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Abstract 

This paper presents the development of a dynamic model of an FFF 3-D printer gantry (2-D) that is useful 

for developing an open-loop predictive control system. This predictive control system based on the mechanics of the 

system will help to reduce manufacturing defects by minimizing position error in the printing head. A six-dimensional 

non-linear dynamic model of the printer gantry was derived using Newton-Euler method, followed by a Lagrangian 

dynamic model to gain additional insight on energy transfer aspects and model validation. A state-space model of the 

full system was developed for positioning and control. A detailed case-study of an example printer was completed in 

MATLAB-Simulink to demonstrate the system model with comparisons from the analytical model and physical 

characterization on a real printer. Finally, a few examples of passive control designs were illustrated for predictive 

control development. It was concluded that dynamics-based predictive control is a promising, realistic, and practical 

approach to controlling the dynamic error and dimensional error commonly seen with FFF machines. 
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1. Introduction

Additive manufacturing (AM) technologies have become a fixture in modern manufacturing technology, 

becoming widely used and removed from the early “rapid prototyping” efforts. The fused filament fabrication (FFF), 

most commonly known as fused deposition modeling (FDM), process is one of the most widespread and widely 

recognized. As new uses and industries push the current limits of AM, the inadequacies and disadvantages of the 

processes become ever more apparent. The cost and effort involved in inventing and developing new processes is 

massive, so it is far more effective and efficient to attempt to address problems with the currently available processes 

and improve them.  

Figure 1: (a-b) Cartesian frame and (c-d) delta-frame printer designs 
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The FFF systems themselves can be configured in a variety of ways, the only essential mechanical 

requirement being that the extruder die must be held close to a strong and secure build surface to build the part on. 

This is typically done using a cartesian-based 3-axis system but is also done using a delta robot configuration [1-4]; 

multi-axis robotic arms and several other highly specialized systems have been successfully used in the lab, but these 

are typically considered a different class of manufacturing process and are not available for most applications [5-8]. 

Figure 1 shows the basic concept for the cartesian (Figure 1a) and delta frame (Figure 1c) configurations. Figure 1b 

and Figure 1d show full-machine examples of the cartesian and delta printer types, respectively. 

Figure 2: FFF frame classes, (a) Prusa, (b) Makerbot, (c) Makergear, and (d) CNC [16]. Figure reproduced under the terms of a 

CC-BY license.

The most commonly used 3D printing system by far is the x-y-z frame system. It is more cost-effective, 

simpler to operate and maintain, and is much more intuitive for most users. It uses linear motion to deposit materials 

and is the style most often used in polymer AM research. A significant amount of research has been done on the 

mechanics of delta robots in the past, including several system models [4, 9-15], but very little on the mechanics of 

cartesian-system printers. For these reasons, the focus of the present study was on the cartesian-frame style of FFF 

machine. In the world of cartesian-frame FFF machines, four different classes of machines have emerged (Table 1). 

The classes are defined according to the linear motion of each of the main components within the system, each class 

having a different system of motion. A representative diagram of the four classes, as well as the coordinate system 

used on all designs, is shown in Figure 2. A clear understanding of the different types is essential in the correct 

modeling of the system to be applicable for modeling the extruder carriage motion. 

Table 1: FFF machine classes [16]. Reproduced under the terms of a CC-BY license. 

Type Attributes Figure 

A 

Commonly known as the Prusa-frame printer, this is by far the most common design of 

desktop and research lab FFF systems. The print bed is fixed to move only in the y-axis, 

while the extruder carriage moves in the x-axis and the z-axis. This design allows the fastest 

printing speed of any of the cartesian-frame printers, is the easiest to use with thin layers 

(50-100μm), and has the lowest sensitivity to filament quality. It is, however, the most 

subject to part errors caused by system compliance and vibrations. 

2a 

B 

Often known by the brand name of its most well-known member, the Makerbot-frame 

printers are commonly seen as medium-to-large commercial-grade machines. The print bed 

motion is restricted in the z-axis (the build direction), while the x-axis and y-axis are covered 

by the extruder carriage. This design allows a very large build area and simple integration 

of multiple extrusion nozzles but is typically much slower than Prusa-frame machines (500-

1000% in some cases). It is also typically sensitive to filament quality and needs more 

maintenance between prints due to the “hanging” cantilever build plate. 

2b 
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C 

A much less common machine type, it is a combination of Classes A and B. The motion of 

the extruder carriage is restricted to the x-axis, while the print bed itself moves in the y- and 

z-axes. Typically, far more compact than Class B machines, this design attempts to combine

the advantages of both Class A and Class B but combines most of the disadvantages.

2c 

D 

This design uses the same mechanism as a desktop CNC milling machine or router, where 

the part is built on the fixed surface and the motion in all three coordinates is made by the 

extruder carriage. Many of the early printers were built in this configuration, but it is very 

rarely used in modern practice. 

2d 

As with most mechatronic and coordinate-based manufacturing systems [16-20], the mechanical compliance 

and vibration within an FFF machine can induce defects into the produced parts; this can damage or ruin them, or at 

least, destroy their dimensional accuracy and stability [16, 21-30]. While errors are likely present to some extent in 

any class of FFF machines, these defects are most common at high speeds and high acceleration rates. The use of 

higher print speeds is essential for drastically reducing the cost of AM parts and expanding their range of use, but the 

possible introduction of errors is a concern. The extruder carriage overshoot (Figure 3) is the most damaging in 

complete, sound parts, as it destroys the shape and dimensions of the part. It also happens to be the one that is the 

simplest to understand and most related to the extreme position error modeled in the present study. Over-shooting 

error are very commonly found errors in FFF machines, and it is visible in the eye. Figure 3 below shows the concept 

of extruder overshooting. When the extruder carriage is approaching the corner of the part, it is following the calculated 

path and no defects are occurring (Figure 3a). As it turns the corner (Figure 3b), the extruder carriage overshoots the 

corner due to system compliance in both the belt and printer frame. The overshoot causes extra tension in the system, 

resulting in reverse motion, causing the carriage to then undershoot (Figure 3c) as it settles to its correct path. After 

this cycle is repeated several times, the extruder converges back to its calculated path (Figure 3d) and continues with 

the construction of the part. A real part with this effect present is shown in Figure 3e, where the white line is the 

calculated path in the g-code, while the red dashed line is the observed true path taken by the extruder head. It is 

obvious from the example in Figure 3e that the x-axis overshoot and subsequent settling effectively destroyed the part. 

Any correction, such as post-process machining, filing, or similar would severely weaken the part and practically 

guarantee a fracture in the structure under use. The deviation is not minor, as evidenced by the fact that the deviation 

error is, in a few places, wider than the entire shell thickness of the part. 

Figure 3: Corner overshoot concept (a-d) and example part (e) 

989



Several sources of the vibration may be identified from studying examples of vibration error; however, the 

most dominant source by far is certainly the position error of the extruder carriage caused by compliance and vibration 

in the print frame and the drive belts. Another significant potential source is friction within the system between the 

moving parts; very small vibrations introduced by friction in the system can be an issue, its effects most likely would 

not be obvious without a dedicated part inspection. Compared to the magnitude of the mechanical vibration within the 

system, the vibration from friction will likely be extremely small [31-37]. Therefore, the present study neglects friction 

vibrations to focus on the error caused in the frame and belts. There is a growing demand in the 3D printing industry 

for higher print speeds and better accuracy. But as the speed increases, error increases. This research is an attempt to 

overcome these errors in high speed printing with the available tools and processes and improve them as much as 

possible. Most effective way of reducing end position errors is implementing control systems. To employ a closed-

loop or open-loop control in a system, understanding of the system dynamics is necessary; especially for open-loop 

controls, a proper dynamic model of the system is required. The main disadvantage of using closed-loop control system 

is: it limits printing speed, and the state space model is time variant, and states are difficult to measure or predict. With 

the availability of a dynamic model of the system, predictive control has potential to reduce extreme position error 

without adding speed limitations by using passive control systems. 

