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Abstract 

Direct energy deposition (DED) is a promising additive manufacturing technique that enables the fabrication 

of complex structures with excellent mechanical properties. The quality of the final product depends on several 

parameters, including melt pool dynamics and thermal distribution. For process monitoring and continuous 

improvement of digital twins, in-situ monitoring allows real-time tracking of these parameters, providing valuable 

data for process optimization. However, existing monitoring methods are limited in their accuracy due to 

emissivity issues. To address this challenge, an in-house visible spectrum camera has been proposed for real-time 

process monitoring via dual-wavelength technique. Based on the analyses, the area and thermal distribution inside 

the melt pool can be estimated accurately. The data from the camera can be integrated into a digital twin’s 

continuous improvement, providing efficiency, and reducing the manufacturing cost. 

1 Introduction 

Additive manufacturing (AM) has shown significant promise in producing complex shapes, with advantages 

including enhanced mechanical characteristics, decreased weight, and shortened design times [1]. Among various 

AM techniques, direct energy deposition (DED) technique has been used by aerospace, healthcare, and offshore 

industries to manufacture new as well as repair worn-out parts [2]. DED provides huge potential at the verge of 

difficulties, including quality, dimensions, and reproducibility [3]. Defects such as cracks and keyhole pores can 

occur even when using pre-optimized process settings due to factors such as localized heat accumulation, surface 

imperfections, velocity fluctuations, and gas entrapment [4]. The mechanical performance of the printed parts 

might be severely impacted by the existence of these flaws [5]. To prevent build failures, AM relies heavily on 

promptly identifying and correcting defects. Ensuring the quality of parts while also saving time and costs 

simultaneously, the technique of 'in-situ monitoring' is gradually being adopted into AM research[6]. 

In recent years, there has been a notable surge in research and development activities focused on in-situ 

monitoring and defect detection in AM [7]. The current cutting-edge in-process sensing technologies employ 

vision or infrared (IR) thermal sensors to capture essential process characteristics, including melt pool geometries, 

acoustic emissions, and temperature histories [8]. These sensor outputs are then subjected to post-processing 

algorithms, such as machine learning (ML) models, to enable defect prediction [9]. Vision-based in-situ 

monitoring has emerged as a widely adopted method across various AM processes. For instance, real-time surface 

defect detection can be achieved using vision cameras equipped with ML algorithm [10]. In laser-based AM 

processes, employing vision sensors with IR optical filters allows for monitoring dynamic behaviors of the molten 

pool [11]. This information proves valuable in deposition height detection, feedback control, and distinguishing 

different melting states [12]. Moreover, leveraging additional temperature information, an IR thermal camera 

demonstrates enhanced effectiveness compared to a visible sensor when observing in-situ dynamics of the melt 

pool [13]. For instance, an in-situ thermal camera was employed to examine the impact of process parameters and 
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scan strategies on melt pool characteristics, such as size, shape, powder particle spattering, and heating and 

cooling rates in laser-based AM [14]. The investigation revealed that dynamic fluctuations in melt pool geometries 

exhibited associations with microstructure properties. Besides, the thermal diffusvity and layer thickness  can also 

be measured by IR thermographic inspection[15]. Through statistical analysis, crucial temperature features were 

extracted to identify unstable behaviors in the process plume [16]. A real-time porosity prediction approach was 

developed, utilizing morphological features extracted from thermal images of the melt pool [17]. ML models 

were then employed to classify melt pool dynamics and forecast porosity within the manufactured components 

[18]. Similarly, thermal signatures were linked with convolutional neural networks to capture effects stemming 

from lack of fusion [19]. 

The creation and implementation of digital twins (DTs) for laser-based AM processes rely heavily on in-situ 

monitoring devices [20]. DTs are simulations of real-world systems or processes that can be seen, analyzed, and 

predicted in real-time [21]. In laser-based AM techniques, DTs can enable process control, optimize process 

parameters, improve component quality, and provide useful insights into the production process [22]. Data is 

collected in real-time during the AM process, either from the manufacturing machine or the build environment, 

and analyzed. In-situ monitoring combined with the DT allows for the collection and application of real-time data. 

