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Abstract 

Computed axial lithography (CAL) is an additive manufacturing process that projects light 

patterns onto a rotating vial of photosensitive resin to print the desired object through the 

superposition of light energy. Currently, these projection patterns are generated by voxelizing a 

target object from an STL or another 3D file format and applying the Radon transform through an 

iterative optimization process. In this work, a voxel-free method to generate projection sets is 

proposed. Here, the Radon transform is performed directly on a non-voxelized target object by 

calculating intersections between incident rays of light and triangles of the original STL surface 

mesh. Initial simulated results show a more consistent light dose at the surface of the object, 

indicating improved surface quality and smoothness. Additionally, simulations show a more 

uniform object interior using the proposed method as well as the potential for improved speed 

scaling with object size. 

Introduction 

Computed Axial Lithography (CAL) is a volumetric additive manufacturing (VAM) 

process that projects a series of images through a rotating volume of photosensitive resin to print 

parts [1]. These projections are generated so that the accumulated light dose in the interior regions 

of the desired volume surpasses the threshold needed to cure the resin, while the exterior regions 

do not. These projection images are currently obtained by voxelizing a target geometry from a 3D 

object file such as an STL and applying the Radon transform to the voxelized target, resulting in a 

forward projection from object space to projection space. 

The voxelization step results in a discretized target, which limits the part resolution and 

surface smoothness across different geometries. Additionally, the time and memory required by 

the CAL projection-generation process scale up drastically with the number of voxels in the target 

geometry. For a given pixel size, the memory required by a projection set with a fixed number of 

2D images scales with the maximum radius (in the XY plane) of the part and the height of the part. 

The memory required by the voxelized target, however, scales with the square of this radius of the 

part as well as the height of the part.  Thus, the voxelized target is a significant barrier to scaling 

up part sizes in CAL. In addition, the voxelization process creates additional overhead in the 

overall time taken to generate projection sets. 

While work has been done to improve the speed of this voxelization process through 

complexity-based adaptive voxelization [2], this work proposes a method for bypassing the 

voxelization of the target altogether. Ray tracing is used to find the intersection points between 

incident rays of light and a surface mesh to take the Radon transform directly from an STL file. 
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While the Radon transform is mathematically continuous [3], most implementations of the Radon 

transform are discretized. This work removes the discretization in the calculation of the line 

integrals present in the Radon transform and is the first to do so in the VAM sphere. Note that the 

resulting projection images are still pixelated, with maximum resolution defined by the size and 

number of pixels in the projector’s digital micromirror device (DMD). While the method removes 

the voxelization in the forward projection, back-projected reconstructions used for visual 

comparison are still voxelized. The algorithm for this approach is presented, and its effects on 

surface accuracy and speed are compared to the state-of-the-art process across multiple geometries. 

 

Algorithm and Testing Methodology 

 

The Radon transform takes the line integral of a function, in this case, the target object, 

over a set of lines defined in the 2D space. This set is defined as the perpendicular lines to a 

projection plane that pass through the center of each pixel, defining the value at each pixel in the 

image. This image is taken for multiple projection angles around the object, resulting in a 

projection set, also called a sinogram. This novel voxel-free approach is performed by conducting 

ray-triangle intersections through the surface mesh provided in an STL file. For each angle, rays 

are traced through the centers of pixels in a 2D grid, perpendicular to that grid. The intersection 

length between the ray and the object file is determined, defining the line integral directly using 

the STL mesh. This intersection length is then stored in that pixel location for the given angle. This 

process is repeated for all projection angles, obtaining a sinogram of dimensions (R, θ, Z), where 

R is the number of pixels spanning the maximum diameter of the part, θ is the number of projection 

angles in one rotation, and Z is the number of pixels spanning the height of the part. The results 

derived here make use of the Möller–Trumbore ray-triangle intersection [4] algorithm [5], 

simplified to return only the “t” values, which are the distances of the intersection points from the 

ray origin, rather than the actual intersection coordinates. A MATLAB implementation of the 

section following the definition of all ray origins and directions is provided below. 