The immediate goal of the present study is the derivation and presentation of a well-defined and flexible 

extruder carriage position model that can be used to drive equations of motion, system state space model, and 

ultimately be used to design open-loop control systems and optimize the design of the printer frame by introducing 

passive control elements. Two different techniques are used to find the equations of motion for the conservative 

carriage motion, the traditional Newton-Euler decomposition method, and the energy-based Lagrange method. The 

resulting models are compared with each other in detail and should, theoretically, produce the same set of motions 

equations. Non-linear parameters and damping are added to the motion equations to get a more realistic model of the 

physical system. A state-space model is developed with the existing equations of motion to present a forward predictive 

control model. Examples of passive co-designs are presented, and their implementation in state-space are mentioned, 

which should reduce printing errors. Case study experiments are performed in an existing 3D printer to compare the 

dynamic model and the ideal input from the motor. 

2. Dynamic Model Development
2.1. Extruder Carriage Model Development 

The FFF system has three major components: the frame, the extruder carriage, and the build plate. For the 

purposes of the present study, the motion of the build plate is neglected and assumed to be static relative to the extruder 

head. The plant for the rest of the printer can be divided into three major systems, each with a compliant connection; 

these are the (1) frame support structure (desk or workbench), (2) the printer frame, and (3) the extruder motion system. 

This configuration is valid for all cartesian frame printers. Figure 4 below shows the concept map. 

Figure 4: FFF machine plant configuration 

The mount is connected to the system ground, while the energy input for the system flows into System 3. 

The energy for extruder carriage motions comes from motors mounted within the extruder motion system. These 

motors drive the mechanical components and induce the vibrations into the rest of the system. For all FFF machine 

types discussed previously, the essential mechanical system is a carriage mounted on a rail and which is driven by a 

pulley system with at least one motor. After further development of the system model shown in Figure 4, the spring-

mass-damper model of the plant used in the extruder carriage motion can be derived (Figure 5) in x-z coordinates. The 

definitions for each of the variables and parameters are shown in Table 2. 
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Figure 5: Extruder carriage dynamic model 

Table 2: Extruder carriage dynamic model parameters 

State Variable Parameter 

𝒙𝟏 Position of printer mount (𝑚) 𝒌𝟏 Stiffness between ground and mount (𝑁/𝑚) 

𝒙𝟐 Position of frame (𝑚) 𝒌𝟐 Stiffness between mount and frame (𝑁/𝑚) 

𝒙𝟑 Position of extruder motion system (𝑚) 𝒌𝟑 Stiffness between frame and carriage motion system (𝑁/𝑚) 

𝒙𝟒 Position of extruder carriage (𝑚) 𝒌𝟒 Stiffness of belt section 1 (𝑁/𝑚) 

𝜽𝟒 Angular position of Pulley 4 (𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 𝒌𝟓 Stiffness of belt section 2 (𝑁/𝑚) 

𝜽𝟓 Angular position of Pulley 5 (𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 𝒌𝟔 Stiffness of belt section 3 (𝑁/𝑚) 

Parameter 𝜷𝟏 Energy dissipation between ground and mount (𝑁. 𝑠/𝑚) 

𝒎𝟏 Mass of printer mount (𝑘𝑔) 𝜷𝟐 Energy dissipation between mount and frame (𝑁. 𝑠/𝑚) 

𝒎𝟐 Mass of printer frame (𝑘𝑔) 𝜷𝟑 Energy dissipation between frame and motion (𝑁. 𝑠/𝑚) 

𝒎𝟑 Mass of extruder motion system frame (𝑘𝑔) 𝜷𝟒 Energy dissipation in belt section 1 (𝑁. 𝑠/𝑚) 

𝒎𝟒 Mass of Pulley 4 (𝑘𝑔) 𝜷𝟓 Energy dissipation in belt section 2 (𝑁. 𝑠/𝑚) 

𝒎𝟓 Mass of Pulley 5 (𝑘𝑔) 𝜷𝟔 Energy dissipation in belt section 3 (𝑁. 𝑠/𝑚) 

𝒎𝟔 Mass of extruder carriage (𝑘𝑔) 𝒛(𝒕) Extruder carriage height (𝑚𝑚) 

While the Prusa-frame machines contain the motion of the system in both the x-axis and z-axis, the z-axis 

velocity is very small. Therefore, it is assumed that the z-axis motion will not directly introduce any detectable 

vibration into the system and all state variables are in x(t). The specification of the z-height is essential as the stiffness 

of system components may depend heavily on the height of the extruder carriage. 

2.2.1. Conservative Model 

This section describes the derivation of the system model previously discussed in terms of Newton-Euler 

decomposition. This analysis will produce the equations of motion for the conservative system, which does not include 

any friction or system damping; these will be addressed in a later section. From the perspective of the ground, the 

motion of the system will reside in three blocks: the machine base, the frame, and the gantry system for the extruder 

carriage; this is demonstrated in the overall system model shown in Figure 6. The gantry system will have additional 

motion within it, namely the motion of the drive belt system, but will be a single, self-contained system in the context 

of the whole system. Below, the system is divided into 2 sub-systems at the point of application of internal force D(t). 

This system can be modeled as shown in Figure 6 and Figure 7. 

Figure 6: System-level model 
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Where the force D(t) is the time-variant force introduced into the whole system via the motion of the belt and 

extruder carriage within the x-axis gantry. This will be modeled in detail later. Mass 𝑚3𝑡 is defined as the mass of the 

complete extruder system (Eq 1). The resulting equations of motion for this system are simple to obtain using classic 

Newtonian laws: 

 

𝑚3𝑡 = 𝑚3 + 𝑚4 + 𝑚5 + 𝑚6 (1) 

 

�̈�1 = −
𝑘1 + 𝑘2

𝑚1

𝑥1 +
𝑘2

𝑚1

𝑥2      (2) 

 

 �̈�2 =
𝑘2

𝑚2

𝑥1 −
𝑘2 + 𝑘3

𝑚2

𝑥2 +
𝑘3

𝑚2

𝑥3      (3) 

 

�̈�3 =
𝑘3

𝑚3𝑡

𝑥2 −
𝑘3

𝑚3𝑡

𝑥3 +
𝐷(𝑡)

𝑚3𝑡

 (4) 

 

The motion of the extruder carriage is contained within the 𝑚3 block in Figure 4, but any acceleration in this 

subsystem propagates to the rest of the system. The coupling force D(t) connects the dynamics inside block 𝑚3 to the 

rest of the system, as described in Figure 7. The input torque is a non-conservative force and will be discussed in a 

later section. 