Temperature, melt pool characteristics, powder bed behavior and flow, and laser parameters can all be observed 

in real-time with the help of in-situ monitoring devices [23]. This information can be fed into the DT to enable 

real-time monitoring of the process, identification of anomalies, and fine-tuning of the process to achieve 

maximum efficiency [24]. This aids in the elimination of defects, enhancement of product quality, and the 

maintenance of stable printing quality. DT can foresee probable flaws by accessing data, including heat gradients, 

solidification rates, and part geometry [23]. This allows production facilities to detect problems and adjust, 

reducing waste and efforts. Due to their profound effect on the authenticity and dependability of the DTs, the 

careful and smart selection of in-situ monitoring device is of utmost importance in the field of DTs [25]. The 

reliability of the DT model, which depend on the acquired data, rests on the precision and accuracy of the 

equipment used to gather that data [26]. Careful device selection yields high-quality real-time data, which in turn 

allows the DT to accurately simulate the dynamics and behavior of its analog [26]. By allowing for comparison 

and correlation between simulated and real-time data, these monitoring devices are also crucial validators of the 

DT model. Such intelligent decisions aid in pinpointing areas for model improvement when discrepancies arise, 

ultimately improving the DT’s precision and utility across domains. 

In laser-AM, each monitoring device provides specific information, and can only be applied for a particular 

application. Currently in laser-based AM processes, short-wavelength infrared camera (SWIR) and long 

wavelength infrared camera (LWIR) and photodiode, are commonly applied to capture thermal distribution in the 

substrate as well as melt pool and its dynamics during printing process. Table 1 compiles the specifications and 

limitations of LWIR, SWIR and optical pyrometer. To address all the challenges and limitations posed by in-situ 

monitoring devices, an in-house visible spectrum camera has been proposed and developed for real-time 

monitoring using dual-wavelength technique, which can be used for DT improvement effectively. 

Table 1. Specifications and limitations of in-situ devices 

In-situ device Wavelength 

(µm) 

Temperature 

(°K) 

Limitations References 

Long wavelength 

infrared camera 

7-14 Measure range 

273-1500

• High Temperature measurements

• Phase change emissivity issue

• High cost

[27] 

Short wavelength 

infrared camera 

1-3 Measure range 

600-2200

• Can be interfered with laser beam

• Phase change emissivity issue

• High cost

[27]
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Optical Pyrometer 0.3-0.7 Measure range 

 1000-4000 

• Could not detect whole melt pool

area; Measuring capacity is limited

to 1-16 pixels

[27] 

2 Materials and Methods 

2.1 Planck’s Law and Spectral Radiance 

A black body absorbs all radiation and is determined by temperature T. As T increases, the spectral radiance 

B intensifies, resulting in a shift towards shorter wavelengths, as described by Planck’s law. Fig. 1 shows that the 

correlation of spectral radiance with T having different wavelengths. Charge-coupled devices (CCD) and 

complementary metal oxide semiconductor (CMOS) always absorb visible wavelengths from 400 to 700 nm. For 

short-wavelength infrared (SWIR), from 1 to 3 μm, and long-wavelength infrared (LWIR), from 7 to 14 μm, 

InGaAs and microbolometers are ideally used for designing sensors, respectively[28]. 

Figure 1. Spectral radiance & wavelength in Planck's law; from Ref [28] 

Planck’s law has been expressed in Eq. 1 [29] in terms of frequency. However, when calculating the 

spectral radiance, also known as intensity, emitted from a subject, it is more appropriate to describe Planck’s 

law in terms of wavelength. It is because the material properties of optical sensors are based on their ability to 

absorb different wavelengths. Planck’s law with the wavelength term is described by Eq. 2 [29], where B is the 

spectral radiance detected by the sensor, λ is the wavelength of the sensor, T is the temperature expressed in 

Kelvin, h is Planck's constant, c is the speed of light, and Kb is Boltzmann's constant. 