 
%origins and directions have been defined for R, theta, Z. Theta from [0, 180) 
proj=zeros(rnum*angles*znum,1); 
parfor i=1:length(orig) 

t = RayTriangleIntersection(orig(i,:), dir(i,:), v1, v2, v3); 
% v1, v2, and v3 are the vectorized vertex XYZ coordinates of all triangles in 

the STL 
t = uniquetol(t,1e-7,'DataScale',1); %filter out duplicate intersections from 

precision error, exact tolerance value may need to be adjusted 
    for j=1:2:numel(t) 
        proj(i)=proj(i)+t(j+1)-t(j); %every other intersection brings the ray into 
the part 
    end 
end 
proj=reshape(proj,[rnum,180,znum]); 
proj=cat(proj, flip(proj,1)); %fill out angles from [180, 360) 

 

The algorithm outlined above replaces the voxelization and voxelized Radon transform 

processes in the current CAL process with a single Radon transform process. However, any 

implementation of the Radon transform requires a correction filter due to the oversampling of low 

frequencies [6]. This filter introduces negative intensities into the projection images that cannot be 
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realized by a projector. As a result, several optimization algorithms have been created around this 

issue [1], [7]. This paper presents results using perhaps the simplest method of applying a linear 

offset by some percentage of the most negative value and setting all remaining negative values in 

the projection to zero (Eq. 1).  

 

𝑃𝑟𝑜𝑗 = max⁡(0, 𝑃𝑟𝑜𝑗 − 𝐶 ∗ min(𝑃𝑟𝑜𝑗))   (Eq. 1) 

where 𝑃𝑟𝑜𝑗 is the projection set from the algorithm with dimensions⁡(𝑅, 𝜃, 𝑍) 
𝐶 is some constant between 0 and 1 

 

While numerous window functions can be applied to the Ram-Lak (ramp) filter needed in 

the FBP process [8], past work indicates that of the windows built-in to the MATLAB iradon 

function, a Hann or Hamming window yield the best reconstruction results [6]. Accordingly, this 

work applied the Ram-Lak filter with a Hamming window to all projections. Results are compared 

for both the “perfect” projections with negative intensities included and the “clipped” projections 

with no negative intensities. For simplicity, the clipped projections in this work make no use of 

the linear offset and simply set all negative intensities resulting from the filter to zero (𝐶 = 0). 

Reconstructed objects showing the accumulated light dose were created by using the inverse 

Radon transform to perform back-projections from the projection space to the object space, 

completing the filtered back-projection (FBP) process and tomographic reconstruction of the 

object [9]. This was done for both clipped and perfect projections using the inverse Radon 

transform provided in the ASTRA toolbox [10]. Vertical and horizontal cross-sections of these 

objects were then visually compared. These comparisons were made for five pixel sizes (28.8 µm, 

57.6 µm, 144 µm, 288 µm, and 576 µm) across three geometries: a 4 mm thick plano-convex lens 

with a 12.7 mm diameter (modeled after ThorLabs LA1074) on top of a 2 mm tall cylindrical 

holder of 10 mm diameter, a cube with a 10 mm side length 10, and a 20.2 mm tall model of 

Rodin’s The Thinker (Figure 1). All sinograms were created with 360 projection angles over a full 

rotation. 

 

 
Figure 1. Tested STL Structures 

Figure 1 depicts the STL representations of the geometries rather than the exact CAD 

model as the STL is the actual input into all algorithms tested. For the lens, both coarsely (22 µm 

tolerance) and finely (8 µm tolerance) meshed STLs were generated to see the effects of STL 

fineness on both surface accuracy and speed of both the new and current algorithms. For the cube, 

tests were conducted with the faces of the cube facing the primary X, Y, and Z, axes (“unrotated 

cube”), as well as with the cube rotated 45° in the XY plane.  

961



Each geometry was chosen for distinct features. The lens is a geometry that requires high 

surface accuracy and investigates the differences between methods on an object of significant 

curvature. The cube tests the sensitivity of the two projection methods to rotation, as it is expected 

that both methods can perfectly locate the edge of the unrotated cube, but not the rotated cube due 

to the discretization of the pixels. The Thinker is used to compare performance for a complicated 

geometry with more variation in feature size and curvature. 