 

 

Figure 7: Extruder carriage motion system 

While the pulleys are not able to translate within the 𝑚3 block, they are modeled as having both translational 

and rotational motion from the outside frame. This way, the motion of the whole block can be modeled relative to the 

motion of the belt and extruder carriage. It is assumed that the belt is a GT2 belt with a relatively low velocity and no 

significant backlash or slipping in the pulleys [38]. The motion of the extruder system is derived by substituting the 

value of D(t) as an internal force. Equation of motion of the pulleys and the extruder carriage are derived for the 

system: 

 

�̈�3 =
𝑘3

𝑚3𝑡

𝑥2 −
(𝑘3 + 𝑘4 + 𝑘5)

𝑚3𝑡

𝑥3 +
(𝑘4 + 𝑘5)

𝑚3𝑡

𝑥4 +
𝑘4𝑅

𝑚3𝑡

𝜃4 +
𝑘5𝑅

𝑚3𝑡

𝜃5 (5) 

 

�̈�4 =
(𝑘4 + 𝑘5)

𝑚6

𝑥3 −
(𝑘4 + 𝑘5)

𝑚6

𝑥4 −
𝑅𝑘4

𝑚6

𝜃4 −
𝑅𝑘5

𝑚6

𝜃5      (6) 

 

�̈�4 =
2𝑘4

𝑚4𝑅
𝑥3 −

2𝑘4

𝑚4𝑅
𝑥4 −

2(𝑘4 + 𝑘6)

𝑚4

𝜃4 +
2𝑘6

𝑚4

𝜃5      (7) 

 

�̈�5 =
2𝑘5

𝑚5𝑅
𝑥3 −

2𝑘5

𝑚5𝑅
𝑥4 +

2𝑘6

𝑚5

𝜃4 −
2(𝑘5 + 𝑘6)

𝑚5

𝜃5      (8) 
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Using the same notation and assumptions as the Newton-Euler model previously described, the equations of 

motion are derived in terms of the system energy using the Lagrange method. This method gives the user some 

additional insight into the energy-transfer aspects of the system that a force-based method like Newton-Euler is not 

able to provide [39]. It is also the check for the correctness of the Newton-Euler model, as the methods should 

independently provide the same equations of motion for a physically conservative system. The Lagrangian of the 

system is described by:  

𝐿 = 𝑇 − 𝑉 (9) 

where 𝑉 describes the potential energy in the system and 𝑇 describes the kinetic energy. In this problem, each of the 

energy types has six equations, since there are six state variables. The equations of motion for the system are given 

by, 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑞
= 0 (10) 

considering only the conservative terms and neglecting friction and damping in the system. On deriving the equation 

of motion using Lagrange, it is found that the final equations of motion in Newton-Euler conservative model (Eqs 1-

8) are exactly the same as the equations of motion in Lagrange model. Both these models have been derived

independently and verify the correctness of the model and its equations of motion.

Note that this model assumes that the belt stiffnesses is constant throughout the motion of the extruder 

carriage. The stiffness is not constant in practice, but a function of a characteristic stiffness and the belt length; belt 

stiffness will be examined in a later section. This model of the system allows the input of angular acceleration into 

one of the pulleys which then transmits to the complete system. It provides a way for tracking motion in all of the 

three system blocks shown in Figure 4. The derived model is not a linear model, as some of the parameters may be 

highly non-linear, which should be established. The overall goal of this model is to track 𝑥4 relative to an ideal

trajectory, in order to find the carriage position error. The effects of non-conservative system forces, particularly those 

from damping and friction, will be discussed later. 

2.2.2. Non-Conservative Model 

Figure 8 shows the full system under consideration, including both conservative and non-conservative forces. 

The system is shown here in a decomposed state in order to use the Newton-Euler method for deriving the full model, 

including the stiffnesses, the dampers, and the input torque. The equations are derived similar to Newton Euler 

Conservative model shown earlier. 

Figure 8: Extruder carriage system considering both conservative and non-conservative forces 

The non-conservative equations of motion are: 

�̈�1 = −
𝑘1 + 𝑘2

𝑚1

𝑥1 +
𝑘2

𝑚1

𝑥2 −
𝛽1 + 𝛽2

𝑚1

�̇�1 +
𝛽2

𝑚1

�̇�2 (9) 

�̈�2 =
𝑘2

𝑚2

𝑥1 −
𝑘2 + 𝑘3

𝑚2

𝑥2 +
𝑘3

𝑚2

𝑥3 +
𝛽2

𝑚2

�̇�1 −
𝛽2 + 𝛽3

𝑚2

�̇�2 +
𝛽3

𝑚2

�̇�3 (10) 
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�̈�3 =
𝑘3

𝑚3𝑡

𝑥2 −
(𝑘3 + 𝑘4 + 𝑘5)

𝑚3𝑡

𝑥3 +
(𝑘4 + 𝑘5)

𝑚3𝑡

𝑥4 +
𝑘4𝑅

𝑚3𝑡

𝜃4 +
𝑘5𝑅

𝑚3𝑡

𝜃5 +
𝛽3

𝑚3𝑡

�̇�2

−
(𝛽3 + 𝛽4 + 𝛽5)

𝑚3𝑡

�̇�3 +
(𝛽4 + 𝛽5)

𝑚3𝑡

�̇�4 +
𝛽4𝑅

𝑚3𝑡

�̇�4 +
𝛽5𝑅

𝑚3𝑡

�̇�5 (11)

 

�̈�4 =
(𝑘4 + 𝑘5)

𝑚6

𝑥3 −
(𝑘4 + 𝑘5)

𝑚6

𝑥4 −
𝑅𝑘5

𝑚6

𝜃5 −
𝑅𝑘4

𝑚6

𝜃4 +
(𝛽4 + 𝛽5)

𝑚6

�̇�3

−
𝛽4 + 𝛽5

𝑚6

�̇�4 −
𝛽4𝑅

𝑚6

�̇�4 −
𝛽5𝑅

𝑚6

�̇�5 (12)

 

 

�̈�4 = −
2𝑘4

𝑚4𝑅
𝑥4 +

2𝑘4

𝑚4𝑅
𝑥3 +

2(𝑘4 + 𝑘6)

𝑚4

𝜃4 +
2𝑘6

𝑚4

𝜃5 +
2𝛽4

𝑚4𝑅
�̇�3 −

2𝛽4

𝑚4𝑅
�̇�4

−
2(𝛽4 + 𝛽6)

𝑚4

�̇�4 +
2𝛽6

𝑚4

�̇�5 +
2𝑇𝑖𝑛𝑝𝑢𝑡

𝑚4𝑅
2

(13)

 

 

�̈�5 =
2𝑘5

𝑚5𝑅
𝑥3 −

2𝑘5

𝑚5𝑅
𝑥4 −

2(𝑘5 + 𝑘6)

𝑚5

𝜃5 +
2𝑘6

𝑚5

𝜃4 +
2𝛽5

𝑚5𝑅
�̇�3

−
2𝛽5

𝑚5𝑅
�̇�4 +

2𝛽6

𝑚5

�̇�4 −
2(𝛽5 + 𝛽6)

𝑚5

�̇�5 (14)

 

 

 

2.2. Additional Model Considerations 

 
The system contains non-conservative forces along with linear and non-linear parameters. The major non-

conservative forces in such a system consist of friction, damping, and the applied torque into the system to drive it. 

Several of the stiffnesses in the system, while conservative, are non-linear. For the current problem, these are the 

stiffnesses of the frame-gantry interface and the stiffnesses of the drive belts. All these aspects of the system must be 

accounted for. 

