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Abstract 
A distributed digital factory (DDF) integrates physical and digital systems, leveraging additive 

manufacturing (AM) and subtractive manufacturing (SM), to enable the dispersed production of components. 
Existing work focuses on digital twins, AM and SM systems, and some security aspects. Nevertheless, a holistic 
view of integrating devices with dynamic provisions to invoke digital twins has limited supporting research. This 
paper will detail cyber-physical and digital systems deployed in DDFs. The components of cyber systems, 
including AM & SM equipment, sensors, communication protocols, and monitoring software, are covered. 
Challenges associated with the design and deployment of DDFs, such as security, scalability, and interoperability, 
are detailed. The assessment emphasizes an open framework for DDF development, allowing system integration 
from vendors & participants across diverse locations and capabilities. The article also examines the significance 
of a scalable and secure framework for the implementation of DDFs, which ensures the dependability and 
availability of on-demand manufacturing. 
Keywords: Secure distributed digital factory; Additive manufacturing; Subtractive manufacturing; Challenges 
with distributed digital factory; Scalability and interoperability. 

1 Introduction 
A digital factory (DF) is a modern manufacturing facility that optimizes and streamlines production 

processes by utilizing advanced digital technologies such as the Internet of Things (IoT), artificial intelligence 
and machine learning (AI/ML), digital twins (DTs), automation, and robotics [1]. As shown in Fig. 1, they use 
digital technology to create a virtual replica of the manufacturing environment, allowing manufacturers to 
simulate and test production processes before implementing them in the real world [2]. This improves 
manufacturing efficiency, quality, flexibility, cost savings, and sustainability. DFs are significant as they assist 
manufacturers in producing high-quality products in a more efficient manner [3]. DFs can reduce the time to 
manufacture products, increase production capacity, and lower production costs by automating repetitive tasks 
and optimizing production processes [3]. Furthermore, DFs can monitor production processes in real time, 
identifying and correcting any problems as they occur, resulting in higher product quality and lower defect rates 
[4]. DFs also provide manufacturers with flexibility, allowing them to reconfigure production processes quickly 
in response to changes in product design or demand [5]. It is useful in industries with rapidly changing trends and 
customer preferences. In terms of cost savings, DFs aid in the elimination of waste and the optimization of 
production processes, resulting in lower production costs and higher profitability [5]. 
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Figure 1. Schematic of a digital factory; based on the information in Ref. [6]. 

In DF, the convergence of digital manufacturing technologies across every phase of a product’s lifecycle is 
affecting the physical machines on the production floor, encouraged by breakthroughs in manufacturing plant 
hardware and software solutions [7]. The ability to securely and easily access, transmit, and evaluate real-time 
streaming data from production machine tools to central IT systems is critical to understanding this amalgamation 
[8]. While many modern machine tools have sensing and control systems, their data transfer and digital interfaces 
are usually complex and/or proprietary. The lack of plug-and-play digital integration impedes these equipment’s 
seamless digital operation within DF. Although new CNC machines include MT-CONNECT support, many 
previous generations require hardware devices as well as particular programming to convert data to the MT-
CONNECT standard [9]. When machines on a shop floor are interconnected and integrated into an IT system, 
insights can be generated to conduct shopfloor and enterprise-level analytics. In turn, such analytics can serve to 
illuminate both engineering and business decisions. 

In DF, the customary procedure for realizing a product comprises four stages: (a) comprehending customer 
requirements, (b) formulating new ideas, (c) selecting a fitting design proposal, and (d) manufacturing [10], as 
shown in Fig. 2. The exchange of information among diverse stakeholders, including users, designers, and 
manufacturers involved in these stages of the product realization process, is crucial for proficient product 
development [11]. The Internet and other related innovations in IT have supported collaborative design platforms, 
such as computer-aided design/ computer-aided manufacturing (CAD/CAM) design and process planning, with 
real-time information flows among stakeholders [12]. This has resulted in the effective assimilation of distributed 
domain expertise of the stakeholders into the product realization process. Emerging trends in sensing equipment, 
tracking systems, and location-based services are providing designers with instantaneous information on the 
product’s usage patterns, performance, and failures [13]. The real-time data, coupled with big data analytics, 
cloud computing, and AI/ML, are providing designers with invaluable insights into their products and users. 
These advancements are revolutionizing the product landscape by effectively integrating the four stages of the 
product realization process. 
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Figure 2. Various stages for a product realization in a DF; based on the data provided in Refs. [10,14,15]. 

Due to advances in Internet technologies, collaborations in product design and manufacturing are no longer 
restricted to enterprises and national borders. For effective product development, sharing sensitive information 
such as intellectual property, business intelligence, and customer information with other collaborators is essential. 
Due to differences in security practices, laws and regulations, and threat landscapes, these collaborations 
unfortunately heighten the risk of information leakage. Such variances pose a significant threat to all parties 
involved in the product realization process, including designers, manufacturers, suppliers, and end-users. In 2013 
and 2014, Target’s data breach resulted in the compromise of up to 70 million customers' credit card accounts via 
a third-party vendor [16]. Chrysler announced in July 2015 that it is issuing a formal recall for 1,400,000 vehicles 
that may be affected by a software vulnerability in the Uconnect dashboard computers due to the threat of hackers 
[17]. These attacks exploit the system’s vulnerabilities and can cause even greater destruction in each system. 
Individual systems are vulnerable not only to security flaws but also to flaws in the interconnections between 
these systems, making it more difficult for stakeholders to detect or prevent an attack. In the event of an attack, a 
vulnerable system that controls physical systems can cause significant damage that extends beyond brand and 
business operations [18].  

