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Abstract
Machine-learning-based methods are gaining traction as an alternative to numerical

methods in many engineering applications. Physics-informed neural network (PINN), a self-
supervised method, is particularly attractive with its unique capability of guiding the training
with physical laws written in the forms of partial differential equations. Thermomechanical
simulation for additive manufacturing (AM), a multi-scale, multi-physics problem could
potentially benefit from the use of PINN, as demonstrated in some successful attempts in the
literature. In this work, PINN is applied to different metal AM processes and several challenges
that limit the robustness of PINN are observed. This paper aims to provide a summary of the
observations and a preliminary attempt to account for such observations in order to pave the
path for future work that aims to unleash the full promise of PINN in AM-related applications.

I. Introduction
Additive manufacturing (AM) has been envisaged as a key pillar of Industry 4.0 and

identified as the enabling means for advanced design optimisation techniques (e.g. topology
optimisation (TO)) with its tremendous design freedom offered by the additive nature compared
to the conventional manufacturing methods [1]. However, the additive nature also imposes its
own unique set of challenges for manufacturability – overhang angle constraints, lack of fusion,
thermomechanically-induced defects (e.g. keyholing, spattering etc.), and failures induced by the
deviation from original design during manufacturing (e.g. thermal distortion, blade collision etc.)
[2]. Some challenges are universal for different processes while others are more pertinent to one
process than the other.

The thermally-induced defects and interactions are particularly prominent in metal AM
(MAM) due to the extremely rapid temperature gradients and the use of high energy sources (e.g.
laser beams and electron beams). Print failures may occur if they are not adequately accounted
for and/or when the process parameters are away from the trial-and-tested profiles [3]. Hence,
modelling and predicting the phenomena associated with extreme thermal conditions have been an
active area of research over the years to improve printability and the rate of ‘first-time-right’.

The investigation of the thermally related behaviours in MAM is a complex subject –
it is a multi-physics and multi-scale problem. Depending on the area of interest, the focus of
the investigation ranges from mesoscale to part-scale and the type of analyses can be thermal,
thermomechanical, thermo-metallugical, and/or thermo-fluid [1]. Depending on the scale of the
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method, it could either be information rich but computationally expensive [4, 5] or fast to run but
loses certain levels of detail or requires calibration [6, 7].

Despite the progress in computing power over the year, the current hardware is still
unable to support part-level, multi-scale thermomechanical simulation. In the meantime, the rapid
development of machine learning (ML) based methods has consequently made its way into the field
of AM. Leveraging on its capability ranging from design generation to surrogate modelling, ML
methods are utilised for inverse design, print simulation, defect prediction etc. [8–10].

Physics-informed Neural Network (PINN) was first proposed in 2019 [11]. Unlike typical
ML models, PINN allows the training to be constrained by physical laws expressed in partial
differential equations (PDEs). Hence, it is believed to be less of a black box which is a key concern
over the use of ML for simulation. It has been demonstrated that PINN can be used without
any auxiliary data to solve many common and even challenging PDE problems (e.g. Burger’s
equation, heat transfer, Navier-stokes equation etc.), or solve the inverse problem where the physical
parameters can be approximated by learning from data and guided by the PDEs [12]. In the field
of thermomechanical simulation for AM, there have been a few attempts in applying PINN as an
alternative to numerical simulations. In [13], Liao et al. proposed a hybrid method that predicts
the temperature evolution during the Direct Energy Deposition (DED) process. In [14], Zhu et al.
employed PINN to approach the micro-scale thermal problem where the melt pool dimension is
approximated.

The authors believe that PINN offers a unique advantage over the standard numerical
methods with its mesh-less characteristics in solution and more importantly, the possibility of
obtaining the derivatives of the output with regard to the inputs relatively cheaply for a trained model
– it implies that optimisation of design parameters with regard to the output (e.g. factors affecting
the printability) could be more achievable.

With the positive outlook of PINN in mind, this paper reports the major observations in
applying PINN for temperature field prediction of MAM processes – the key challenges that limit
the transferability of the current PINN-based method from one MAM process to another and some
preliminary results on the attempts to resolve the issue.

