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Abstract 

While resin 3D printers are seeing growing adoption in both manufacturing and personal 

fabrication settings, detecting print failures in real time remains challenging. Object-detection 

neural networks have shown benefits in a variety of extrusion-based 3D printing methods. Here, 

we extend such work to resin printing using a physics-informed machine learning data generation 

pipeline. Our approach leverages our models of the fluid dynamics of the printing process at 

every slice, in order to synthetically generate a library of print defects. We show such an 

approach is capable of providing data sufficiently resembling real-world failures to fine-tune a 

pre-trained custom defect detection neural network that can alert users of failure in real-time. 

Finally, to allow novice users to take advantage of our simulation platform, we integrate our tool 

into an interactive augmented reality interface, which displays simulation predictions to provide 

guidance on design and machine parameters prior to printing. 

Fig. 1. Summary of our interactive fluid dynamics simulation and visualization tool for augmented resin 3D 

printing. 
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1 Introduction and problem formulation 
Resin 3D printing is finding increasing adoption in real-world fabrication settings, not only in 

manufacturing plants but also among interested hobbyists and everyday makers [38]. However, 

challenges associated with predicting and correcting failures in such systems preclude their 

more widespread use, particularly among novice users, hindering the promise of decentralizing 

manufacturing, personalizing fabrication, and democratizing product design. While a variety of 

tools helping users debug print failures are available for extrusion-based printers, both academic 

[11, 39] and open-source though online platforms such as Instructables and All3DP, comparatively 

fewer are available for resin 3D printers. 

In resin-based 3D printing, which has applications in high resolution biomedical models [41], 

architectural scale models [8], and fashion [35], among other areas, objects are cured through a 

projection of UV light through a transparent window underneath the resin bath. The separation 

forces required to subsequently detach the part from the window, or overcome suction forces in the 

case of continuous liquid interface production (CLIP) [33], are the primary cause of print failure 

in resin printing. Also known as Stefan adhesion forces, these exert significant stresses on the 

growing object each layer, and have been studied experimentally in detail by many [24, 12]. If left 

uncontrolled, these forces can cause detachment of the part from the platform (adhesive failure) 

or delamination of newly cured layers (cohesive failure) [15]), in either case wasting time and 

material. 

Recently, we have developed a novel simulation pipeline for modeling resin 3D printing that, at 

every layer during printing, predicts suction forces to anticipate print failure [19, 18]. Here, we 

leverage such simulation capabilities in a machine learning pipeline for resin 3D printing defect 

detection, synthetically generating print failures in virtual worlds in order to train a custom defect 

detection model. To enable particularly new users to use our simulation engine, we wrap our tool 

in an interactive augmented reality interface, displaying simulation predictions in the context of 

real-world print failures and the machine environment. In sum, our novel contributions are: 

- A physics-informed synthetic data pipeline to detect failures during resin 3D printing; and,

- An augmented reality interface that overlays such simulation data on the real-world printer

context.

2 Simulation-guided data generation for real-time print 

monitoring 

We frame the major class of resin printing failure described above – delamination of the object 

from the build platform – as an object detection task. Our specific aim is to detect the scenario 

where an object is, or potentially multiple objects are, no longer attached to the platform, and 

instead has, or have, delaminated in the vat. On such object detection tasks, deep learning-based 

models have achieved state-of-the-art performance in a variety of domains [20], including in the 

context of defect detection in additive manufacturing [9, 14, 16]. Other researchers have 

developed neural networks for the purpose of defect detection in additive manufacturing, but these 

have almost exclusively been in the context of extrusion printing [4]. Moreover, such defect  
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Fig. 2. We predict plausible print failure scenarios with our forward fluid dynamics model (a), illustrated for 

a range of illustrative mechanical designs (b) using these predictions to generate a synthetic image failure 

dataset for training a custom object detection model (c). 

detection models rely on the collection and manual labeling of real-world data [25, 5]; however, 

this is tedious and cumbersome, and would be unfeasible for a user initiating a print with an unseen 

design. Recent work in the machine learning community suggests that simulation engines, akin to 

that which we develop in this work, can also be effectively leveraged for training neural networks for 

detection purposes, specifically through the use of synthetic data [22]. Here, the use of computer 

graphics engines for generating high-quality, perfectly labeled image data has been shown to 

approach real-world data performance on a variety of computer vision tasks [3, 32, 21]. Drawing 

from this emerging literature, we explore the possibility of using our simulation engine as a 

synthetic data generation pipeline. Our overall system architecture is summarized in Figure 2, 

which we explain in more detail below. 