These breaches can potentially cause infrastructure damage, negative environmental effects, and even loss 
of life. Stealth attacks are actions taken by an attacker to conceal their activities to avoid detection [19]. Even 
after they are launched, such attacks can go undetected. For example, the most well-known stealth attack is 
Operation Aurora, which targeted thirty-four organizations, including Google and Yahoo, and went unnoticed for 
more than six months after it was launched [20]. Stealth attacks last an average of three hundred and twelve days 
before the targeted organization becomes aware of the vulnerability that led to the attack [21]. In some cases, 
compromised products can be used to provide the computational resources required to carry out such attacks 
without the users’ knowledge. Such circumstances raise ethical concerns for stakeholders involved in the product 
development process, particularly non-security experts who may unwittingly become targets or participants in an 
attack. To avoid security breaches, product designers should make security an integral part of the product 
development process rather than an afterthought. 

This review paper introduces the novel concept of distributed DF (DDF) in section 2. Various examples of 
cyber-physical systems and their DTs have been compiled in section 3 while cyber-physical- and -digital Systems 
for distributed DF components have been listed in section 4. Section 5 discusses the security considerations and 
mitigations in DDF. Open standards for DDF have been compiled in section 6. DTs and their development have 
been highlighted in section 7. The future research directions as well as conclusions have been provided in sections 
8 and 9, respectively. 
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2 Why Distributed Digital Factory is Novel? 
A distributed digital factory (DDF) is a manufacturing system that decentralizes and distributes various 

production processes across multiple locations by utilizing digital technologies and interconnected systems. It 
enables a network of interconnected manufacturing facilities or nodes by leveraging the power of advanced 
technologies such as IoT, cloud computing, AI/ML, and automation. An example of a DDF for manufacturing is 
shown in Fig. 3. Different stages of the manufacturing process can be performed at multiple locations, which are 
often geographically dispersed, in a DDF. Traditional factory floors, remote facilities, supplier sites, and even 
customer premises can be considered. The nodes are linked together by a digital network, which allows for real-
time communication, data sharing, and coordination. A DDF’s key components and features may include (a) 
connectivity and IoT, (b) data analytics and AI, (c) cloud computing, (d) virtualization and simulation, (e) 
automation and robotics, and (f) collaborative tools and communication. In connectivity and IoT, the use of 
sensors, devices, and connectivity infrastructure to collect and transmit data from various machines and equipment 
in real-time [22]. Advanced analytics techniques and AI algorithms are used in data analytics to analyze data 
generated by different nodes, enabling predictive maintenance, process optimization, and decision-making [23]. 
Cloud computing refers to the use of centralized cloud-based platforms to store, process, and share data, thereby 
providing scalability, flexibility, and accessibility to various stakeholders across the network [24]. Virtual models 
and simulations are used to test and optimize manufacturing processes, reducing the need for physical prototypes, 
and lowering the risk of errors or failures [25]. Automation and robotics integrate automated systems, robotics, 
and autonomous machines to perform tasks with precision and efficiency, reducing the need for manual labor and 
increasing productivity [26]. Collaborative tools and communication include digital collaboration tools that 
facilitate communication and coordination among geographically dispersed teams, such as video conferencing, 
instant messaging, and virtual reality [27]. 

Figure 3. Schematic of a distributed digital factory for manufacturing. 

The DDF concept expands on the DF concept by adding a layer of decentralization and distribution of 
manufacturing processes. A DF focuses on digitizing and optimizing operations in a single location, whereas a 
DDF goes a step further by leveraging interconnected systems across multiple locations. Production processes in 
a traditional DF are typically concentrated in a single location [28]. A DDF, on the other hand, spreads production 
activities across multiple locations, which could include multiple factory sites, supplier facilities, or even 
customer premises. This decentralization enables greater adaptability and agility in meeting market demands and 
optimizing resources. A DDF is comprised of interconnected nodes that communicate, share data, and collaborate 
in real time. This interconnectedness allows for seamless coordination between different locations, data-driven 
decision-making, and efficient resource allocation and optimization. The DDF concept encourages collaboration 
and partnership among various manufacturing ecosystem stakeholders. It promotes the incorporation of suppliers, 
customers, and other partners into the manufacturing process, allowing for shared information, synchronized 
production planning, and effective supply chain management. A DDF improves scalability and resilience by 
distributing production processes across multiple locations. It enables easier expansion or contraction of 
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production capacities based on market conditions, reduces risks associated with single-location reliance, and 
allows for rapid adaptation to disruptions or changes in demand. Industries can use the DDF to access specialized 
capabilities or resources located in different locations. Certain regions, for example, may have specialized 
expertise, better access to raw materials, or lower costs. Industries can improve production efficiency and cut 
costs by leveraging these distributed resources. The DDF concept represents a step forward in manufacturing 
operations, leveraging the power of digital technologies and interconnectedness to create a flexible, collaborative, 
and resilient manufacturing ecosystem. It broadens the possibilities beyond a single location and enables 
businesses to adapt and thrive in a globally interconnected and dynamic marketplace. 