The paper is divided into the following sections: Section II introduces the general
methodology in applying PINN to solve the heat transfer during AM; Section III presents the
preliminary results and discussions based on the results that highlight some challenges in the
application of PINN; Section IV presents the future work proposed; and it is concluded with a
compiled summary of the discussion.
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II. Methodology

Fig. 1 Framework of PINN

The problem investigated in this work is an application of PINN in the forward problem.
Figure 1 illustrates the framework of the setup. It takes advantage of the capability of auto-
differentiation [15] of neural networks to obtain the respective terms in the transient heat equation
and boundary condition equations as detailed in Section II.A. Due to the limited time, the investigation
presented in this manuscript is based on a 2D domain. However, work in 3D has been carried out
and will either be presented at the conference or in the journal paper. The PINN-based method for
temperature history is applied to two common MAM processes – Direct Energy Deposition (DED)
and Laser Power Bed Fusion (L-PBF).

A. Governing Equations of Heat Transfer
The basis of this work is transient heat conduction which is governed by the following

equation:

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
+ ∇ · q = 0 (1)

where 𝜌 is the density of the material, 𝐶𝑝 is the specific heat capacity, 𝑇 is temperature and q is heat
flux.

Applying the Fourier’s Law:
q = −𝑘 (𝑇)∇𝑇

Equation 1 in the 2D case can be expended to:

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
− 𝜕𝑘

𝜕𝑇

((
𝜕𝑇

𝜕𝑥

)2
+

(
𝜕𝑇

𝜕𝑦

)2
)
− 𝑘 (𝑇)

(
𝜕2𝑇

𝜕𝑥2 + 𝜕2𝑇

𝜕𝑦2

)
= 0 (2)
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where 𝑘 is the heat conductivity of the material. In many cases, it is assumed that 𝑘 is constant with
temperature and Equation 2 can be further simplified to:

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
− 𝑘

(
𝜕2𝑇

𝜕𝑥2 + 𝜕2𝑇

𝜕𝑦2

)
= 0 (3)

In this work, both the constant heat conductivity and temperature-varying heat conductivity
are implemented to compare and highlight the effect of varying heat conductivity during the large
temperature change during AM process.

For a unique solution, boundary conditions (BC) and initial conditions (IC) have to be
specified.

The boundaries of the domain are of two types: standard boundary and boundary where the
heat source is applied. For the former, depending on the process, either Neumann BC (Equation 4)
or Dirichlet BC (Equation 4) are applied.

Neumann BC – the total heat flux into the system is equal to the sum of the external heat
flux at the boundary:

q · n =
∑︁

𝑞𝑒𝑥𝑡 (4)

where ∑︁
𝑞𝑒𝑥𝑡 = 𝑞𝑐𝑜𝑛𝑣 + 𝑞𝑟𝑎𝑑 = ℎ(𝑇 − 𝑇𝑎𝑚𝑏) + 𝜎Y(𝑇4 − 𝑇4

𝑎𝑚𝑏)

Dirichlet BC – the temperature at the boundary is equal to the reference temperature 𝑇0:

𝑇 (x) = 𝑇0, x ∈ 𝜕Ω (5)

A commonly observed method to apply the heat source is by introducing the heat flux as a
Neumann BC similar to that in Equation 4 with a change in the external heat flux term:∑︁

𝑞𝑒𝑥𝑡 = 𝑞𝑐𝑜𝑛𝑣 + 𝑞𝑟𝑎𝑑 − 𝑞𝑙𝑎𝑠𝑒𝑟

where 𝑞𝑙𝑎𝑠𝑒𝑟 can be modelled with different level of complexity. In this work, the Gaussian model is
employed [16] as Equation 6:

𝑞𝑙𝑎𝑠𝑒𝑟 =
2[𝑃

𝜋𝑟2
𝑏𝑒𝑎𝑚

𝑒𝑥𝑝

(
−2𝑑2

𝑟2
𝑏𝑒𝑎𝑚

)
(6)

where 𝑃 is the laser power, [ is the laser absorptivity, 𝑟𝑏𝑒𝑎𝑚 is the radius of the laser spot, and 𝑑 is
the Euclidean distance between a point and the centre of the laser spot.