In addition to reconstruction accuracy, the time to obtain the projection sets was 

benchmarked in MATLAB and compared across these processes for all geometries and pixel sizes 

tested. The new process presented above was run on 12 parallel CPU cores, while the voxelized 

method was run in two versions, one on 12 parallel CPU cores [1], and the other using the ASTRA 

toolbox [10] with GPU acceleration. While these two implementations of the voxelized transform 

differ slightly, maximum differences in voxel-wise comparisons of reconstructed dose for these 

objects are below 5% and are visually nearly identical. 

 

Results 

 

Vertical and horizontal cross-sections for perfect and clipped reconstructions of five STL 

structures (coarsely and finely meshed LA1074 lenses, unrotated and rotated cube, and The 

Thinker) were compared for both voxelized and voxel-free projection methods. Printing resolution 

in CAL is mostly concerned with the reconstruction accuracy at the surface of the object. Thus, 

visual comparisons will focus primarily on the smoothness and gradient of the dose of light 

delivered at the surface, although comments will also be made on differences in the interior dose. 

All reconstructions have been normalized so that the maximum dose is one. 

 

Vertical cross-sections for perfect reconstructions of the delivered dose for the finely 

meshed lens on the highest resolution (28.8 µm pixel size) are shown below for both voxel-free 

and voxelized Radon transform methods (Figure 2). 

 

 
Figure 2. Vertical cross sections of “perfect” FBP reconstructions of the LA1074 lens with different forward 

projection methods. Top – voxel-free, bottom – voxelized 
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Differences in dose near the surface of the object can be seen between the two methods, 

although they are visually minor. We can further look at comparisons using reconstructions of the 

clipped projections that set negative intensities to zero. This depicts a possible configuration when 

printing as the perfect reconstructions cannot be simply achieved by projecting the original images 

due to the presence of negative intensities resulting from the Ram-Lak filter. This comparison is 

provided below in Figure 3. 

 
Figure 3. Vertical cross sections of “clipped” FBP reconstructions of the LA1074 lens with different 

forward projection methods. Top – voxel-free, middle – voxel-free, colorbar adjusted, bottom – voxelized 

 One immediate difference is that the voxel-free method delivers a higher relative light dose 

to the interior of the lens. To make comparisons of the surface easier, the colorbar for the voxel-

free method was adjusted so that the interior dose better matches the result from the voxelized 

method. While differences in relative interior dose are not inherently a concern, the lower relative 

dose in the voxelized reconstruction is caused by individual “hot spots” of higher dose seen at the 

reconstruction surface that may cause non-uniform curing. The voxel-free transform creates a 

smoother dose at the surface, although the gradient between in-part and out-of-part doses is similar. 

The voxelized method exhibits periodic layers that are larger than desired and jut out from the bulk 
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volume. Some of these protrusions have particularly high doses exceeding the average dose within 

the object, leading to a lower relative interior dose. Additionally, the voxel-free method also 

produces a smoother interior dose free of the vertical banding seen in the lower parts of the lens 

with the voxelized method. This result can be further analyzed by looking at reconstructions of 

individual layers. Perfect and clipped reconstructions of the center layer of the lens are seen in 

Figures 4 and 5 below. 

 

 
Figure 4. Horizontal cross sections of “perfect” FBP reconstructions of the LA1074 lens with different 

forward projection methods. Top – voxel-free, bottom – voxelized 

 Figure 4 depicts a layer in the wider cylindrical portion of the lens. The red line shows the 

desired location of the surface. This line is based on the desired CAD geometry, and not the input 

STL. However, the STL tolerance of 8 µm is much finer than a single pixel so comparisons to the 

line can still be made. The voxel-free method exhibits better conformity to the desired shape, 

particularly in the upper part of the zoomed-in region.  As with the vertical cross sections, the 

differences are more noticeable in the clipped reconstruction, as seen in Figure 5 below.  
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Figure 5. Horizontal cross sections of “clipped” FBP reconstructions of the LA1074 lens with different 

forward projection methods. Top – voxel-free, middle – voxel-free, colorbar adjusted, bottom – voxelized 

 As seen in the vertical cross sections, the voxel-free method produces a higher, smoother 

relative light dose in the interior of the object. In the clipped reconstructions, the difference in 

surface smoothness is apparent, with the voxelized method showing protrusions that are potentially 

consistent with what is seen in Figure 3. As with the vertical cross sections, the voxel-free method 

shows a smoother dose at the surface of the object, and a similar gradient between the in-part and 

out-of-part dose. 