DDF presents several communication and coordination challenges. Effective communication and 
coordination become more difficult when multiple locations are involved in the manufacturing process. 
Coordinating tasks, sharing information, and maintaining synchronization between different locations can be 
difficult and time-consuming. Managing a DDF entails managing a more complex network of interconnected 
facilities and systems, which adds to the complexity. This complexity can result in increased maintenance and 
operational costs. Furthermore, managing and troubleshooting technical issues across multiple locations can be 
time-consuming and challenging. DDF entails the transmission of sensitive data and information across multiple 
locations and networks, posing data security and privacy risks. This raises the possibility of data breaches, cyber-
attacks, and unauthorized access to sensitive information. Implementing strong security measures and protecting 
data privacy becomes critical, but it can be more difficult in a distributed environment. Setting up and maintaining 
the infrastructure required for DDF is time-consuming and demands additional resources. To ensure smooth 
operations, each location must have appropriate technology, connectivity, and supporting systems. This can entail 
significant upfront and ongoing costs. DDF is heavily reliant on reliable and fast network connectivity. Any 
network disruption or downtime can impede communication, data transfer, and real-time collaboration between 
different locations. Because of this reliance on network connectivity, there is a potential point of failure that 
necessitates backup plans or redundant systems to mitigate the risk. Operating a DDF frequently entails managing 
diverse teams in multiple locations, which presents cultural and organizational challenges. Collaboration and 
coordination can be hampered by cultural differences, language barriers, and disparities in work practices. 
Building a cohesive and unified organizational culture becomes critical, but it can be difficult when teams are 
dispersed geographically. DDF manufacturing processes may need to comply with various regulatory frameworks 
and legal requirements in different locations. Navigating complex regulations, standards, and compliance 
obligations can be time-consuming and difficult. 

3 Cyber-physical Systems & Digital Twins 
The proliferation of pervasive computing and sensing technologies has aided in the emergence and 

advancement of cyber-physical systems (CPSs) and Digital Twins (DTs). The evolution of both concepts is 
defined below. 

3.1 Advancement of Cyber-physical Systems and Digital Twins 
Due to the interaction between developing technologies and the ever-increasing needs of modern society, 

cyber-physical systems (CPSs) have undergone a remarkable evolution since their inception. CPS is based on the 
idea that computers and physical systems can be combined in a single system to improve communication and 
coordination between the digital and physical realms [29]. A schematic of CPS is presented in Fig. 4. 
Transformative applications in fields as diverse as transportation, healthcare, manufacturing, and energy systems 
have resulted from this integration [30]. 
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Figure 4. Schematic of a cyber-physical system; based on the information provided in Ref. [31]. 

Early in the history of computing, disconnected computational systems began interacting with physical 
processes, marking the beginning of what would later become known as CPS [32]. At first, the focus of such 
systems was on monitoring and control, using sensors and actuators to track and manipulate physical processes. 
Networking technologies have gradually made it easier for CPS components to communicate with one another, 
allowing for remote monitoring and control of dispersed systems [33]. CPS started behaving more autonomously 
and intelligently as computer device capabilities and miniaturization improved [34]. CPS were given the ability 
to learn and adapt on their own by the incorporation of AI techniques. As a result, intelligent CPS was developed, 
which can make decisions and optimize itself in real time based on data, environmental feedback, and set goals 
[34]. The introduction of IoT has also marked a watershed moment in the development of CPS [35]. By linking 
devices and sensors, the IoT has enabled the creation of a large network of interconnected physical objects, vastly 
increasing the scale and scope of CPS [35]. This connectivity has allowed for the unhindered flow of data between 
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CPS nodes, improving the effectiveness of information sharing and opening the door to novel uses in areas as 
diverse as smart homes, smart cities, and precision agriculture. Additionally, developments in wireless 
communication technology have been critical to CPS’s development [36]. The shift from hardwired to wireless 
connections has liberated CPS, allowing for more versatile deployment and more portability [36]. As a result, 
CPS has been able to spread into more dynamic and mobile settings, such as self-driving cars, wearable tech, and 
unmanned aerial systems [37]. The current integration of CPS with new technologies such as edge computing and 
5G networks has accelerated its development [28]. To reduce latency and provide real-time processing and 
decision-making, edge computing makes use of distributed computing resources situated closer to the physical 
systems [28]. Meanwhile, 5G networks’ high speed and low latency have opened new opportunities for CPS 
deployment by allowing the seamless integration of various components across wide geographical areas [38]. The 
development of CPS has tremendous potential. CPS design and operation may be drastically altered by the advent 
of quantum computing and its ability to address intricate optimization and simulation challenges [39]. 
Collaborative CPS, in which humans and machines work together synergistically to increase productivity and 
expand human capabilities, will also be propelled by developments in robotics and human-machine interaction 
[40]. 

Quantum computing could have a huge effect on DTs. A tremendous advancement, driven by the synergistic 
integration of state-of-the-art scientific fields and cutting-edge technology, has defined the development of DTs) 
[41]. DTs have progressed far from their original conception as virtual reproductions of tangible assets to complex 
CPs. The IoT, data science, and AI/ML are just a few of the scientific disciplines that have come together to fuel 
this shift [42]. DTs can imitate and emulate the complex behavior, performance, and interdependencies of physical 
things with a new level of fidelity by leveraging cutting-edge algorithms and real-time data streams [43]. The 
predictive power of DTs has been greatly improved using sophisticated modeling techniques, including 
computational fluid dynamics, finite element analysis, and multi-physics simulations [44]. Accurate bottlenecks, 
vulnerabilities, and optimization possibilities can be found with the help of these models for complex procedures, 
processes, and systems [44]. In addition, dispersed networks have been made possible because of the effective 
combination of DTs, edge computing, and cloud computing, enabling real-time monitoring, control, and decision-
making across a wide variety of networked devices and platforms [45]. Emerging technologies have accelerated 
the development of DTs. With the advent of 5G networks and their high bandwidth and low latency, DTs have 
entered a new era of rapid and reliable data transmission between real-world assets and their digital equivalents 
[46]. As a result, operational efficiency, downtime, and performance may all be boosted across a wide range of 
domains owing to real-time analytics and decision-making [46]. Quantum computing could have a huge effect on 
DTs [47]. DTs employ complicated algorithms and models; quantum computing’s amazing processing capacity 
and ability to process huge quantities of data in parallel hold promise for process optimization [47]. This has the 
potential to open new methods for dealing with difficult optimization problems, boosting the precision and 
efficacy of DT simulations even further. 