In addition to the heat flux approach, the authors also propose introducing the heat source
as a Dirichlet pseudo-boundary condition where a pre-defined field (melt pool (mp)) of temperature
is applied to the domain. It bypasses a key issue in the L-PBF case which will be discussed further
in Section III.A.

𝑇 (x) = 𝑇𝑚𝑝, x ∈ Ω𝑚𝑝 (7)
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The Dirichlet initial condition is applied, assuming the domain is at the ambient temperature
when the simulation starts:

𝑇 |𝑡=0 = 𝑇𝑎𝑚𝑏 (8)

B. Physics Informed Neural Network Construction
The PINN used in this work is based on a fully connected neural network which is one of

the most common types of neural network architecture in PINN applications. The solution from
PINN can be generalised as:

�̂�(x, 𝑡) ≈ 𝑇 (x, 𝑡) (9)

The governing equations for the PDE, Neumann BC, Dirichlet BC, and IC discussed in the
previous section can be written in the following general forms, respectively:

F (𝑢, x, 𝑡) = 𝑢𝑡 + N [𝑢] = 0 (10)

B𝑛𝑒𝑢𝑚 (𝑢, x, 𝑡, _) = N[𝑢] + _ = 0 (11)
B𝑑𝑖𝑟 (𝑢, x, 𝑡) = 𝑢(x, 𝑡) − 𝐵(x, 𝑡) (12)

I(𝑢, x) = 𝑢(x, 0) − 𝐼 (x) (13)
where N indicates a general differential operator, _ is a general representation of known physical
quantities (e.g. sum of all external heat fluxes), 𝐵 is the Dirichlet BC, and 𝐼 is the initial condition.

The individual loss terms for the training of the PINN can subsequently be written as:

L 𝑓 =
1
𝑁 𝑓

𝑁 𝑓∑︁
𝑖=1

���F (
�̂�(x𝑖𝑓 , 𝑡

𝑖
𝑓 ), x

𝑖
𝑓 , 𝑡

𝑖
𝑓

)���2 (14)

L𝑏𝑐 =
1

𝑁𝑏𝑐𝑛𝑒𝑢𝑚

𝑁𝑏𝑐𝑛𝑒𝑢𝑚∑︁
𝑖=1

���B𝑛𝑒𝑢𝑚

(
�̂�(x𝑖𝑏𝑐𝑛𝑒𝑢𝑚 , 𝑡

𝑖
𝑏𝑐𝑛𝑒𝑢𝑚

), x𝑖𝑏𝑐𝑛𝑒𝑢𝑚 , 𝑡
𝑖
𝑏𝑐𝑛𝑒𝑢𝑚

, _𝑖𝑏𝑐𝑛𝑒𝑢𝑚

)���2 +
1

𝑁𝑏𝑐𝑑𝑖𝑟

𝑁𝑏𝑐𝑑𝑖𝑟∑︁
𝑖=1

���B𝑑𝑖𝑟

(
�̂�(x𝑖𝑏𝑐𝑑𝑖𝑟 , 𝑡

𝑖
𝑏𝑐𝑑𝑖𝑟

), x𝑖𝑏𝑐𝑑𝑖𝑟 , 𝑡
𝑖
𝑏𝑐𝑑𝑖𝑟

)���2 (15)

L𝑖𝑐 =
1
𝑁𝑖𝑐

𝑁𝑖𝑐∑︁
𝑖=1

��I (
�̂�(x𝑖𝑖𝑐, 0), x𝑖𝑖𝑐

) ��2 (16)

where 𝑁 𝑓 , 𝑁𝑏𝑐𝑛𝑒𝑢𝑚 , 𝑁𝑏𝑐𝑑𝑖𝑟 , and 𝑁𝑖𝑐 are the number of collocation points sampled to compute the
PDE, BC, and IC losses.