Different absorbers are distributed across various wavelength ranges, and each absorber has its suitable 

temperature measurement range. To determine which devices are appropriate for measurement, obtaining the 

total spectral radiance can provide the answer. Considering the properties of optical sensors, the spectral 

radiance absorbed from an object is integration from λ1 to λ2, as described in Eq. 3 [29]. Subsequently, 

conversion from spectral radiance and wavelength to temperature is performed using the inverse Planck law, 

described in Eq. 4 [29]. 

𝐵𝜈 (𝜈, 𝑇) =
2ℎ𝜈3

𝑐2

1

𝑒
ℎ𝜈

𝐾𝐵𝑇 − 1

. (1)
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𝐵𝜆(𝜆, 𝑇) =  
2ℎ𝑐2

𝜆5

1

𝑒
ℎ𝑐

𝜆𝐾𝐵𝑇 − 1

. (2) 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  ∫ 𝐵(𝜆, 𝑇)𝑑𝜆
𝜆2

𝜆1

. (3) 

𝑇(𝜆, 𝐵) =  ∫
ℎ𝑐

𝐾𝐵

1

𝜆ln (
2ℎ𝑐2

𝜆5𝐵
+ 1)

𝜆2

𝜆1

. (4) 

According to the inverse Planck’s law, LWIR absorber is capable of measuring temperatures from room 

temperature to 1500 K. The SWIR absorber, on the other hand, is suitable for measuring high temperatures above 

1000 K. Additionally, the visible absorber is effective in detecting high temperatures, particularly for materials 

with high melting points. Fig. 2(a) illustrates the LWIR is appropriate for measuring low to middle-range 

temperatures; SWIR and Visible spectrum is proper for middle to high temperature measurements. 

Figure 2. Inverse Planck's law from spectral radiance to temperature (a) Low to mid temperature, (b) Mid to high 

temperature 

2.2 Dual-Wavelength Method with Visible Spectrum 

In the DED process, the commonly used materials, such as Ti6Al4V and high carbon steel, have melting 

points exceeding 1500 °K. Consequently, SWIR and visible spectral devices are suitable for in-situ monitoring 

of the melt pool. Considering the interference caused by the laser source, the laser model used in this research is 

Nd: YAG with a wavelength of 1.067 µm. The visible spectrum presents itself as a potential and reliable candidate 

for the development of a device to monitor the melt pool. Therefore, a visible spectrum camera equipped with 

red, green, and blue channels is employed as the measurement device in this research. 

The phase change from solid to liquid during the DED process introduces an emissivity issue. In a typical 

IR camera setup, the emissivity is always constant, leading to inaccurate temperature measurements. However, 

achieving precise temperature measurements for the melt pool is crucial for the precise training of Digital Twin, 

especially in the in-situ monitoring stage.  

By using the dual wavelength method, as described in Eq. 5[28], the emissivity problem can be solved and 

an accurate measurement can be attained. With the dual-wavelength method, the object intensity I is detected 

using two different channels’ wavelengths, and the ratio between I1 and I2 is determined. Then the ratio is 
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converted to the corresponding temperature. In Eq. 5, A1 and A2 are the combined transmission through different 

optical devices, such as neutral density (ND) filter, lens, and detectors. The details of combined transmission will 

be discussed later. ɛ1 and ɛ2 represent the emissivity for two channels. Since the intensity detected by two channels 

reaches from the same object and the wavelength between the two channels is close, ɛ1 and ɛ2 can presumably be 

eliminated in the Eq. 5 to simplify the calculation. 

𝐼1

𝐼2
=  

𝐴1ɛ1
𝜆2

5

𝐴2ɛ2
𝜆1

5 exp (
ℎ𝑐

𝐾𝐵𝑇
(

1

𝜆2
−

1

𝜆1
)). (5) 

To obtain the T by dual-wavelength method, red and green channels are selected. Since the wavelengths are 

closer between these two channels, the calculated result from Eq. 5 is more robust. According to Eq.3, it shows 

that each T will have its corresponding intensity which means that intensity ratio 
𝐼𝐺𝑟𝑒𝑒𝑛

𝐼𝑅𝑒𝑑
 is also corresponded to T. 

Hence, T can be derived from the color intensity ratio of red and green signal. 