3.2 Comparison Between Cyber-Physical Systems and Digital Twins 
There are two different but related ideas in the world of cutting-edge technological systems: CPS and DTs, 

which are interesting and important in their own ways. However, these two terms are completely different from 
each other. For interconnected systems that can perceive, analyze, and act upon based on the surroundings, the 
term CPS is used to describe the combination of computing algorithms, physical components, and communication 
networks. Fusion of physical elements with digital intelligence is a common component of CPS, allowing for 
fully or partially autonomous decision-making and control. Real-time responsiveness, adaptability, and 
interactivity with the physical world via sensors, actuators, and networked interfaces are the hallmarks of such 
systems. DTs, on the other hand, are digital representations or simulations of real-world items, operations, or 
infrastructure. Advanced modelling approaches and real-time data streams are used by DTs to accurately recreate 
their physical counterparts in terms of behavior, performance, and interdependencies. They connect the actual 
world with the virtual one, making it possible to track, analyze, and fine-tune all aspects of a system. DTs provide 
virtual hypothesis testing and validation, scenario-based performance prediction, and data-driven decision 
making. The primary difference between CPS and DTs is the former’s intent and the latter’s utility. Autonomous 
or partially autonomous systems that can interact with the physical world are the primary focus of CPS, which 
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places a premium on the integration of physical and digital elements. DTs, on the other hand, are primarily 
concerned with creating a digital representation and simulation of physical things for the purposes of gaining 
insights, optimizing performance, and providing decision-making assistance. In most cases, DTs are employed in 
tandem with CPS to improve the efficiency of the latter through real-time monitoring, analysis, and prediction. 
Despite their shared use of real-time data, sophisticated algorithms, and interconnection, the scope and application 
of CPS and DTs are distinct. Smart grids, autonomous vehicles, and industrial automation are just a few examples 
of the many CPSs that fall under the umbrella of CPS. In contrast, DTs can be adapted to specific assets, processes, 
or systems for in-depth examination and optimization. The difference between CPSs and DTs has been classified 
in Fig. 5. 

Figure 5. Difference between cyber-physical systems (CPSs) and digital twins (DTs); based on the information provided 
in Refs. [29,48]. 

3.3 Features in Cyber-physical Systems and Digital Twins 
CPSs and their DT counterparts represent a physical-virtual convergence in which networked devices and 

sophisticated computing capabilities enable seamless integration and interaction, as shown in Fig. 6. Several 
important traits emerge in this context, emphasizing the distinctive nature of CPS and associated DTs. CPS and 
DTs have a strong link between the physical and digital components. The physical system, which consists of 
sensors, actuators, and real-world entities, continuously generates data, which the DT captures and processes. 
This interaction enables bi-directional information flow, allowing for real-time monitoring, analysis, and control 
of the physical system. The ability to mimic and forecast system behavior is another distinguishing property of 
CPS and DTs. DTs may perfectly recreate the dynamics and responses of a physical system by producing a virtual 
representation. These simulation capabilities can be used to estimate system performance, analyze multiple 
scenarios, and optimize decision-making processes, ultimately improving overall system efficiency and 
resilience. CPS and DTs also make advanced data analytics and AI/ML approaches possible. The massive volume 
of data produced by the physical system, when paired with historical data stored in DTs, enables sophisticated 
analysis and pattern recognition. These techniques can be used to install predictive maintenance, anomaly 
detection, and optimization algorithms, allowing for proactive system management and failure mitigation [49]. 
CPS and their DTs rely heavily on interconnectivity and interoperability. These systems are based on 
interconnected devices, networks, and protocols that allow for smooth communication and integration across 
multiple components and subsystems. Interoperability ensures compatibility and standards, simplifying 
information sharing and encouraging collaboration among many stakeholders such as manufacturers, operators, 
and service providers. Furthermore, CPS and DTs have effective cybersecurity capabilities. These systems are 
vulnerable to different cyber risks and attacks since they operate in a highly networked environment. To defend 
against unwanted access, data breaches, and system disruptions, robust security measures such as encryption, 
authentication, and intrusion detection systems are installed, assuring the integrity and confidentiality of important 
information. CPS and DTs support a scalable and adaptable design. These systems’ modular design enables for 
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simple extension, adaption, and customization. New sensors, actuators, or capabilities can be effortlessly 
incorporated into existing infrastructure, ensuring scalability to meet changing needs. The flexibility of CPS and 
DTs allows for interoperability with other developing technologies such as cloud computing, edge computing, 
and the IoT, allowing for greater system integration and functionality. 

Figure 6. Cyber and physical system interaction; based on the information provided in Refs. [48,50]. 

3.4 Cyber-physical Systems and Digital Twins for Various Sectors 
Although still in its nascent stages, CPS is catalyzing a transformative shift across diverse sectors, including 

manufacturing, healthcare, and transportation, by integrating control, communication, and computational 
capabilities. For instance, the application of CPS was explored in smart manufacturing to optimize productivity 
for mass production and global marketing [51]. A 5-level system architecture was proposed for implementing 
CPS in manufacturing, encompassing configuration, cognition, cyber, data-to-information conversion, and smart 
connection levels [52]. Similarly, the utilization of CPS was investigated for achieving intelligent transportation 
systems, focusing on traffic control, command, and information flow [53].  