2.1 Synthetic data generation pipeline 

We outline our data pipeline approach in Algorithm 1. In brief, we anticipate likely print 

failure scenarios with our forward fluid dynamics simulation framework [19, 18], using these 

scenarios to generate a library of synthetic image failures for training a custom object detection 

model. This approach is summarized in Figure 3. In addition to simulating print failure objects 

themselves, for environmental context (including distractors and object aggressors), we obtain a 
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3D scan of the printer environment, along with exact CAD models of the printer build area and models 

to-be-printed, to render photorealistic images with segmentation masks. To improve detection 

performance on potentially highly variable real-world data – with multiple camera poses set by the 

user, under potentially variable lighting conditions, and with diverse failure manifestations – we 

employ domain randomization, which has been shown to be important for bridging the sim-to-real gap 

and achieving satisfactory performance on real-world detection [31]. Specifically, we systematically 

vary aspects of the scene such as lighting, camera pose, and material textures. For implementation, 

we utilize Blender (version 3.3.0), a popular open-source 3D creation software [2], and its versatile 

Python API. A sample of synthetic images generated by this pipeline, along with real-world 

counterparts, is shown in Figure 4, for the case of one, two, or three print failures. We use this 

generated synthetic data for transfer learning with a single pass convolutional neural network, 

Yolov5 [30], pre-trained on 300,000 open-source data images from the COCO dataset [17]; we train 

Yolov5s specifically. For all training experiments, we use following hyperparameters: batch size of 

8, learning rate of 0.01, train-test split ratio of 90-10, momentum of 0.937. Training was performed 

on NVIDIA Quadro P5000 GPU. 

Algorithm 1: PRINT FAILURE DETECTION DATA PIPELINE 

Function Generate Synthetic Data(W, M): /* Printer P, 3D models M 

*/ 

Initialize W with printer P /* synthetic world W */

Initialize S ← {} /* synthetic images S */

foreach i = 1, 2, . . . , imax do  /* data iteration i */

foreach m = 1, 2, . . . , mmax do /* 3D model m */

Randomly select slice failure s f /* slice of suction failure s f */

Jitter x, y position of m 

Deform mesh x, y, z dimensions of m 

Randomize position and orientation of m 

Perturb material texture of m 
end 

Randomize scene W lighting 

Randomize camera position and orientation 

Render scene W to images S 

end 

return S 
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Pre-print 

In-situ 

Fig. 3. System architecture for our simulation-guided data generation pipeline to augmented existing 3D 

printing slicing workflows. To left is depicted a typical 3D printing workflow, and to right our complementary 

software tool. 

N = 1 suction failure N = 2 suction failures N = 3 suction failures 

Fig. 4. Example real (top) and synthetic (bottom) images of print defects, with the latter generated from 

the user CAD model and a virtual scene of the 3D printer in Blender, and used to fine-tune a custom object 

detection model from a pre-trained YOLOv5 network. Segmentation masks for one (left), two (middle), or 

three (right) failures in a single image are shown to the right of their corresponding synthetic images. 
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2.2 Object detection model system evaluation 

For evaluation purposes, we assess the performance of our object detection model in not only 

detecting suction-related failure, but also in discerning which of potentially multiple prints, and 

designs, have failed. To that end, we select several designs from the Thingi10k online repository 

[42] – representing real-world 3D printed designs – to train our model. To test our model’s ability to

discriminate between similar designs, we select variants of a similar design class, mechanical gear

components, shown below:

While we train our object detection model on synthetic data for the superior scalability reasons 

outlined above, we evaluate the performance of our object tracking model on real-world data. We 

obtain a sample of suction-related print failures, specifically by artificially perturbing machine 

parameters and reducing support volumes, increasing the diversity of these real-world data by 

randomizing their position in the vat. Qualitative results of our defect detection model are shown in 

Figure 5, and quantitative training metrics in Table 1. As the number of design classes increases, the 

performance of our model drops, not unexpectedly, as shown in the confusion matrix corresponding 

to the five test designs shown in Figure 6. This suggests that a larger number of design classes pose 

greater challenges for accurate object tracking. 