3 Experimental Design 

In designing the dual-wavelength visible spectrum device, it is necessary to obtain the intensity of each 

channel. The sensor used in this design is Sony IMX477, a CMOS type, and the radiance response for sensor is 

shown in Fig. 3(a). To make the signal imageable, an appropriate lens, Fig. 3(b), is mounted behind the sensor. 

Considering the deposit position, the lens was selected with focal length = 35mm, aperture = f/2.0, minimum 

object distance = 200mm and field of view (FOV) = 17.9. After the image and signal is captured by the sensor 

and lens, saturation is a critical problem that needs to be solved. The laser used in DED process to create melt 

pool as well as to melt powders is with high intensity; hence, there is a great possibility of saturation, also known 

as overexposure, on captured signal by each channel. In this scenario, ND filters, reducing the intensity of light 

uniformly across the spectrum without altering its color or hue, must be placed behind lens to mitigate saturation. 

Meanwhile, knowing the laser is high energy, placing hot mirror, as shown in Fig. 3(d), behind ND filters can 

prevent the sensor and lens from being damaged by laser, as shown in Fig. 3(c). The schematic of in-house visible 

spectrum camera is shown in Fig. 3(e).  

Figure 3. Optical components transmission (a) CMOS, (b) Lens, (c) Reflective ND filter, (d) Hot mirror, and (e) 

schematic of visible camera; from Ref. [30] except (e). 
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In this design, red and green are selected for channel 2 and channel 1, respectively, based on the description 

Sec. 2.2. In terms of A1 and A2, combined transmission, in Eq. 5, the transmission of each optical component must 

be multiplied since the detected signal is affected by optical components.  After calculating intensity with 

combined transmission, we can obtain the relationship between T and ratio value (IGreen / IRed). Fig. 4 shows that 

the ratio value 0.50294 corresponds to 1700 °K, and 0.72497 corresponds to 2400 °K.  

Figure 4. Correlation between temperature and measured intensity ratio(G/R) 

Equipment, as shown in Fig. 5, is used in this research having 3-axis table and Nd: YAG laser. SWIR camera 

is used to monitor the melt pool during glass printing while in-house developed visible camera has been used to 

monitor the melt pool of high melting point materials such as Ti6Al4V,ceramic, and glass. 

Figure 5. Glass printing DED machine and monitoring equipments setup 

4 Results and Discussion 

The main objective of this research is to demonstrate the feasibility of using an in-house visible camera with 

a dual-wavelength method for in-situ monitoring of the melt pool, while also reducing the cost associated with 

expensive commercial optical equipment. The monitoring results obtained from SWIR, LWIR, and thermocouple 
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measurements will be presented. Subsequently, this chapter provides a comparison between the in-house camera 

and a commercial SWIR camera. 

The in-house visible camera performs real-time measurements during the DED process. It captures intensity 

from the red and green channels, calculates the ratio, and then converts it to temperature using Eqs. 3 and 5. Fig. 

6 displays the preliminary results of the algorithm based on Planck’s law and the dual-wavelength method. The 

column and row indices represent the coordinates of each pixel. At the coordinates (35, 52), the intensity ratio is 

0.561798, which corresponds to a temperature of 1885 °K. In Fig. 6(a), even if some ratios are not zero, they are 

converted to 0 °K because the measurement range specified in the intensity algorithm is from 1600 to 2500 °K, 

as shown in Fig. 4. Based on Fig. 2, it is mentioned that a camera with a visible spectrum is more suitable for 

high-temperature measurements (T > 1800 °K). However, the measurement range is flexible and can be adjusted 

within the algorithm. 

Figure 6. (a) Intensity ratio and (b) converted temperature using dual-wavelength method 

During the DED of Ti6Al4V, in-house developed camera can accurately monitor the melt pool area and 

temperatures pixel by pixel. In Fig. 7(a), the camera analyzes the intensity from the red and green channels for 

each pixel. The top arrow indicates that the intensity of the red and green channels is 140 and 81, respectively. 