 

These tests were conducted for the lens across five different pixel sizes and two different 

STL resolutions. While Figures 2-5 presents results from the finely meshed STL at the smallest 

pixel size tested (28.8 µm), Figure 6 below shows reconstructions of the center layer of the lens 

for the coarsely meshed STL (22 µm tolerance) at the same pixel size, as well as for the finely 

meshed STL (8 µm tolerance) at ten times this pixel size. 
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Figure 6. “Clipped” dose reconstructions of horizontal cross sections for different STL meshes and pixel 
sizes. (a) Voxel-free, 28.8 µm pixel size, coarse STL, (b) Voxelized, 28.8 µm pixel size, coarse STL, (c) 

Voxel-free, 288 µm pixel size, fine STL, (c) Voxelized, 288 µm pixel size, fine STL 

 Figure 6 shows that the differences seen in Figures 2-5 are still seen at other pixel sizes and 

STL mesh fineness, albeit to varying degrees. The smoothness and gradient of the dose at the 

object’s surface are similar for the coarsely meshed STL in Figures 6a and 6b when compared to 

the earlier figures using the finely meshed STL. This is especially true for the voxelized image in 

6b, possibly due to the tolerance of the coarse STL mesh still being smaller than the voxel size. 

Differences between the voxel-free and voxelized methods are more apparent at the larger pixel 

size, with the voxel-free method maintaining a smoother surface with better conformity to the 

desired geometry. 

 

 These comparisons were also made for two configurations of a 10 mm side-length cube, 

one configuration with the faces towards the primary axis, and another with the cube rotated 45° 

in the XY plane. This was done to investigate the sensitivity of both methods to rotation. The 

hypothesis is that the voxelized method can perfectly locate the surface in the first case but may 

struggle more with the second. Reconstructions of a horizontal cross-section for the unrotated cube 

are shown in Figure 7 below. As with Figures 2-5, the pixel size used was 28.8 µm. 
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Figure 7. Horizontal cross sections of “perfect” FBP reconstructions of the unrotated cube with different 

forward projection methods. Top – Voxel-free, bottom – voxelized 

 In this case, the surface is well-defined in both methods and matches perfectly with a line 

of voxels. Despite differences in average dose, no individual hot spots are visible. This comparison 

is also made for the rotated cube in Figure 8. 
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Figure 8. Horizontal cross sections of “perfect” FBP reconstructions of the rotated cube with different 

forward projection methods. Top – Voxel-free, bottom – voxelized 

 Unlike in Figure 7, the surface of the rotated cube does not align cleanly with a line of 

voxels in either method.  Despite this effect, the voxel-free method maintains the symmetry of the 

cube in all directions. The voxelized method, however, creates a half-voxel shift of the vertices in 

opposite directions, leading to a longer-than-desired object in one direction and a shorter-than-

desired object in the other. As with Figure 7, the voxel-free method creates a lower average relative 

dose, but no clear hot spots are visible. 