 

2.2.1. System Friction 

 
The extruder carriage system of a typical printer is supported by hard rubber wheels sitting on a square 

aluminum rail or by a lubricated linear bearing. Commonly, the extruder carriage system is supported by a series of 

linear ball bearings which typically have a friction coefficient less than 𝜇 = 0.005 [40] when properly maintained. 

The main source friction present in this system is the rolling resistance friction between the extruder carriage and the 

extruder frame rail, which is much smaller compared to sliding friction. Typical rolling resistance coefficient for such 

a system varies from 𝜇 = 0.002 − 0.005. The normal force on the joint comes exclusively from the mass of the 

extruder carriage, which is heavily restricted by the size and strength of the printer frame. For nearly all cases, the 

weight of the extruder carriage is less than 𝐹𝑛 = 10 𝑁 in normal atmospheric conditions (i.e. the mass of the extruder 

carriage, its components, and its support structure are typically less than 1 𝑘𝑔 in mass). Therefore, it is reasonable for 

this problem to neglect the effects of friction between the extruder carriage and its rails. There are no other significant 

sources of friction in the system. 

 

2.2.2. System Damping 

 
With the assumption of negligible friction, the remaining non-conservative forces are from the dampers in 

the system. The dampers are all natural and come from the printer mount, the frame, and the belts driving the extruder 

carriage, as shown in Figure 6. Both the methods previously described can accommodate non-conservative forces into 

the equations of motion. However, since the Newton-Euler method is based on forces in the system and not energy, 

the analysis with non-conservative forces is more easily and intuitively done using the Newton-Euler method. For the 

belts in this model, the dampers are assumed to be lumped linear dampers with constant coefficients. An extensive 

study by Shangguan & Zeng [41] found that the damping coefficient in drive belts was dependent on the excitation 

frequency, but not on the belt length. Significant modeling and experimental work under various conditions showed 

this to be the case, validating the assumption of constant coeffects for the belts. The other three dampers in the system, 
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those of the workbench (𝛽1), the frame (𝛽2), and the interface between the frame and the extruder carriage (𝛽3) are

also assumed linear with constant coefficients. This assumption for 𝛽1 and 𝛽2 are justified due to the static and non-

changing natural state of these structures. For most FFF machines, this interface consists of a linear bearing riding on 

a linear rail of some kind, or wheels mounted on a rectangular aluminum rail. This is a single-degree-of-freedom 

problem, so it logically has a constant damping coefficient for a specified beam length. The structural damping work 

by Hunt et al. [42], Liu [43], and Perez-Pena et al. [44] support this assumption as well. 

2.2.3. System Stiffness 

The stiffnesses in this model are a mixture of both linear and non-linear springs, each of which depend on 

the specific FFF printer configuration under study. The simplest to analyze are the printer base and frame stiffnesses, 

which are clearly linear, as they are static structures and do not significantly change shape during the process. 

Therefore,  

𝑘1, 𝑘2 → 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (15) 

The stiffness of the interface between the frame and the extruder gantry (𝑘3) is heavily dependent on the

exact configuration of the plant, as well as the position of the connector on the rail. It may be linear or non-linear, 

depending on the exact configuration used; for the application to a specific machine configuration, this relationship 

must be established. All that is known for the general model is that it will be a function of 𝑍. Therefore,  

𝑘3 → 𝑓(𝑍) (16) 

The belt section stiffnesses are the most complex to model, as the top two (𝑘4 and 𝑘5) change length

continuously during the processing. The standard model for the stiffness of belts [45] that are changing length with 

time is:  

𝑘 = 𝐶𝑠𝑝

𝑏

𝐿(𝑡)
(17) 

where 𝐶𝑠𝑝 is the characteristic stiffness of the belt, 𝑏 is the belt width, and 𝐿(𝑡) is the length at time 𝑡. This assumes

that the belts do not experience significant stretching during use. The results of the belt stiffness study [45] show that 

no significant stretching occurs. Therefore, the stiffness of the belt is highly non-linear and depends solely on the 

states: 

𝑘4 = 𝐶𝑠𝑝

𝑏

𝛿4

= 𝐶𝑠𝑝

𝑏

𝐿1 + 𝑥4

(18) 

𝑘5 = 𝐶𝑠𝑝

𝑏

𝛿5

= 𝐶𝑠𝑝

𝑏

𝐿2 − 𝑥4

(19) 

𝑘6 = 𝐶𝑠𝑝

𝑏

𝛿6

=
𝐶𝑠𝑝𝑏

𝐿
→ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (20) 

This assumes that characteristic stiffness 𝐶𝑠𝑝 and belt width 𝑏 are known and the same values (linear or non-

linear) for both belt sections. L1 is the length of belt from left side pulley to the extruder, L2 is the length of belt from 

extruder to the right-side pulley and L is the distance between centers of the driver and driven pulleys. The value of 

𝐶𝑠𝑝 can be reasonably approximated as a constant value for the GT2 belts [45] used on most FFF machines. The value

of the final stiffness 𝑘6 is assumed to be constant since the length of the belt does not change during processing and

the width of the belt is constant. 

2.2.4. Extruder Carriage Belt Pre-Load 

The effect of belt pre-load is certainly a consideration for any belt-driven system [41], as it influences the 

initial value of belt stiffness. The typical belt pre-load for FFF machines varies from 35 𝑁 −  45 𝑁, enough to keep 
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the belt section from slacking under acceleration but not enough to significantly stretch the belt. As shown by Wang 

et al. [45] the set of GT2 belt had an average failure tension of about 615 𝑁, so a pre-load of 35 𝑁 −  45 𝑁,  will not 

significantly affect deflection. As previously described, the effect of the pre-load is to set the initial belt stiffness; it is 

assumed that the belt had time to settle after being pre-loaded before being used, so the value of the pre-load is constant 

in all belt sections. Therefore, 

 

𝑘4 = 𝐶𝑠𝑝

𝑏

𝐿1 + 𝑥4

+
𝐹𝑝𝑙

𝐿0

(21) 

 

𝑘5 = 𝐶𝑠𝑝

𝑏

𝐿2 − 𝑥4

+
𝐹𝑝𝑙

𝐿0

(22) 

𝑘6 =
𝐶𝑠𝑝𝑏

𝐿
+

𝐹𝑝𝑙

𝐿0

→ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (23) 

 

The value of 𝐹𝑝𝑙/𝐿0 is constant and calculated before the start of the extruder carriage motion. The value of 

𝐿0 is approximated to be the length of the belt. 