The role of sensors, actuators and communication networks in realizing smart traffic lights and traffic flow 
systems was highlighted. A comprehensive CPS architecture was presented, emphasizing computation, 
communication, and control, to enhance transportation services' safety and quality [54]. Nevertheless, challenges 
such as privacy concerns, security, testing costs, inoperability, and software/hardware access hinder the 
advancement of CPS [55]. These issues were addressed by designing an integrated traffic-driving-network 
simulator to evaluate transportation CPS efficacy. Additionally, CPS applications were explored in aviation to 
improve flight safety and airworthiness and in medical science for real-time risk mitigation using embedded threat 
detectors [56,57]. Distinct from CPS, DT primarily focuses on models and data transmission between physical 
artifacts and digital representations [58]. DT’s application across industries remains limited compared to CPS. In 
manufacturing, a DT prototype was developed for optimizing adaptive behavior in production systems using 
automated guided vehicles [59]. The utilization of DT was explored for shop floor management systems in a 
logistic learning factory [60]. A conceptual framework was proposed for DT models integrating product design 
and manufacturing processes [61]. A DT healthcare system was provided that supervises, diagnoses, and predicts 
the well-being of elderly individuals [62]. A DT framework was presented for hospitals, enabling virtual health 
supervision, diagnostics, and future predictions based on patient data [63]. Addressing the challenges of 
inaccurate data specification and implementation errors is crucial for the widespread adoption of CPS [64]. 
Seamless and accurate information flow between the cyber and physical realms must be further improved. Recent 
studies have emerged to harness the capabilities of CPS and DT in various domains. A deep learning-based DT 
and CPS framework was developed to advance smart manufacturing [65,66]. Table 1 summarizes a few literature 
studies on CPS and DTs. 
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Table 1. Cyber-physical systems in various industries 
Focusing areas Type References 

Transport (Traffic system, service evaluation) CPS [53][54][55][48] 

Aeronautics (Safety) CPS [56] [48]

Manufacturing (smartification, optimization, and management) DT, CPS [48,51,60] 

Medical (Risk analysis, human-medicine interaction, healthcare, 
and hospitalization) 

DT, CPS [28,48,57,62,63] 

4 Components and Role of Cyber-physical and -digital Systems 
This section discusses the components of distributed digital factory (DDF), and role of localized middleware 

in DDF. 
4.1 Components of Future Distributed Digital Factory 

The components of a DDF may differ based on the specific implementation and technology used. However, 
below are some examples of common components: 
a) These are physical machines, devices, and systems that can gather and exchange data across a digital network.

Robotic arms, AM, SM sensors, and automated assembly lines are some examples.
b) IoT devices are critical components of a DDF because they collect and transmit data from numerous sources,

allowing for real-time monitoring, control, and optimization. Sensors, actuators, and smart tools are examples
of IoT devices.

c) For data analysis, ML/AI applications, cloud-based systems provide storage, processing capacity, and
computing resources. The cloud enables centralized data administration and access from a variety of places.

d) Advanced data analytics and AI technologies are used to process the huge amounts of data generated by the
DDF’s many systems and equipment. To improve efficiency and productivity, AI systems can provide
insights, predictive analytics, and optimization tactics.

e) To connect all components of the DDF, a strong and dependable network infrastructure is required. High-
speed internet connectivity, secure communication protocols, and networking technologies such as Ethernet
or Wi-Fi are all part of this.

f) A DT is a real-time virtual reproduction of a physical factory, representing its operations, systems, and assets.
It enables modeling, analysis, and optimization before changes are implemented in the physical factory.

g) Collaborative robots assist human employees while increasing productivity, safety, and flexibility.
Collaborative robots can do repetitive or hazardous duties, allowing human workers to focus on more
complicated or creative tasks.

h) Augmented and virtual reality technologies create immersive and interactive experiences, allowing for remote
training, maintenance, and troubleshooting. They can also help with quality control and inspection.

i) A DDF entails integrating suppliers, logistics, and manufacturing processes across multiple sites and
organizations. Supply chain management systems, data exchange platforms, and standardized communication
protocols can help with this integration.

j) In a DDF, ensuring the security of data, systems, and intellectual property is critical. To safeguard sensitive
information, robust cybersecurity safeguards, encryption, access controls, and data privacy regulations are in
place.
It should be noted that these components are interconnected and collaborate to form a DDF industrial

ecosystem. The examples may differ depending on the implementation and industry, but they always involve the 
integration of physical machinery, digital technology, and data-driven decision-making processes. 

4.2  Role of Local and Centralized Middleware in Distributed Digital Factory 
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Local and centralized middlewares are critical in facilitating DDF communication, coordination, and 
integration. Here’s a summary of their responsibilities: 

4.2.1 Local middleware  
Local middleware is software and communication protocols that are implemented locally, generally within 

specific machines, devices, or subsystems. Its responsibilities include the following: 
• It allows for the integration and communication of several machines, sensors, actuators, and other devices

inside a single local area or workstation. It ensures that these devices can communicate with one another and
exchange data.

• It collects and analyzes data generated in real time by local devices, sensors, and systems. It allows for local
data capture, filtering, and transformation before passing it to higher-level systems for additional analysis and
decision-making.

• It offers control and management capabilities for local devices. It allows you to monitor, configure, and
coordinate operations within a given machine or subsystem.

• It enables real-time communication and interaction between devices, allowing them to collaborate,
synchronize, and coordinate their operations within their immediate surroundings.

• Local faults or anomalies, such as device failures or communication issues, can be detected and handled. It
may include fault tolerance, error recovery, and local system resilience techniques.