The total loss used for the training of the PINN is obtained by assembling the individual
loss terms through a weighted sum:

L𝑡𝑜𝑡𝑎𝑙 = 𝑤 𝑓 ∗ L 𝑓 + 𝑤𝑏𝑐 ∗ L𝑏𝑐 + 𝑤𝑖𝑐 ∗ L𝑖𝑐 (17)

It should be noted that should auxiliary data be included, an additional loss term for data
can be added similarly. It is omitted in this report as no auxiliary data is used.
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III. Preliminary Results and Discussion
Unless otherwise specified, the following configurations are applied for the DED and L-PBF

cases, respectively.

Table 1 Basic parameters settings

DED L-PBF

Heat Flux Source

rlaser [mm] 1.5 0.08
vlaser [mm/s] 10 1000

P [W] 500 200
Output Transform 3000 ∗ 𝑆𝑜 𝑓 𝑡𝑃𝑙𝑢𝑠() + 𝑇𝑎𝑚𝑏

Melt Pool Source

lmp [mm] / 0.522
dmp [mm] / 0.076

vmp [mm/s] / 1000
Tmp [K] / 3000

Output Transform /
Temperature

Normalisation

A. Effect of scale

(a) Snapshot of output (t=1.33s) (b) Loss history

Fig. 2 DED, Heat Flux Source, with Output Transform
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(a) Snapshot of output (t=1.33s) (b) Loss history

Fig. 3 L-PBF, Heat Flux Source (𝑟𝑙𝑎𝑠𝑒𝑟 = 50`𝑚, 𝑣𝑙𝑎𝑠𝑒𝑟 = 10𝑚𝑚/𝑠), with Output Transform

(a) Snapshot of output (t=0.0133s) (b) Loss history

(c) Snapshot of output (t=0.0133s) (d) Loss history

Fig. 4 L-PBF, Heat Flux Source, with Output Transform, 40×6mm Domain
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(a) Snapshot of output (t=0.00267s) (b) Loss history

(c) Snapshot of output (t=0.00267s) (d) Loss history

Fig. 5 L-PBF, Heat Flux Source, with Output Transform, 10×3mm Domain

One major observation from the experiment is the sensitivity of training to scale (both
spatial and temporal). While the model can be trained relatively well for the DED process, as
exemplified in both [13] and the outputs shown in Figure 2, the same model will not produce
correct results when the process is changed to L-PBF, despite that the few changes between the two
processes are just the laser spot size, laser travel speed, laser power from modelling’s perspective,
and the boundary conditions for the sides.

By comparing the results in Figure 2 and 3, it can be concluded that the most important
factor that affects the training is the length scale of the laser spot size – when the laser spot size
becomes too small, the heat diffusion can no longer be captured and the peak temperature becomes
unrealistically high. Such observation is analogous to the instability in numerical schemes where the
solution does not converge when the spatial and temporal resolutions are too coarse to capture the
features in the simulation. However, refining the collocation points (analogues to mesh refinement
in numerical methods) does not necessarily always lead to convergence in the context of PINN.
Besides the common problem as that for numerical methods where the number of collocation points
(or mesh resolution) cannot be refined indefinitely, PINN will be affected by the distribution of the
collocation points. It implies that merely increasing the number of collocation points will not always
improve the results as the spatial variation of the error values will be compressed and lost during
the L2-loss computation which is subsequently used to guide the training of the NN-approximated
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function. Hence, strategically distributing the collocation points at the more critical areas (i.e. where
the heat source is) becomes another critical tuning process. The comparison between Figure 4 and 5
indicates that simply reducing the domain size or increasing the number of collocation points does
not necessarily lead to improvement in results.

Fig. 6 Variation of heat conductivity with temperature [17]

(a) Constant k - Snapshot of output (t=1.33s) (b) Constant k - Loss history
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(c) Varying k - Snapshot of output (t=1.33s) (d) Varying k - Loss history