 

2.3. State Space Equations 

 
Considering the friction, damping, and belt stiffness changes, as well as the torque input, in the system during 

processing, a non-linear state space model was developed with the states:  

 

[𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6 𝑧7 𝑧8 𝑧9 𝑧10 𝑧11 𝑧12]  =  [𝑥1 �̇�1 𝑥2 �̇�2 𝑥3 �̇�3 𝑥4 �̇�4 𝜃4 �̇�4 𝜃5 �̇�5] (23) 

 

Using Eq. 23 and Eqs. 9-14, the state derivatives can be calculated as: 

 

�̇�1 = �̇�1 = 𝑧2 (24) 

 

�̇�2 = �̈�1 = −
𝑘1 + 𝑘2

𝑚1

𝑧1 +
𝑘2

𝑚1

𝑧3 −
𝛽1 + 𝛽2

𝑚1

𝑧2 +
𝛽2

𝑚1

𝑧4 (25) 

 

�̇�3 = �̇�2 = 𝑧4 (26) 

 

�̇�4 = �̈�2 =
𝑘2

𝑚2

z1 −
𝑘2 + 𝑘3

𝑚2

z3 +
𝑘3

𝑚2

z5 +
𝛽2

𝑚2

z2 −
𝛽2 + 𝛽3

𝑚2

z4 +
𝛽3

𝑚2

z6 (27) 

 

�̇�5 = �̇�3 = 𝑧6 (28) 

 

�̇�6 = �̈�3 =
𝑘3

𝑚3𝑡

𝑧3 −
(𝑘3 + 𝑘4 + 𝑘5)

𝑚3𝑡

𝑧5 +
(𝑘4 + 𝑘5)

𝑚3𝑡

𝑧7 +
𝑘4𝑅

𝑚3𝑡

𝑧9 +
𝑘5𝑅

𝑚3𝑡

𝑧11

+
𝛽3

𝑚3𝑡

𝑧4 −
(𝛽3 + 𝛽4 + 𝛽5)

𝑚3𝑡

𝑧6 +
(𝛽4 + 𝛽5)

𝑚3𝑡

𝑧8 +
𝛽4𝑅

𝑚3𝑡

𝑧10 +
𝛽5𝑅

𝑚3𝑡

𝑧12 (29)

 

 

�̇�7 = �̇�4 = 𝑧8 (30) 

 

�̇�8 = �̈�4 =
(𝑘4 + 𝑘5)

𝑚6

𝑧5 −
(𝑘4 + 𝑘5)

𝑚6

𝑧7 −
𝑅𝑘5

𝑚6

𝑧11 −
𝑅𝑘4

𝑚6

𝑧9 +
(𝛽4 + 𝛽5)

𝑚6

𝑧6

−
𝛽4 + 𝛽5

𝑚6

𝑧8 −
𝛽4𝑅

𝑚6

𝑧10 −
𝛽5𝑅

𝑚6

𝑧12 (31)

 

 

�̇�9 = �̇�4 = 𝑧10 (32) 
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�̇�10 = �̈�4 = −
2𝑘4

𝑚4𝑅
𝑧7 +

2𝑘4

𝑚4𝑅
𝑧5 −

2(𝑘4 + 𝑘6)

𝑚4

𝑧9 +
2𝑘6

𝑚4

𝑧11 +
2𝛽4

𝑚4𝑅
𝑧6 −

2𝛽4

𝑚4𝑅
𝑧8

−
2(𝛽4 + 𝛽6)

𝑚4

𝑧10 +
2𝛽6

𝑚4

𝑧12 +
2𝑇𝑖𝑛𝑝𝑢𝑡

𝑚4𝑅
2

(33)

�̇�11 = �̇�5 = 𝑧12 (34) 

�̇�12 = �̈�5 =
2𝑘5

𝑚5𝑅
𝑧5 −

2𝑘5

𝑚5𝑅
𝑧7 −

2(𝑘5 + 𝑘6)

𝑚5

𝑧11 +
2𝑘6

𝑚5

𝑧9 +
2𝛽5

𝑚5𝑅
𝑧6 −

2𝛽5

𝑚5𝑅
𝑧8

+
2𝛽6

𝑚5

𝑧10 −
2(𝛽5 + 𝛽6)

𝑚5

𝑧12 (35)

The state-space equations of a system are of the form: 

�̇� = 𝐴𝑋 + 𝐵𝑢 (36) 

𝑌 = 𝐶𝑋 + 𝐷𝑢 (37) 

In the present study D=0 for Eq 37 and matrix C depends on the variable to observe, which in this study can 

be taken as the extruder carriage position and velocity. Therefore, 

[ 𝐶] = [0 0 0 0 0 0 1 1 0 0 0 0]𝑇 (38) 
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[ 𝐴] = (39) 

[

0 1 0 0 0 0 0 0 0 0 0 0

−
𝑘1 + 𝑘2

𝑚1
−

𝛽1 + 𝛽2

𝑚1

𝑘2

𝑚1

𝛽2

𝑚1
0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
𝑘2

𝑚2

𝛽2

𝑚2
−

𝑘2 + 𝑘3

𝑚2
−

𝛽2 + 𝛽3

𝑚2

𝑘3

𝑚2

𝛽3

𝑚2
0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0
𝑘3

𝑚3𝑡

𝛽3

𝑚3𝑡
−

(𝑘3 + 𝑘4 + 𝑘5)

𝑚3𝑡
−

(𝛽3 + 𝛽4 + 𝛽5)

𝑚3𝑡

(𝑘4 + 𝑘5)

𝑚3𝑡

(𝛽4 + 𝛽5)

𝑚3𝑡

𝑘4𝑅

𝑚3𝑡

𝛽4𝑅

𝑚3𝑡

𝑘5𝑅

𝑚3𝑡

𝛽5𝑅

𝑚3𝑡

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0
(𝑘4 + 𝑘5)

𝑚6

(𝛽4 + 𝛽5)

𝑚6
−

(𝑘4 + 𝑘5)

𝑚6
−

𝛽4 + 𝛽5

𝑚6
−

𝑅𝑘4

𝑚6
−

𝛽4𝑅

𝑚6
−

𝑅𝑘5

𝑚6
−

𝛽5𝑅

𝑚6

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0
2𝑘4

𝑚4𝑅

2𝛽4

𝑚4𝑅
−

2𝑘4

𝑚4𝑅
−

2𝛽4

𝑚4𝑅
−

2(𝑘4 + 𝑘6)

𝑚4
−

2(𝛽4 + 𝛽6)

𝑚4

2𝑘6

𝑚4

2𝛽6

𝑚4

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0
2𝑘5

𝑚5𝑅

2𝛽5

𝑚5𝑅
−

2𝑘5

𝑚5𝑅
−

2𝛽5

𝑚5𝑅

2𝑘6

𝑚5

2𝛽6

𝑚5
−

2(𝑘5 + 𝑘6)

𝑚5
−

2(𝛽5 + 𝛽6)

𝑚5 ]

[ 𝐵 ] = [0 0 0 0 0 0 0 0 0
2

𝑚4𝑅
2

0 0]
𝑇

(40) 

[ 𝑋 ] = [𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6 𝑧7 𝑧8 𝑧9 𝑧10 𝑧11 𝑧12]
𝑇 (41) 

𝑢 = 𝑇𝑖𝑛𝑝𝑢𝑡 (42) 
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2.4. Ideal Extruder Motion 

The theoretical path taken by the extruder carriage can be calculated, knowing that the torque on the pulley 

can be translated directly into linear motion. The assumption is made that there is no compliance or vibration in the 

belt, and the frame and support are perfectly rigid. The motor will provide torque to rotate the pulleys and extruder at 

same acceleration ideally. This is the “ideal” motion that is applied by the motor to the pulley, which should be 

calculated in order to compare this ideal to the system behavior. 