4.2.2 Centralized middleware 
In the DDF design, centralized middleware runs at a higher level. It is concerned with controlling and 

organizing interactions among various local locations, workstations, or subsystems. Its responsibilities include 
the following: 
• It combines information gathered from numerous local regions and devices. It combines, fuses, and aggregates

data to create a comprehensive view of the factory's operations, procedures, and performance.
• It controls and orchestrates workflows across several local areas, coordinating tasks, activities, and process

execution. It ensures correct operation sequencing, synchronization, and optimization across production.
• It optimizes the distribution of resources across the DDF, such as equipment, supplies, and employees. It

considers aspects such as workload balance, priority-based scheduling, and optimal resource use.
• It allows for the integration and communication of many domains or subsystems within the factory, such as

production, logistics, quality control, and maintenance. It enables data sharing, coordination, and cooperation
across domains.

• It facilitates decision-making by providing advanced analytics, predictive modeling, and optimization
algorithms. It uses aggregated data from several localities to develop insights, identify patterns, and enable
data-driven decision-making.

• It ensures the DDF’s security, privacy, and access control measures. To safeguard sensitive data and prevent
unwanted access, it manages authentication, authorization, and encryption.

5 Security Considerations and Mitigations in Distributed Digital Factory
In the last decade, frequent cyber-attacks have been observed in the manufacturing industry. The aim behind

these attacks is to disrupt the manufacturing plants to affect the community and the overall country’s finances. In 
most cases, these attacks are generated from outside the country, or actors are handled across the border. As per 
the Microsoft defense digital report published in 2021 [67], nation-state attacks mostly originated from Russia 
58%, North Korea 23%, Iran 11%, and China 8%. Nation-state attacks are defined as cyber-attacks carried out by 
a government against another state, or organization. These attacks involve highly sophisticated techniques and 
use significant resources to target critical infrastructure. The main aim is financially hit other states, gain illegal 
access to the information, and disrupt operations. In 2017, cyber-attacks were reported on manufacturing 
industries including Renault, Saint-Gobain, Rosnef, and Merck [68]. Renault’s entire production was shut down 
for the complete day cost several million dollars. The cyber-attacks on manufacturing sites not only compromise 
the production cycle deadline but also add up to the customers confidentiality. Table 2 highlights significant attack 
events that have inflicted considerable damage on the global industry. These incidents have sparked a heightened 
interest in cyber-attacks targeting Cyber-Physical Systems. 
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Table 2. Cyber-attacks on industries; reproduced from Ref. [69]. 
Country Details 

Iran (2010) Stuxnet attack - destroying controller 

Ukraine (2015) Black energy attack on power grid 

Russia, India, China (2017) Ransomware attack – WannaCry 

Czech Republic (2020) Cyber-attack on hospital 

US Health Service (2020) Cyber-attack on health system servers 

US Colonial Pipeline (2021) Ransomware attack on fuel pipeline 

5.1 Adversarial Attacks over Machine Intelligence 
With the inception of Industry 5.0, the digital factory relies on machine intelligence to optimize its production 

and learn from historical data. However, machine learning models are vulnerable to various attacks that can be 
injected through digital connectivity with the system. These attacks can be launched through inside resources or 
sometimes, the system vulnerabilities are used to inject malware into the system. In this section, we have 
highlighted the potential attacks on machine intelligence. A typical machine learning system follows a generalized 
data processing pipeline that starts with data input from distributed sensors placed to monitor the manufacturing 
machines. The gathered data is transferred into a digital domain where it is cleaned before applying the machine 
learning model. Finally, the decision is based on the machine learning output. During this pipeline process, an 
adversary can attempt to manipulate the data collection process or data processing to corrupt the target model and 
temper the original output. The main attacks are summarized below [70]: 
• Evasion Attack - in this attack the adversary manipulates the input data to deceive the model and cause it to

make incorrect predictions. The main aim of such attacks is to exploit vulnerabilities in the learning model,
allowing attacker to bypass the classification mechanism.

• Poisoning Attack, the adversary contaminates the training data during the model training time. With
significant knowledge of the machine learning model, an adversary tries to inject the samples to compromise
the learning process.

• Exploratory Attack, the learning models are treated as a black box where internal workings are not easily
interpretable; therefore, an adversary submit designated inputs to observe the model response and use this
information for inference about structure, training methodology and weaknesses.
In digital twin systems that are based on machine learning models deployed online for inference. It is

important to protect the model confidentiality especially if the fraud or anomaly detection is based on the ML 
models, knowing the model means adversaries can evade the detection process. In model extraction, the adversary 
constructs its model that mimics the original model [4]. In this way, the adversary duplicates the functionality of 
the original. During the reconnaissance phase, the digital twin is accessed as a black box, therefore, only results 
are available to the adversary. However, sometimes the model provides rich content such as confidence value and 
class labels. The adversary can exploit this information to perform the model extraction attack. The key processes 
of model extraction attacks include query input design, confidence values collection, and attack with equation-
solving and patch-finding. 

5.2 Adversarial Attacks over Connected Manufacturing System 
The sensors play a crucial role in the functioning of DDF. The DDF integrates the capabilities of sensing, 

computation, and actuation by networking different devices together. These systems heavily rely on sensors to 
gather real-world data, process it through connected processors, and control actuators accordingly. Bridging the 
physical and cyber realms, DDF enables seamless communication and coordination between sensors, processors, 
and actuators, facilitating efficient and effective operation in diverse applications. DDF is an integration of 
communication and control within physical systems. The inclusion of a communication network is crucial for 
enhancing the effectiveness of distributed manufacturing machines. However, this simultaneously exposes the 
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control system to various security and privacy threats, albeit unintentionally. The rise of the Internet of Things 
(IoT), Cyber-Physical Systems (CPSs), and other rapidly advancing techniques that heavily depend on precise 
sensor data has brought attention to the escalating concern of cyber-attacks. The affordability and energy-efficient 
nature of sensors make them vulnerable to hacking, thus posing a significant security challenge. Additionally, 
DDF heavily rely on network-based data communication, making them susceptible to various types of attacks. 

