5000 and high for cycles greater than 5000. For type 2, the 

fatigue cycles are classified as low for 1 to 250, medium for 251 to 10000, and high for cycles 

greater than 10000.  

Missing data is handled in pre-processing. In feature engineering, output data i.e., fatigue 

cycles are divided into categories as low and high for type 1 and low, medium, and high for type 

2 of the class. The next step is to select a model, for which preliminary tests are conducted to try 

various algorithms such as bagging, linear regression, etc. with different cross-validations folds. 

Finally, the random forest tree algorithm is selected because of its efficiency.  In the next step, the 

model is trained on k folds and the value of k varies from 5 to 40. Then, the model is optimized by 

selecting the optimum value of k, and at the end, the prediction of fatigue life cycles is obtained.   

 

 
Figure 3: Process workflow of the research 

 

Table 1: Attributes and their assigned values 

Sr. 

No. 

Attributes Values 

1 Matrix Material Nylon 

2 Reinforcing Material Carbon Fiber, Kevlar, Fiberglass, None 

3 Infill Density 20%, 50% 

4 Infill Pattern Hexagonal, Triangular, Triangular 2 Layers 4 Rings, 

Triangular 4 Layers 2 Rings 

5 Infill Orientation 0°, 45°, 60° 

6 Tensile Strength Numerical Input from [28] 

7 Load Numerical Input from [28] 

8 Class/Output: Fatigue 

Cycles 

Type1: 1 – 5000: Low, >5000: High 

Type 2: 1 – 250: Low, 251 – 10000: Medium, >10000: 

High 
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Result and Discussion 

 

Table 2 represents the results of a ML model based on the Random Forest decision tree 

algorithm. Here's an explanation of the metrics: 

• Class Attribute: This column indicates the variables for the classification task. Here are 

two types of class attributes labeled as types 1 and 2 [32]. 

• K-fold: It represents the number of folds used in cross-validation. Cross-validation is a 

technique to assess the model's performance by splitting the dataset into multiple subsets 

and iteratively training and evaluating the model on different combinations of these subsets 

[33]. For type 1, K varies from 10 to 40, and for type 2, K varies from 5 to 30. 

• Accuracy: It measures the proportion of correctly classified instances out of the total 

instances. It is expressed as a percentage [34].  

• Kappa Statistics: Kappa statistics measure the agreement between the predicted and actual 

classifications, considering the agreement that could occur by chance. It ranges between    

-1 and 1, where 1 indicates perfect agreement, 0 indicates agreement by chance, and 

negative values indicate worse-than-chance agreement [35]. 

• MAE: It represents the average absolute difference between the predicted and actual 

values. It measures the average magnitude of the errors, regardless of their direction. 

Smaller values indicate better performance [36]. 

• Root Mean Squared Error (RMSE): It is another metric to evaluate the model's 

performance, specifically for regression tasks. It calculates the square root of the average 

of the squared differences between the predicted and actual values. Similar to MAE, 

smaller values indicate better performance [34]. 

The table provides a comparison of the model's performance across different 

configurations, such as the number of folds used in cross-validation (K-fold) and the class attribute. 

It is evident that the accuracy, kappa statistics, MAE, and RMSE values vary based on these 

configurations. Generally, higher accuracy, kappa statistics, and lower MAE and RMSE values 

indicate better model performance.  

From the Table, it is observed that the highest accuracy obtained is i.e., 95.5% for class 

attribute 1 and 30-fold cross-validation. The Lowest MAE and RSME are 0.0696 and 0.2045 

respectively for class attribute 1 and 30-fold cross-validation. After 30 Folds for class attribute 1, 

the accuracy saturates at 95.5%. For class attribute 2, the highest accuracy obtained is 83.49% for 

5-fold cross-validation. For class attribute 2 and 5-fold cross validation MAE and RSME are 

0.1375 and 0.284 respectively. 

 

Table 2: Results for random forest algorithm 

Attribute K-fold Accuracy Kappa 

Statistics 

MAE RMSE 

Type 1 10 94.5% 0.7979 0.0703 0.2045 

Type 1 20 95% 0.827 0.0736 0.211 

Type 1 30 95.5% 0.8387 0.0696 0.2045 

Type 1 40 95.5% 0.8424 0.7505 0.206 

Type 2 5 83.49% 0.7296 0.1375 0.284 

Type 2 10 82.54% 0.7128 0.1338 0.02811 

Type 2 20 82.54% 0.7142 0.137 0.2874 

Type 2 30 81.13% 0.689 0.138 0.2875 
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Conclusion and Future Scope 

 

In this paper, one case study was considered wherein various process parameters of the 

3DP were treated as the inputs to an ML-based prediction system, which then predicted the fatigue 

behavior of the part. Based on the elaborate analysis, the following conclusions can be drawn: 

• Random forest algorithm is applicable to predict the fatigue behavior of composite 

materials with good accuracy. 

• Accuracy is dependent on a number of folds in K-fold cross-validation and varies 

extremely based on the classification of class attributes. 

• One limitation of this study is that it does not provide an exhaustive comparison. Numerous 

other ML algorithms, including support vector regression, multi-layer perceptron 

regression, hist gradient boosting regression, and more, have not been considered in this 

study. Additionally, the study lacks the utilization of global optimization algorithms when 

searching for optimum hyperparameters. In the future, the study aims to address these 

limitations by incorporating additional ML algorithms and exploring other case studies. 

The anticipated outcomes of this extended research are expected to offer valuable insights 

to practitioners seeking to implement ML for enhancing machining or manufacturing 

processes. 
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