𝑇𝑖𝑛𝑝𝑢𝑡(𝑡) = 𝑚6�̈�4𝑅 +
𝐽4�̈�4

𝑅
+ 

𝐽5�̈�4

𝑅
(43) 

�̈�4 =
𝑇𝑖𝑛𝑝𝑢𝑡(𝑡)

𝑚6𝑅 + 0.5𝑚4𝑅 + 0.5𝑚5𝑅
(44) 

2.5. System Input Torque 

In the model presented in this study, the torque of the input motor drives the dynamics of the system via 

Pulley 4, the driver pulley. The inputs to the stepper motor which control the torque and rotation speed are the input 

voltage, the input current, and the impedance of the motor. Most FFF systems use either 12𝑉 or 24𝑉 power supplies, 

depending on the setup of the machine, and have a constant resistance. The torque input is a function of time and 

depending on the part to be printed and the print settings decided, the torque will consist of a ramp-up and a steady 

state torque. It is assumed in this model that the motor voltage and torque are controlled externally to the system and 

that they are load-independent as long as the load does not exceed the rated torque for the motor [46-49]. In a well-

adjusted and correctly functioning FFF system, the moving parts of the machine do not directly contact the part being 

made except along a small bead of molten plastic [50-51]. Unlike in a subtractive manufacturing process, there is very 

little mechanical resistance in the system motion, so it is predicted that the stepper motor torque will not exceed its 

maximum rating under any normal working conditions. Even in practice, the holding torque of the stepper motor will 

never be reached, as that amount of torque is not generally required to run the printer except at very high speed print 

and even then, the holding torque is rarely reached. 

𝜏𝑎𝑝𝑝𝑙𝑖𝑒𝑑 < 𝜏ℎ𝑜𝑙𝑑𝑖𝑛𝑔 (45) 

The stepper motor delivers the required motion using pulses of current. The actual input to the stepper motor 

does not contain specific information about the amount of torque to be delivered. Depending on the frequency of 

pulses and the length of pulse, the extruder accelerates, decelerates or moves at constant velocity. These parameters 

are converted to G codes and then fed to the printer in the form of pulse frequency and duration. There are 3 major 

factors affecting the extruder motion profile in a print: acceleration, velocity and jerk. Figure 9 shows a general 

velocity profile for 1 cycle of an input waveform in a printer and Table 3 describes the respective activities occurring 

at different time periods chronically during 1 cycle. Table 4 shows the major parameters set on the printer to achieve 

the input waveform shown in Figure 9. 

In 3D printers, jerk is defined as the velocity before or after the extruder follows the defined acceleration 

during ramp-down and ramp-up respectively. In simpler terms, the extruder moves at maximum acceleration until it 

reaches the jerk velocity, after which the extruder follows the defined acceleration profile. In the same way when the 

extruder is slowing down, it will move at maximum deceleration to 0 once the extruder reaches the jerk velocity. In 

the printer being studied, this maximum acceleration is set to 1000 mm/s2 defined in the printer. Jerk and acceleration 

parameters are chosen such that there is a balance between the quality of print and time required for printing. 
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Figure 9: Velocity vs time profile of a typical printer input waveform 

Table 3: Activities in various time periods for 1 cycle in an input waveform 

Time Period Activity 

0-t1 Maximum acceleration up to jerk velocity 

t2 Constant acceleration up to desired velocity 

t3 Constant velocity 

t4 Constant deacceleration up to jerk velocity 

t5 Maximum deacceleration up to 0 velocity 

t6 Z-hop time: Time for extruder to hop to next layer

t7 Maximum deacceleration up to negative jerk velocity 

t8 Constant deacceleration up to negative desired velocity 

t9 Constant velocity (negative) 

t10 Constant acceleration up to negative jerk velocity 

t11 Maximum acceleration up to 0 velocity 

Table 4: Print parameters to obtain the input waveform in Figure 9 

Parameters Value Units 

Maximum acceleration 1000 mm/s2 

Print acceleration 300 mm/s2 

Print velocity 150 mm/s 

Jerk 30 mm/s 

Print distance (1 direction) 180 mm 

Z-hop time 0.04 s 
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3. Case Study Experiments

Case experiments were performed on a Voxelab Aquila S2 3D Printer (Figure 10). The X-axis, Y-axis and Z-

axis movement of the printer is controlled by 3 rotational stepper motors. The X-axis carriage is connected to the 

motor using a GT2 timing belt. The z-axis movement is controlled by a lead screw connected to the extruder assembly 

and the motor. The print bed offers y-axis movement similar to X-axis by using a timing belt.  The printer offers a 

maximum acceleration of 1000 mm/s2 and a maximum velocity of 200 mm/s in X and Y directions. 

3.1. Design of Experiments 

To understand the printer under different parameter conditions, case studies were performed by varying the 

major printing parameters: print speed and print acceleration. The z-height was varied to measure the printer 

performance for different layers when printing. The z-height is also taken as a major parameter in this study as the 

stiffness varies with height, affecting the extruder carriage motion. The values for speed and acceleration used for this 

study are typically used for balanced time and quality print and for faster prints. 4 values each of speed, acceleration 

and height were used to perform the case studies. Orthogonal array method was used for the design of experiments to 

get better results on comparatively lower samples. Using orthogonal arrays, 16 cases were formed as shown in Table 

5, with their parameters. 

A simple 3D model of a rectangular block of 180 mm length, 1 layer thick (0.4mm) and 5mm tall was 

developed in SOLIDWORKS 2021 modelling software. The model was then sliced using Ultimaker Cura 5.2.1 

(slicing software) which produced a mesh ready to be printed. The desired parameters of speed, acceleration, jerk and 

height settings were fed into the slicing software to produce the desired sliced G-codes. These G-codes were then fed 

into the printer. 

Extruder system Extruder carriage 

Printer Frame 

Recording camera 

Pulleys 

Figure 10: Voxelab Aquila S2 3D printer used for experiments 
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Table 5: Parameters for experimental case studies 

Test Size (mm) 
Max Speed Limit 

(mm/s) 

Acceleration 

(mm/s2) 
Height (mm) Jerk (mm/s) 

1 180 × 5 × 0.4 150 200 0-1 10 

2 180 × 5 × 0.4 150 300 50-51 10 

3 180 × 5 × 0.4 150 400 100-101 10 

4 180 × 5 × 0.4 150 500 150-151 10 

5 180 × 5 × 0.4 250 200 50-51 10 

6 180 × 5 × 0.4 250 300 0-1 10 

7 180 × 5 × 0.4 250 400 150-151 10 

8 180 × 5 × 0.4 250 500 100-101 10 

9 180 × 5 × 0.4 350 200 100-101 10 

10 180 × 5 × 0.4 350 300 150-151 10 

11 180 × 5 × 0.4 350 400 0-1 10 

12 180 × 5 × 0.4 350 500 50-51 10 

13 180 × 5 × 0.4 500 200 150-151 10 

14 180 × 5 × 0.4 500 300 100-101 10 

15 180 × 5 × 0.4 500 400 50-51 10 

16 180 × 5 × 0.4 500 500 0-1 10 

R1 180 × 5 × 0.4 50 25 0-1 - 

R2 180 × 5 × 0.4 50 25 50-51 - 

R3 180 × 5 × 0.4 50 25 100-101 - 

R4 180 × 5 × 0.4 50 25 150-151 - 

3.2. Extruder Carriage Tracking 

The printer was set on a very heavy wooden table such that the vibration effect on the table can be assumed 

as grounded. Figure 11 shows the experimental setup with the printer and camera. The printer head movement was 

recorded by using a 240 fps CamPark X30 camera. Each frame of the video was converted to gray scale in MATLAB 

and then cropped and edited to track the extruder carriage movement. Pixel brightness data and shape recognition 

were used to filter out the noise from the video. To ease grayscale tracking, a white sticker of 10 mm diameter was 

attached to the black extruder carriage as can be seen in Figure 10. The video files for the entire run were too large for 