Fig. 7 DED, Heat Flux Source, with Output Transform

In addition to tuning the collocation points, a more fundamental reason for the failure of
PINN in the cases of L-PBF could potentially be the inaccurate physics that is embedded in the
training. Equation 1 describes the heat transfer through conduction. While it is generally true
when the laser (or other beams) spot size is large (i.e. less concentrated heat and hence a melt pool
size that is comparable to the laser spot size), it is no longer accurate when the laser spot size is
much smaller than the melt pool size – convection of the molten metal in the melt pool has a more
prominent role and has to be accounted for. The characteristics of PINN being constrained by the
physical PDE(s) in the loss computation imply that the solution from PINN will not be accurate
when the PDE(s) constraining the training is/are incorrect. It is especially the case in forward
problems where no auxiliary experimental data is given. One potential solution besides explicitly
modelling the convection in the melt pool is to obtain an ‘effective heat conductivity’ that accounts
for the heat transfer in the melt pool [18]. However, the determination of the temperature-dependent,
process-dependent parameter requires extensive experiments and calibration which is beyond the
scope of this work. Instead, the values from ANSYS material database (illustrated in Figure 6) are
used to demonstrate the effect of accounting for the additional heat transfer. As shown in Figure 7,
the peak temperature is reduced and the result is improved. It should, however, be acknowledged
that such a method will not improve the robustness of using PINN to solve for the temperature
history with the heat flux as the heat input if frequent calibration is required.

B. Output Transform
Another key observation is the critical role of output transform. In [13], it is mentioned that

‘... the Softplus function is used to ensure a positive output ...’. Upon closer inspection of the code
available on GitHub, a coefficient of 3000 is applied to the output transform. It is hypothesised that
the coefficient is put in place to balance the temperature-gradient-based losses and temperature-based
losses to similar orders of magnitude as it is observed that a large difference in the order of magnitude
between losses could prevent training as detailed in Section III.C.
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(a) Snapshot of output (t=1.33s)
3000 ∗ 𝑆𝑜 𝑓 𝑡𝑃𝑙𝑢𝑠() + 𝑇𝑎𝑚𝑏

(b) Loss history
3000 ∗ 𝑆𝑜 𝑓 𝑡𝑃𝑙𝑢𝑠() + 𝑇𝑎𝑚𝑏

(c) Snapshot of output (t=1.33s)
𝑆𝑜 𝑓 𝑡𝑃𝑙𝑢𝑠() + 𝑇𝑎𝑚𝑏

(d) Loss history
𝑆𝑜 𝑓 𝑡𝑃𝑙𝑢𝑠() + 𝑇𝑎𝑚𝑏

(e) Snapshot of output (t=1.33s)
No Output Transform

(f) Loss history
No Output Transform

Fig. 8 DED, Heat Flux Source

Figure 8 illustrate the effect of the SoftPlus() based output transform. It is evident that the
transform or more importantly, the coefficient of the transform plays a critical role in ensuring the
successful convergence of the result. However, the authors were unable to conclude a systematic
method of determining the coefficient for different cases. It implies that the value of the coefficient
could become an additional hyperparameter which is less ideal. Figure 9 illustrates the effect of
setting the coefficient based on the difference between the temperature-gradient-based and the
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temperature-based errors. The effect is not significant and more investigation is required.

(a) Snapshot of output (t=0.0133s)
3000 ∗ 𝑆𝑜 𝑓 𝑡𝑃𝑙𝑢𝑠() + 𝑇𝑎𝑚𝑏

(b) Loss history
3000 ∗ 𝑆𝑜 𝑓 𝑡𝑃𝑙𝑢𝑠() + 𝑇𝑎𝑚𝑏

(c) Snapshot of output (t=0.0133s)
30000 ∗ 𝑆𝑜 𝑓 𝑡𝑃𝑙𝑢𝑠() + 𝑇𝑎𝑚𝑏

(d) Loss history
30000 ∗ 𝑆𝑜 𝑓 𝑡𝑃𝑙𝑢𝑠() + 𝑇𝑎𝑚𝑏

Fig. 9 L-PBF, Heat Flux Source

C. Indicator of Successful Training
At the core of PINN training, it is a multi-objective optimisation of the various loss terms

that are governed either by the physical description (i.e. in the form of PDEs) or auxiliary data.
However, depending on the setup of the problem and the validity of assumptions, the losses could be
computed from different sets of collocation points. It implies that the different physical phenomena
(e.g. heat flux from the boundary and heat transfer within the body) could be entirely uncoupled and
the model is trained to fit them discretely in the extreme cases. In these cases, the model essentially
converges to a solution that is analogous to a trivial solution.