 

 Lastly, projections and reconstructions were taken for Rodin’s The Thinker to investigate 

performance for more complex geometries. Both perfect and clipped reconstructions of a vertical 

cross-section are depicted in Figure 9. As before, the pixel size used was 28.8 µm.  
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Figure 9. Vertical cross sections of FBP reconstructions of The Thinker with different forward projection 
methods (a) Voxel-free perfect reconstruction (b) Voxelized perfect reconstruction (c) Voxel-free clipped 

reconstruction (d) Voxelized clipped reconstruction 

 Comparing the voxel-free and voxelized reconstructions for The Thinker, the voxel-free 

reconstruction shows smoother surfaces for both perfect and clipped reconstructions. The gradient 

of the dose at the surface is similar for the two methods. The interior dose is slightly lower for the 

voxel-free method in this geometry, but as with the cube, no unique hot spots are visible. Compared 

to the lens, the interior of the object is less uniform in dose across both methods. As with the lens, 

we can also look at reconstructions of a horizontal layer, shown in Figure 10. 
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Figure 10. Horizontal cross-sections of FBP reconstructions of The Thinker with different forward 
projection methods (a) Voxel-free perfect reconstruction (b) Voxelized perfect reconstruction (c) Voxel-

free clipped reconstruction (d) Voxelized clipped reconstruction 

 The differences seen in Figure 9 remain when looking at the horizontal cross-sections, with  

the voxel-free method producing a noticeably smoother result. 

 

 In addition to reconstruction accuracy comparisons, the time taken for each method was 

compared for all five STLs and five pixel sizes. All code was run in MATLAB and two methods 

for generating the voxelized results were included, one using the CPU, and the other using GPU 

acceleration. A log-log plot of the time to generate the projection sets is plotted against 1/(voxel 

side length). The x-axis in this case is nearly proportional to the number of pixels in each direction 

of the projections, as well as the number of voxels in each direction for the reconstructed object. 

These results are shown below in Figure 11. 
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Figure 11. Time vs 1/side length comparisons 

 In its current implementation, the absolute speed of the voxel-free method is slower in all 

cases tested. However, the slope of the log-log plot is lower in all cases for the voxel-free method 

once getting to smaller voxel side lengths. The CPU method for the voxelized transform is slower 

than the GPU one, especially as voxel side lengths decrease. Differences in computation times are 

proportionally similar for both methods when comparing coarse and fine STLs of the LA1074 lens. 

For the cube, the rotated cube takes longer than the unrotated one in the voxelized methods but is 

effectively the same for the voxel-free method. The overall difference in time between voxel-free 

and voxelized methods is the greatest for The Thinker. 
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Discussion 

 

Successful printing in CAL is often concerned with accurately controlling the light dose at 

the surface of the object. The interior of a printed object often cures before the surface due to the 

greater competition for free-radical quenching oxygen that occurs when all surrounding material 

is receiving a substantial light dose. The reconstructions presented in this work does not account 

for this effect, so we expect the surface of the object to solidify last. Ideal characteristics of 

reconstructed objects include a smooth surface with a high spatial dose gradient so that the surface 

of the part is well-formed without any over-curing or under-curing in the vicinity and with limited 

sensitivity to processing variations. While the focus is largely on the surface of the object, interior 

dose uniformity may lead to more simultaneous curing of the part, potentially reducing striations 

and deformities, although this needs to be tested. Note that since all reconstructions are normalized 

so the highest dose is one, a higher relative dose may not result in a higher absolute dose. Further 

testing can be done to investigate difference in absolute dose, which affects the print time of objects. 

 

Across all geometries, the voxel-free method yielded a smoother surface with better 

conformity to the desired geometry, while the gradient of dose at the surface was similar in all 

cases for the two methods. In the lens, the interior dose was smoother in the clipped reconstructions 

with the voxel-free method, although this was not consistently shown in other geometries. 

Individual hot spots can be seen at the surface of the lens for the voxelized method. This may cause 

uneven curing when printing. A similar effect is seen in clipped reconstructions for both methods 

in The Thinker, although the higher dose areas are largely still in the interior of the object. 

 

The voxelized method also produced a slightly larger reconstruction in some areas of the 

lens, as well as an offset result in the cube. This may be explained by voxelization precision. 

Horizontal cross sections of a voxelized target for the lens and rotated cube are shown in Figure 

12 below. For ease of visualization, a higher voxel size of 288 µm has been used.  

 
Figure 12. Voxelized target horizontal cross sections. (a) LA1074 lens (b) rotated cube. 288 µm pixel size 

 The above targets explain some of the errors seen in the voxelized method. The voxelizer 

used counts a voxel as in-part if any part of the voxel is in the interior of the desired geometry. 