MATLAB, and so the videos were cropped to view 2 cycles for each case. MATLAB vision was able to track the 

extruder carriage for all the frames in the video; one of the recorded tracking frames is shown in Figure 12. The 

original extruder frame can be seen above, and the tracking frame can be seen below in Figure 12. The white line in 

Figure 12 below is the position of the extruder sticker as it moves in the frame. 
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Figure 11: Experimental setup to record extruder carriage movement 

Figure 12: Tracking of extruder carriage using MATLAB vision 

The tracking data is initially stored in pixels which are then converted to distance. To reference the extruder 

position and get more accurate data with minimum error, reference runs were recorded and analyzed. The last 4 entries 

in Table 5 from test no. R1 to R4 show the reference runs for different z-heights. These reference tests were set 

extremely slowly such that it can be assumed the extruder had negligible position error during these tests. The end-to-

end pixel data of these reference runs were used to set the position reference for each z-height test, which was later 

used to calculate the extruder position for the tests.  
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3.3. Printer Properties 

To get a better understanding and a realistic representation of the printer studied, physical properties of the 

printer must be studied. Physical parameters of the printer like mass, and stiffness and damping of belt and printer 

frame were experimentally measured and calculated using FEA Ansys modelling to provide a closer comparison 

between the dynamic model and the experimental results. Mass of each of the components relevant to this research 

were measured using a weight scale. Belt stiffness was measured through stress-strain test using a universal testing 

machine. Using the belt stiffness, belt constant 𝐶𝑠𝑝 was measured using Eq. 46.

𝐶𝑠𝑝 =
𝐸𝑡𝐿𝑖

𝐿
(46) 

Where E is the belt stiffness, t is belt thickness, Li is the elongated belt length, and L is the normal belt length. 

Belt damping was also measured using a universal testing machine by gradually loading and unloading the belt. The 

stress strain values were recorded to form a hysteresis curve. Damping ratio was calculated from the hysteresis curve 

by using Eq 47. 

Table 6: Printer parameters 

Parameters Value Units Parameters Value Units 

𝑚2 6.201 kg 𝑘2 5000 N/m 

𝑚3 0.721 kg 𝑘3 at 0mm 7.99x109 N/m 

𝑚4 0.17 kg 𝑘3 at 50mm 1.28x1010 N/m 

𝑚5 0.17 kg 𝑘3 at 100mm 1.88x1010 N/m 

𝑚6 0.611 kg 𝑘3 at 150mm 2.12x1010 N/m 

R 8 mm 𝐶𝑠𝑝 1.74*106 N/m 

𝐹𝑝𝑙 44.74 N L 350 mm 

𝐿1 80 mm 𝐿0 750.265 mm 

b 6 mm 𝛽4 118.725 Ns/m 

𝛽2 1450 Ns/m 𝛽5 118.725 Ns/m 

𝛽3 850 Ns/m 𝛽6 118.725 Ns/m 

Video Recording 
of Experiment

Clipping video to 
2 cycles

Cropping each 
frame to 

required area

Converting to 
binary greyscale 

image

Eliminating noise 
through pixel 

data (brightness)

Shape 
recognition

Centroid tracking

Converting pixel 
data to distance

Displacement 
and Velocity Plot

Figure 13: Stepwise flowchart for extruder carriage tracking 
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𝐷 =
𝐸ℎ

4𝜋𝐸𝑒

(47) 

Where D is damping ratio, Eh is the area under hysteresis loop, and Ee is the triangle area enclosed by 

maximum stress and strain measured. The damping coefficient from damping ratio was calculated using Eq 48. 

𝛽 = 2𝐷√𝑘𝑚 (48) 

Where 𝛽 is the damping coefficient, k is the belt stiffness and m is the belt mass. A printer frame model was 

designed in SOLIDWORKS to perform FEA analysis in ANSYS to calculate the stiffness of the printer frame at the 

four heights. Table 6 presents the printer parameters obtained. Note that in the experimental setup there is no mount 

between the printer and ground and hence no stiffness and damping between ground and m1. 

3.4. Model Analysis 

The dynamic model of the system follows closely with the ideal model. Figure 14 shows the displacement 

plot for ideal and dynamic model for Test 3 parameters from Table 5. The rectangular dotted box zooms the peak 

displacement region and expands below to show that the error between the two models is small and slight increase 

when there is a change of direction. Figure 15 presents the corresponding velocity vs time plot for the same parameters. 

The dynamic model velocity follows closely with the ideal velocity and the error occurs at transitions and peak velocity 

regions as expected. The experimental results for displacement and velocity for Test 3 are shown in Figure 16. The 

velocity signal has noises due to vision tracking and partly vibration, and is denoised in MATLAB using ‘loess’ 

method. The peak displacement is marked in the plot, occurring at the change of direction region. This error is an 

extruder overshooting error that affects the dimension of the printed part. The displacement plot is very similar to the 

dynamic and ideal model plot. Although the velocity plot is harder to compare, if observed closely, the velocity plot 

has similar transitional trends with the ideal and dynamic model velocity plot with similar peak velocities. 

Figure 14: Displacement plot for ideal and dynamic model for Test 3 parameters (above) and zoomed plot of rectangular region 

(below) 
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Figure 15: Velocity plot for ideal and dynamic model for Test 3 parameters (above), zoomed plot of red rectangular 

region (middle) and zoomed plot of blue rectangular region (bottom) 

Table 8 presents the peak displacement of the extruder carriage for all the models with their respective test 

parameters from Table 5 and their corresponding errors. The error between the experimental model and the dynamic 

model is less than the error between the experimental and ideal model. The average error between the dynamic and 

experimental model is 0.27 mm, while the average error between the experimental and ideal model is 0.31 mm. 

Therefore, the presented dynamic model gives a better prediction about the position of the extruder carriage system 

as compared to the ideal model. 
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Figure 16: Displacement (above) and velocity (below) plot for Test 3 experiment 

Table 7: Pixel data for different heights 

Height category Distance Pixels 

0-1 mm 180 590.72 

50-51 mm 180 643.56 

100-101 mm 180 620.65 

150-151 mm 180 559.87 

Although the experimental data has a few irregularities owing to the setup and vision tracking, the error is 

more consistent with the variation in the same height category. For instance, tests 2, 5, 12, and 15 are at the same 

height between 50-51 mm and have errors towards the higher side. In the same way, tests 4, 7, 10 and 13 have the 

same height between 150-151 mm and have error towards the lower category. The major reason for this error is mostly 

due to the vision system tracking related to pixel sensitivity (Table 7) and partly due to the change in stiffness in k3 

and vibration. Since the camera used captures wide angle views, the pixels captured are not uniform. The trend is 

towards higher pixels for higher error as can be seen from Table 7 and 8. If the errors from tests between height 50-

51 mm are ignored, the average error between the dynamic and experimental model is only 0.1 mm compared to 0.12 

mm. Thus, the dynamic model can represent the position of the carriage more accurately almost in the order of 0.1

mm. Highly precise tracking systems can give more practical results and identify the true position value of the extruder

carriage.
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Table 8: Peak displacement of the models and associated error 