5.2.1 Potential Attacks 
Fig. 7 depicts a typical machine connection within the context of a DDF, showcasing the integration of 

various sensors to digitize manufacturing processes. In the AM domain, sensors such as pyrometers, pressure 
sensors, infrared cameras, high-speed imaging cameras, acoustic sensors, and collision avoidance sensors are 
deployed. These sensors enable temperature monitoring, gas pressure measurement, thermal anomaly detection, 
capturing fast-moving processes, monitoring vibrations and sounds, and ensuring safe navigation by detecting 
obstacles. Similarly, in the subtractive manufacturing (SM) domain, sensors such as position and displacement 
sensors, force sensors, tool wear sensors, and temperature sensors are employed. These sensors facilitate precise 
positioning of tools and workpieces, measurement of cutting forces and tool wear, monitoring of tool condition 
and performance, and environmental temperature monitoring. In the case of robotic arms, sensors like position 
and orientation sensors, force/torque sensors, proximity sensors, vision sensors, and tactile sensors are utilized. 
These sensors enable accurate tracking of the arm’s position and orientation, measurement of forces and torques 
during manipulation tasks, detection of object presence or proximity, visual perception and object recognition, 
and feedback on contact and surface properties. The real-time data provided by these sensors plays a crucial role 
in maintaining optimal conditions, detecting abnormalities, and ensuring quality throughout the manufacturing 
process within a DDF.  

There are multiple stages where attacks can be launched on sensors within DDF. Firstly, at the sensor 
reception stage, attackers can manipulate the information that the sensor receives from its environment - 
influencing the monitored environmental conditions, and adversaries can manipulate the data gathered by the 
sensor. Secondly, in the perception stage, attacks exploit design oversights to gain control over the system. These 
attacks specifically target the control algorithms, including machine learning algorithms, that are responsible for 
processing and interpreting the received sensor data. Through disrupting the decision-making process, adversaries 
can manipulate the system’s behavior and outcomes. Lastly, communication stage attacks focus on compromising 
the communication between the sensor and the rest of the system – exploiting vulnerabilities in the communication 
protocols or network infrastructure, attackers can intercept, modify, or disrupt the transmission of sensor data, 
potentially leading to incorrect or misleading information being processed by the DDF. These attack stages 
highlight the importance of robust security measures to safeguard sensors and the communication channels within 
factory environment, as they are critical components for accurate data acquisition and reliable decision-making 
processes. However, it is essential to acknowledge the potential attacks that can target DDF, as depicted in Fig. 
7.
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Figure 7. Distributed digital factory – Machine connectivity and attack mapping. 

The attacks, including Denial of Service (DoS), Blackhole, Sybil, Backdoor, poisoning, exploration, and 
evasion attacks are explained in Table 3. 

Table 3. Cyber-attacks on Industries; reproduced from Ref. [71,72]. 
Attacks Details 

Denial-of-
service (DoS) 

Denial of Service (DoS) attack on a Cyber-Physical System (CPS) manufacturing system aims 
to disrupt or impair the system’s normal operation by overwhelming its resources or causing 
system malfunctions – it involves flooding the system with an excessive number of requests or 
data, effectively exhausting the system’s processing capabilities or network bandwidth. 

Blackdoor Backdoor attack involves the unauthorized insertion of hidden access points or 
vulnerabilities into the system’s software or hardware. These backdoors allow attackers to gain 
illicit access to the system, bypassing normal authentication and security measures. 

Stuxnet The Stuxnet attack is highly sophisticated and unprecedented cyber-attack specifically 
targeting a Cyber-Physical System (CPS) involved in manufacturing. It was designed to exploit 
vulnerabilities in industrial control systems, allowing it to spread through networks and 
specifically target programmable logic controllers (PLCs). 

Blackhole Blackhole attack refers to a malicious activity where a compromised or malicious device or 
node within the system selectively drops or intercepts incoming data packets or messages, 
rendering them inaccessible. The attacker strategically manipulates the routing or forwarding 
behavior to divert traffic to the compromised node, which then discards the received data 
without forwarding it to its intended destination. 

Sybil It is a type of malicious activity in which an adversary creates multiple fake identities or nodes 
within a network to deceive and manipulate the system. It involves an attacker creating multiple 
counterfeit entities that masquerade as legitimate nodes in the network. 

Data 
Poisoning 

Data Poisoning attack is a type of malicious activity where an adversary intentionally 
manipulates or contaminates the data used for training or decision-making processes. 

5.2.2 Attack Defenses 
In cases where the malicious actor possesses a certain level of control over the sensing environment or can 

significantly influence it, they can manipulate the data acquired by a targeted sensor. Exploiting these 
vulnerabilities, they can aim to compromise the entire system by generating misleading information that triggers 
incorrect responses or gradually introduces errors over time, leading to significant consequences known as a 
meaningful response. Petit et al. [28] discuss common countermeasures against such attacks based on sensor 
redundancy and random sampling techniques. Sensor redundancy, also known as sensor fusion, is a defensive 
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strategy that involves using multiple sensors of the same type, make, and model to sample the environment. This 
redundancy enhances system performance by increasing the accuracy of environmental understanding and 
mitigating the effects of noise. However, when sensors provide significantly divergent readings, the system can 
identify and respond to malicious activity [73]. Random sampling is another useful defensive technique where 
the timing of sensor sampling is determined randomly [28]. This approach can be effective in countering attacks 
that rely on predicting the timing of sensor responses, such as lidar spoofing; however, this technique becomes 
ineffective against continuous attacks. In situations where the timing of sensor sampling is not crucial, random 
sampling may not provide significant protection. Metzen et al. [74] proposed the creation of a subnetwork capable 
of identifying artificially perturbed data. This information can be utilized by a system evaluating sensor data to 
disregard inputs categorized as artificial. 