1

4

2 3

5
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Fig. 5. Qualitative indications of the performance of our object detection model fine-tuned purely on N = 500 

synthetically-generated images, for the task of detecting one defect (top), two defects (middle), or three defects 

(bottom). Numbers adjacent to detected design classes represent approximated confidence scores. 

Fig. 6. Confusion matrix quantifying classification accuracy of the Yolov5 pre-trained object detection model 

fine tuned with 500 synthetically-generated print defect images with N = 5 design classes, specifically five 

five 3D models drawn from a subset of Thingi10k online repository (filtered by category "mechanical"). 

Additionally, recent research in the machine learning community suggests that the combination 

of large synthetic datasets with a smaller sample of real data can lead to the best performance [23]. 
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To that end, we quantify the impact of injecting a small sample of real images of defective prints 

– specifically, 5 percent the size of our synthetic data – on model performance. Indeed, as shown 

in Table 1, this leads to significant improvements in model performance. We emphasize, however, 

that such real-world data is tedious to obtain, and potentially unfeasible for entirely new classes of 

designs, justifying our complementary simulation-guided data generation approach. 

 

 
Finally, we evaluate the importance of various simulation domain randomization factors in our 

synthetic data generation pipeline on detection accuracy. To do so, we perform ablation studies 

where we systematically eliminate one domain randomization parameter and assess the impact on 

model performance. All experiments performed with 1000 synthetic training sample images and 

pre-trained models fine-tuned for 50 epochs. The results are shown in Table 2. Here it is clear that 

camera pose is of critical importance, as expected, with model pose and lighting conditions also 

important to performance. This is in line with recent findings from the machine learning community 

[31]. 

Our detection model is trained to be orientation-agnostic, detecting objects from a variety of 

distances and orientations. However, our model does depend on having access to a clear line of 

sight to the printer vat, which may not be possible if the printer build platform obstructs view of 

potentially delaminated objects. To circumvent this, we can modify our print scripts to incrementally 

lift and lower the build platform during printing to provide access to unobstructed views; the 

frequency of such interruptions to printing is a balance between speed and resolution of defect 

detection. 

3 Simulation visualization: augmented reality interface 
In addition to alerting the user that a print failure has occurred, we also utilize our simulation 

framework to provide guidance on correcting such errors in future prints. To achieve this, we leverage 

recent advances in industrial augmented reality, which has seen growing popularity as a tool to 

overlay digital information on physical assets for real-time monitoring and user interaction [28, 29], 

including with 3D printers of numerous kinds [26, 1, 6] along with other digital fabrication systems 

[36, 13]. In general, such systems have enabled greater levels of interactivity and intuitiveness in the 

design and fabrication process compared with existing CAD/CAM workflows [40, 37, 10]. 

To enable similar interaction with simulation results for our system, we leverage the Unity Game 

Engine (version 2021.3.25f), a widely used cross-platform game development tool that provides a 

comprehensive suite of features for creating interactive and immersive experiences [34]. We briefly 

describe our system implementation for our interactive simulation tool is as follows. We load our 
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simulation results with variable print parameters into the Unity AR scene environment, such that 

the user can readily toggle through them in real-world visualizations prior to printing, including 

by interactively zooming in and panning around the to-be-printed model in its accurate physical 

context. 

To realistically overlay our numerical simulation data 

in the physical printer environment, we track the pose 

(position and orientation) of both the printer platform 

and vat; specifically, the user aligns a virtual overlay 

of the outline of the printer component with the real- 

world object (Figure 7). Tracking of the build platform 

and vat of the printer is theoretically straightforward, as 

exact CAD models are available. However, as these black 

anodized aluminium printer components themselves do 

not offer many readily trackable features, we improve 

tracking by endowing both printer components of with 

fiducial markers, specifically Aruco markers. Once tracked, 

we use their positional information to realistically overlay 

simulation results, organized as children of their respective 

printer components in the AR scene. This ensures that as 

the user pans around the printer, the pose of the virtual 

simulation data remains consistent with the real-world 

printer. We develop our tracking module with Vuforia 

(version 10.15.4) developed by PTC Inc., an augmented 

reality (AR) software development kit (SDK) [27]. 