Test 
Displacement 

Ideal (mm) (A) 

Displacement 

Dynamic (mm) 

(B) 

Displacement 

Experiment 

(mm) (C) 

Error (mm) (C-

A) 

Error (mm) 

(C-B) 

1 180 180.03 180.23 0.23 0.2 

2 180 180.04 180.89 0.89 0.85 

3 180 180.05 180.12 0.12 0.07 

4 180 180.05 180.02 0.02 0.03 

5 180 180.04 180.85 0.85 0.81 

6 180 180.04 180.31 0.31 0.27 

7 180 180.05 180.07 0.07 0.02 

8 180 180.06 180.05 0.05 0.01 

9 180 180.03 180.07 0.07 0.04 

10 180 180.04 179.96 0.04 0.08 

11 180 180.05 180.16 0.16 0.11 

12 180 180.06 180.84 0.84 0.78 

13 180 180.03 179.95 0.05 0.08 

14 180 180.04 180.06 0.06 0.02 

15 180 180.05 180.84 0.84 0.79 

16 180 180.06 180.29 0.29 0.23 

 

 

4. Predictive Control Concepts 

 
Predictive control is a feed-forward control used in systems when the system dynamics are well-known and 

can be predicted. The state-space equations provided earlier form the basis for implementing control system. In the 

previous section, it is shown that the presented dynamic model of the 3D printer can accurately predict the extruder 

carriage position in mid-range to high speeds. Implementing predictive control requires very less modification of the 

system such that the dynamic equations governing the system are almost the same with some minor additions. The 

main advantage of using predictive control is that it is easier to implement, requires smaller investment, and does not 

limit the printing speed. Predictive control with passive elements has the potential to reduce end position errors in 

printing. A spring-mass-damper system or an inverted pendulum can be used to minimize printing errors. To 

implement predictive control, the passive control system dynamic equations are added to the state-space equation with 

appropriate values. The state-space equations of the complete system will be of the form 

 

�̇� = (𝐴 + 𝑃)𝑋 + (𝐵 + 𝑄)𝑢 (49) 

 

4.1. Spring-Mass-Damper Example 

 
A spring-mass-damper system can be attached to the extruder carriage top surface as a passive control co-

design (Figure 17). When the extruder carriage moves, the system moves along with it, while having its own motion. 

To find the effect the spring-mass-damper on the carriage motion, the dynamic equations must be derived. Here force 

F is the force applied to the extruder carriage by the printer system which has been calculated earlier and shown in Eq 

12. The dynamic equations of motion for this system can be derived as: 
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�̈�6 = −
𝑘7

𝑚6t

𝑥4 +
𝑘7

𝑚6t

𝑥7 −
𝛽7

𝑚6t

�̇�4 +
𝛽7

𝑚6t

�̇�7 +
𝐹

𝑚6t

(50) 

�̈�7 =
𝑘7

𝑚7

𝑥4 −
𝑘7

𝑚7

𝑥7 +
𝛽7

𝑚7

�̇�4 −
𝛽7

𝑚7

�̇�7 (51) 

Note that 𝑚6t is the mass of the extruder carriage and the mass of the spring-mass-damper system. These

equations can be directly added to the system equations derived for the full system state-space equations. The resulting 

state space equation will have 2 additional states. 

[𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6 𝑧7 𝑧8 𝑧9 𝑧10 𝑧11 𝑧12𝑧13𝑧14]  =  [𝑥1 �̇�1 𝑥2 �̇�2 𝑥3 �̇�3 𝑥4 �̇�4 𝜃4 �̇�4 𝜃5 �̇�5𝑥7 �̇�7] (52) 

The state-space equation can be added in the form of Eq 49 to get the complete state-space equations for the 

dynamic model. It is clear that there is no significant change in the overall dynamics of the system. In equation 49, 

since there is no additional input force to the system, Q=0. The values of the mass, spring constant and the damping 

coefficient must be calculated using simulations to find the appropriate values to reduce end position error while 

making sure that the extruder carriage does not undershoot or overshoot.  

Figure 17: Spring-mass-damper system on the extruder carriage with free-body diagram 

4.2. Inverted Pendulum with Rotational Spring Example 

In this example an inverted pendulum with a rotational spring is mounted on top of the extruder carriage 

(Figure 18). The pendulum can rotate on top and its movement is dependent on gravity and motion of the extruder 

carriage. At the junction of the pendulum rod and the carriage there is a rotational spring of stiffness 𝑘7 (N/rad) trying

to keep the pendulum at vertical position. It is assumed that the spring force is acting against the rotation of the 

pendulum and has no effect in the horizontal motion of the extruder carriage. Thus, the extruder carriage motion is 

independent of the rotational spring force. The dynamic equation of the system will be derived first, and the effect of 

the rotational spring will be added at the end. Force F is applied to the extruder carriage by the printer system which 

has already been calculated.  

It is assumed that the pendulum does not rotate much and the value of 𝜃7 is small compared to the

displacement. This can be assumed due to the presence of the rotational spring. Mass of the pendulum is concentrated 
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at the center of the pendulum, assuming the mass of the rod is negligible. The linear acceleration of the extruder 

carriage is found to be 

 

𝑥4̈ =
𝐹

𝑚4

−
𝑚4𝑔𝜃7

𝑚7

(53) 

 

 
Figure 18: Inverted pendulum system with a rotational spring on the extruder carriage 

 

 

And the angular acceleration of the pendulum is found is 

 

𝜃7̈ =
(𝑚4 + 𝑚7)𝑔𝜃7

𝑚4𝑙
−

𝐹

𝑚4𝑙
+

𝑘7𝜃7

𝑚4𝑙
(54) 

 

Eq 53 and 54 can be added to the state space equation of the system derived earlier. Similar to the spring-

mass-damper system, 2 state variables will be added to the system 𝜃7 and �̇�7. In the case of the inverted pendulum, 

the effect of gravitational force is present in the equations of motion for both extruder and pendulum. This external 

force was not present in the spring-mass-damper system. Appropriate pendulum mass and length of the rod must be 

calculated by simulating the dynamic model such that the extruder carriage travels the required length. This step must 

be completed before implementing the system physically in the printer. 

 

5. Conclusions and Future Work 

 
The dynamic model of a cartesian-frame FFF 3D printer has been presented in this study. The non-

conservative and non-linear dynamic model of the extruder carriage system follows closely with the physical printer 

in study. The position of the carriage can be precisely determined with a high level of accuracy up to 0.1 mm. This 

shows that the dynamic model presented in this study is promising and can be further developed to determine the 

motion of the extruder carriage. The conservative dynamic model presented has been verified using both Newton-

Euler based force method and Lagrange’s energy method, validating the mathematical dynamic equations for the 

model. Modelling of FFF 3D printer has high potential to reduce printing and machine related errors, especially errors 

related to end position. Although the models will vary from printer to printer, Prusa frame printer users can use this 

model to estimate the extruder carriage position. Using the dynamic model, passive control elements can be introduced 

into the system to reduce printing errors by predictive control. The examples presented in this study can be modelled 

to calculate the parameters of the passive control elements and can be implemented in the physical system to study its 

effects and reduce end position errors; producing higher quality parts at higher speeds and reducing cost of production. 
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The model can also be used for feedback control as understanding and modelling of the system is paramount to both 

control methods.  
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