Hence, an important indicator for the potential successful training is that the losses converge
to a similar order of magnitude before decreasing together, as illustrated by the loss history plots in
the previous sections. Hence, there are at least two factors dictating the harmonious convergence of
losses – the distribution of the collocation points as well as the magnitude of the different losses.
The former is intuitive as the spatiotemporally close collocation points imply better overlapping
of the prescribed physical equations to be satisfied. It should be noted that collocation points do
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not have to necessarily overlap as long as the gaps between domains are not too big, empirically
speaking. When there is a large discrepancy in the magnitude of losses, there is a limit beyond which
the lower loss(es) (e.g. the PDE loss) will not rise sufficiently to the similar order of magnitude as
the higher loss(es) (e.g. the BC loss). The model will then converge to a local minimum where the
training for different loss terms becomes uncoupled. The authors attribute the observation to the
error being saturated when there is a large discrepancy, preventing further training.

D. Soft vs. Hard Constraint

(a) Snapshot of output (t=0.0133s)
soft constraint

(b) Loss history
soft constraint

(c) Snapshot of output (t=0.0133s)
hard constraint

(d) Loss history
hard constraint

Fig. 10 L-PBF, Melt Pool Source

Applying hard constraints is another method to enforce the boundary conditions in PINN.
As the name suggests, instead of using loss terms for the BC to guide the training which will not
guarantee the BC being fully met, hard constraints can be introduced by modifying the model
architecture (commonly done through input transform or output transform) such that the boundary
conditions are always met – usually through shape functions. It has been demonstrated to reduce
the training effort in many cases [19]. However, as shown in Figure 10, imposing hard constraints
does not necessarily lead to improved training or outputs. More investigation is hence needed to
determine the cause.
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IV. Conclusion
The discussion from the previous sections highlights that training a PINN to solve for the

temperature history during MAM is not a trivial task, especially for a training procedure that is
robust enough for different MAM processes. Besides the common ordeal of hyperparameter tuning
that is present in almost all ML-based applications, the self-supervising nature of solving a forward
problem using PINN, and the wide spectrum of loss terms imposes additional challenges. The
actions that can be taken to improve the convergence can be summaries into three main classes. It
should also be highlighted that actions taken in one class could augment or negate the effect of those
in another.

1. Collocation Point: As discussed in Section III.A and III.C, the density and distribution
of collocation points can both have a significant impact on the outcome of the training. It is also
widely acknowledged in the literature [11, 20]. However, the determination of the exact number
of collocation points is essentially trial and error. A more systematic approach (e.g. adaptive
collocation refinement) could be employed to improve the effectiveness and efficiency. It should
also be acknowledged that the distribution of collocation points can have an impact on the weight of
the different losses which is a key element in hyperparameter tuning.

2. Loss Hamonisation: The phenomenon described in Section III.C highlights a common
sight in PINN where a spectrum of loss magnitude could be present. Therefore, it is ideal to reduce
the difference in magnitude between the losses. As demonstrated, the application of output transform
such as that in [13] could be an effective solution but might be only effective for the specific problem.
There have been some theoretical attempts made to account for the causes of the observation and
consequently propose strategies to fix the issue [21, 22]. More investigations on the effectiveness of
such strategies will be conducted.

3. Hyperparameter Tuning: Similar to any other ML application, hyperparameter tuning
plays an important role in improving the training process and even affecting the outcome of the
training. The multi-objective characteristics of PINN imply that the weights for the individual loss
terms can act as hyperparameters that directly affect the training process as indicated in Equation 17.
The tuning of the weights should be strategic since it will affect the effect of changing collocations
and controlling the losses’ magnitude.

Hence, as a way forward to reap the perceived benefit of PINN-based solutions, the focus of
the upcoming work will be more thorough investigations on strategies to disentangle the possible
means to improve the convergence and robustness of the PINN models for different MAM processes,
as well as methodologies to scale up the model for more complex geometries and scan patterns.
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