3.1 AR simulation virtual overlay 

Fig. 7. Summary of procedure for tracking 

and pose estimation for AR simulation over- 

lay, implemented in Unity3D, with tracked 

printer elements (platform and vat) high- 

lighted. 

Two general cases of example user interactions with our simulation data are shown in Figure 8 and 

Figure 9. Each visualization illustrates a snapshot of a different simulation view in the AR interface, 

showing effective tracking whereby the simulation pose remains consistent despite changing user 

camera orientations in real world. The first case, illustrated in Figure 8, represents the case of 

when the user encounters a delamination defect, such as one detected in our module outlined in the 

previous section. Here, the user can align simulations of suction forces during printing with the 

failure manifestation, helping to explain where defects occurred and at which slices print parameters 

should be adjusted in future jobs. The second case, illustrated in Figure 9, shows the case of when 

the user needs to align a new print for injection 3D printing [18], and select injection rates to 

administer to offset suction. Here, rather than interfacing with an external CAD program, as is 

typical, the user can view simulation results directly on the platform where printing will occur, 

potentially aiding in dimensioning and object positioning and rotation prior to printing. 

3.2 AR simulation application scenarios 

We outline several potential applications of our interactive simulation for enhancing resin 3D 

printing workflows: 

1. Pre-print planning: In the pre-print planning stage, it can be non-intuitive, especially for

novice users untrained with CAD systems, to understand how the design and orientation

of a 3D printed object impacts its printability. By overlaying fluid dynamics simulations
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Fig. 8. Example simulation overlays 

for a print defect, indicated by asterisk, 

starting with CAD model registration 

of the printer vat (a-b), and alignment 

of the virtual slice simulations with 

the physical model from varying user 

viewpoints (c-e). 

Fig. 9. Example simulation visualizations for injection printing, 

starting with CAD model registration of the printer platform (a), 

which is used to accurately depict fluidic networks for iCLIP 

printing aligned to build platform ports (b). The user can also 

visualize simulation results of fluid pressures at varying injection 

rates of 2.5µLs, 5.0µLs (d), and 7.5µLs (e), shown for a variety of 

camera viewpoints. 

on a rendering of the to-be-printed object prior to production, obvious design flaws can be 

highlighted to the user and caught before printing. 

2.  Real-time failure alerts: During the printing process itself, if suction-related print failures do

occur, typically users of vat 3D printers only are made aware of the result when they return

to the printer. With our object detection tracking system, and with a simple RGB camera

without need for calibration, users could be alerted to failures, saving time and material.

3. Post-print debugging: Even if suction-related failures are caught, it can be challenging for

users, especially novice ones, to understand how and why the printing process failed. By

directly overlaying simulation results on the print failure, as shown in Figure 8 - 9, we

provide data that can facilitate the debugging process. In doing so, we allow designers to

modify their designs, or print orientations and support structures, more intelligibly with the

use of simulation data feedback overlaid on the real physical print result.

4 Limitations and Future Directions 
Here, we report our ongoing development of an interactive simulation platform for predicting 

and visualizing suction-related defects in resin 3D printing. We furthermore demonstrate several 

ways by which users can interact with our simulation predictions in real-time and in the context 

of a real-world 3D printer. While we demonstrate our tool’s object tracking capabilities – which 

rely upon the automation of simulation-generated synthetic data – can generalize to real-world 

data, we note several important limitations. First, our object tracking model breaks down when the 

resemblance of defective models to their corresponding CAD model declines. Moreover, if designs 
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bear a high degree of similarity to one another, we observe our object detection model to incorrectly 

track, and confuse, their respective locations. Finally, while we show our system is able to effectively 

detect delamination failures, failures may also occur whereby the object remains attached to the 

platform, albeit deformed. In future, we will seek to more closely integrate our machine learning 

tracking capabilities with our interactive simulation tool for more seamless user experiences and for 

on-device performance. Currently our system employs iOS-based mobile devices; novel hardware 

interfaces for augmented and mixed reality applications, including head-mounted displays 

(HMDs), promise to further enhance the interactivity of our approach.   
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