Thus, voxels with even a small section in part are set to one in the target, resulting in a slightly 
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larger target in some areas, as seen in Figure 12a. While the voxel-free Radon transform still results 

in a pixelated image set and voxelized reconstruction, it can perfectly calculate the intersection 

length through one line instead of being discretized to a voxel length. For the cube, the offset result 

seen in Figure 8 is again shown in Figure 12b. 

 

Comparing the speed of the methods, the voxel-free method is currently slower in all tested 

cases. However, the slope of the log-log plot is lower for the voxel-free method when getting to 

smaller and smaller voxel sizes across all STLs. The time required for the voxel-free method scales 

closely with the inverse square of the voxel size as the number of rays traced through the object is 

proportional to the radius of the object and the height of the object in voxel counts. Note that 

reducing pixel size has the same effect on time as proportionately increasing the object size. This 

is because the targets and projection sets have an equivalent number of pixels/voxels in both cases. 

This was also verified by obtaining projection sets for a half-size Thinker at 288 µm and 144 µm 

pixel sizes, which took the same amount of time as the full-size Thinker at 576 µm and 288 µm 

pixel sizes respectively. Thus, this scaling aspect is important as the size of objects is increased. 

Additionally, the voxel-free method is invariant in speed with different object rotations in the XY 

plane as it uses the maximum vector norm in the XY plane of the STL as its radius, while the 

voxelized method uses the maximum dimensions in the X and Y directions.  

 

While the voxel-free method uses a ray-triangle intersection routine that calculates the 

intersections of one ray to all triangles in the STL at once, it still scales less favorably with the 

number of triangles in the STL than the voxelized method. This is less of a concern for scaling up 

sizes in CAL since the minimum feature sizes of an object scale proportionally to the object size. 

Thus, the STL tolerance may be scaled up accordingly, maintaining a similar number of triangles 

in the STL for a given geometry. However, as the complexity of geometries increases, increasing 

the number of triangles, the voxel-free method will lag behind the voxelized method more in its 

current implementation.  

 

Although formal tests of memory were not conducted in this work, the voxel-free method 

may be beneficial in this regard. The voxelized target has the same dimensions as the reconstructed 

object, that is (R, R, Z), while the projection sets are in dimension (R, θ, Z). Thus, if the number 

of projections remains the same, the size of the voxelized target quickly outgrows that of the 

projection sets as object sizes increase. Even the lens, which is the smallest structure tested, has 

target dimensions of (623, 623, 208) and sinogram dimensions of (623, 360, 208) at the 28.8 µm 

pixel size. Thus, the lack of a voxelized target may result in a large reduction in memory required. 

However, the voxel-free method, in its current form, does use two other matrices of size (R, θ/2, 

Z) for the origin and direction matrices of the rays. In addition, θ may also need to be increased as 

the size of the object increases to maintain the desired resolution. Irrespective of the size of the 

object, the voxel-free method also uses the maximum vector norm in the XY plane as the radius 

instead of calculating from the maximum dimensions in the X and Y directions, decreasing the 

value of R by up to 21/2-1, or 41%. In the results presented here, the projections from the voxel-

free method were padded to match the dimensions of the voxelized method for comparison. 
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Conclusion/Future Work 

 

The voxel-free Radon transform presented in this paper produces projections that create 

smoother reconstructions with better conformity to the desired geometry. Additionally, this 

method potentially scales better with object size when it comes to speed. Since the voxel-free 

method is slower in the tested cases than traditional methods, work may also be done to improve 

the execution time of the code, possibly using GPU acceleration or an adaptive grid fineness. As 

accuracy comparisons were made visually in this work, future work can attempt to quantify the 

critical parameters of average dose, dose gradient, and standard deviation of dose at the surface of 

the object in a non-voxelized manner, such as at the vertices and centroids of the input STL file. 

Additionally, comparisons here used the simplest form of clipping the negative intensities to zero. 

Future work may experiment with different linear offsets in addition to this clipping, as well as a 

new field of voxel-free optimization methods. 
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