The bottom arrow indicates that the red and green intensities are 218 and 155, respectively. The trend of the 

converted temperature is precise because the temperature is higher when the color is closer to white. When the 

color is white, the intensities of red, blue, and green channels are 255. Conversely, black color corresponds to an 

intensity of 0 for all three colors. Fig. 7(b) represents a color-mapped graph for a raw image, accurately depicting 

the thermal distribution of the melt pool. In addition to the in-house camera, LWIR and thermocouple 

measurements were also used during the deposition process. 

Figure 7. Ti6Al4V deposit  melt pool using in-house developed camera (a) raw image, and (b) post-processed image 
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Fig. 8 illustrates the limitations of using thermocouple and LWIR devices to monitor the melt pool. Firstly, 

the LWIR camera is only suitable for measuring temperatures lower than 1800 ºK. Fig. 8(a) shows the deposition 

schematic while Fig. 8(b) shows the actual deposition and measurement using thermocouple. Fig. 8(c) 

demonstrates that the LWIR camera can detect low temperatures on the substrate and areas without phase change 

effectively. However, when it comes to the melt pool, the LWIR camera struggles to distinguish it accurately, 

resulting in an ambiguous image. Secondly, the thermocouple is unable to withstand the high power from the 

laser and gets broken during the deposition process, as shown in Fig. 8(b). 

Figure 8. DED deposition (a) schematic, (b) measurement with thermocouple, and (c) long wavelength infrared camera. 

To validate the accuracy of in-house visible camera, this research conducted a comparison with commercial 

SWIR cameras. This comparison was made due to the partial overlap of the SWIR measurement range with the 

visible spectrum, especially when monitoring high temperatures, as indicated by the results in Fig. 2. During DED 

of glass, two cameras monitor melt pool simultaneously. The highest melt pool temperatures measured by two 

cameras agree well, as shown in Fig. 9; in-house visible camera and commercial SWIR measurements are 1655.2 

°C, and 1636.9 °C, respectively. The error between two cameras is 1.1%, proving the feasibility of designing an 

in-house visible camera. Due to the differences in the mounting positions and the field of view of the two cameras, 

the raw image displayed on Fig.9(a) may not appear the same as Fig. 9(b). However, despite these variations, the 

measurement results obtained from both cameras demonstrate a high degree of similarity and exhibit minimal 

error. 

Figure 9. Comparison between (a) in-house visible camera and (b) commercial short wavelength infrared camera in glass 

printing using DED. 
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5 Conclusion 

To develop a digital twin of the DED process, in-situ monitoring of the melt pool is crucial because the 

thermal distribution within the melt pool significantly affects the quality of the deposition. Therefore, it is essential 

to have an appropriate device for accurate in-situ monitoring of the melt pool, taking into consideration the 

emissivity issue and the measurement range. 

In this research, Planck’s law is utilized to assess the measurement range of visible spectrum, SWIR, and 

LWIR. The results demonstrate that visible and SWIR are reliable for high-temperature measurements. 

Considering the deposited material with a high melting point and the interference from the laser, a visible 

spectrum camera proves to be a suitable option. Moreover, the emissivity issue caused by the phase change during 

the DED process is addressed using a dual-wavelength method. By capturing the intensity radiated by the deposit 

in two channels, the impact of varying emissivity is eliminated.  

The in-house visible camera designed in this research accurately captures the thermal distribution of the melt 

pool during Ti-6Al-4V deposition. Its accuracy is validated by comparing the measurements with a commercial 

SWIR camera during glass printing, with an error rate of only 1.1%. Additionally, the cost of the in-house camera 

design is 20 times lower than that of a commercial camera. These findings demonstrate the feasibility and potential 

of utilizing a dual-wavelength visible camera for accurate in-situ monitoring, while also reducing instrumentation 

costs. This research encourages the development of a digital twin for the DED process. 

6 Future Work 

Based on the aforementioned results, this research defines the role of in-situ monitoring for digital twin 

development and designs a reliable and cost-effective visible camera for this purpose. The ultimate goal of 

this series of studies is to develop complete digital twins. The following future work has been proposed: 

• Validating the DED process model through experiments and simulations to ensure data reliability.

• Generating low- and high-fidelity data using multi-physics models and experiments to establish a

database for machine learning models.

• Designing and constructing an AI surrogate model for predicting melt pool temperature, area, and

cooling rate.
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