6 Open Standards for Distributed Digital Factory 
The DDF systems will be designed to promote openness, which refers to the ability to integrate and 

collaborate with various stakeholders, technologies, and data sources. Openness enables seamless communication 
and interoperability between different components, machines, software, and systems involved in digital 
manufacturing. It allows for data sharing, exchange, and collaboration, leading to enhanced efficiency, 
innovation, and productivity in the manufacturing ecosystem. These systems usually develop with scalability in 
mind, allowing for the flexible and efficient expansion of digital manufacturing capabilities. Scalability ensures 
that the systems can adapt and accommodate increasing demands, whether it’s scaling up the production capacity, 
integrating new machines or technologies, or handling larger volumes of data. By being scalable, the systems can 
meet the evolving needs of the manufacturing industry, supporting growth and adaptability in a dynamic market 
environment. 

Pei et al. [75] focused on the need for efficient data transfer standards in the context of decentralized cloud 
manufacturing. The existing data exchange standards, such as STL, have limitations in supporting the re-
manufacturing landscape. The authors evaluated alternative standards like AMF, 3MF, STEP, and STEPNC, 
highlighting their features, advantages, and contributions. Interviews and surveys with experts in AM and RDM 
provide insights into the most important data transfer features. The STL file format, commonly used for 
transferring data models in additive manufacturing (AM), has limitations such as redundant information, 
geometrical defects, and the inability to store material, texture, and structural information [6]. These shortcomings 
make it less suitable for advanced AM machines. The AMF and the 3MF format are two notable efforts in the 
field of additive manufacturing. AMF is an official ISO/ASTM standard for AM, while 3MF was developed to 
enhance compatibility between hardware and software systems. Both formats utilize the extensible markup 
language (XML) as a standardized, text-based, human-readable encoding format, following the open XML 
specification [76]. In addition to the aforementioned standards, there are several other notable standards that are 
widely used in the manufacturing industry to facilitate various aspects of operations. These standards play a 
crucial role in ensuring interoperability, data exchange, and communication across different systems and 
organizations. 

6.1 Open Platform Communications Unified Architecture 
Open Platform Communications Unified Architecture (OPC UA) is an open standard that facilitates 

information exchange in industrial communication, enabling seamless communication among devices within 
machines, between machines, and from machines to systems [77]. It is recognized as the recommended industrial 
communication standard in the Reference Architecture Model Industry 4.0 (RAMI 4.0). OPC UA offers a 
comprehensive solution by providing both a communication protocol and an information modeling method, 
simplifying the modeling and development of digital twins for manufacturing equipment in the digital realm. 

6.2 ECMA-363 
ECMA-363 is a data exchange standard specifically designed for manufacturing systems [78]. It provides a 

common framework and guidelines for exchanging data between various components and subsystems within a 
manufacturing environment. The standard defines a set of rules and structures for representing manufacturing-
related information, such as product models, process data, and production schedules. With ECMA-363, 
manufacturing systems can achieve seamless interoperability and integration between different software 
applications, equipment, and devices involved in the production process. The standard ensures that data is 
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formatted and communicated in a consistent and standardized manner, enabling efficient data exchange and 
collaboration among different entities within the manufacturing system. 

6.3 Initial Graphics Exchange Specification 
Initial Graphics Exchange Specification (IGES) is a standardized data format utilized in computer-aided 

design (CAD) systems to exchange 3D geometry data [79]. Its purpose is to enable interoperability between 
various CAD software applications and platforms. IGES establishes guidelines and data structures for 
representing geometric models, encompassing solids, surfaces, and wireframes, along with attributes such as color 
and material properties. By supporting smooth data exchange between CAD systems operating on diverse 
hardware and software environments, IGES plays a crucial role. Despite its limitations compared to newer formats 
like STEP, IGES remains widely utilized as a legacy format for sharing CAD data across different systems. 

6.4 Requirements Interchange Format 
Requirements Interchange Format (ReqIF) is a standardized format for exchanging requirements in systems 

engineering using system modeling language [80]. It allows structured representation, storage, and sharing of 
requirements across diverse tools and platforms. ReqIF ensures consistency and traceability of requirements 
throughout the systems engineering lifecycle, promoting collaboration and integration. It acts as a bridge between 
system modeling tools, enabling seamless transfer of requirements while maintaining their structure and context. 

6.5 ISO-14306:2017 
ISO-14306:2017 is a standard that facilitates the exchange of high-quality product data [81]. It establishes a 

structured format for sharing accurate and consistent product information between organizations and systems. By 
following this standard, organizations can ensure smooth communication, interoperability, and data integrity 
across the entire product lifecycle. The standard provides guidance on organizing data, including metadata, 
validation rules, and quality metrics, which enables efficient and reliable exchange of product data. Ultimately, 
ISO 14306:2017 fosters effective collaboration and integration among various stakeholders engaged in product 
development and management. 

6.6 National Institute of Standards and Technology 
The National Institute of Standards and Technology (NIST) is actively involved in various initiatives to 

address the needs of Smart Manufacturing Systems (SMS). These initiatives include; developing a reference 
architecture for Cyber-Physical Systems (CPS) at NIST [82]; creating new standards for Digital Thread and 
Model-Based Engineering [83]; Establishing a reference architecture and standards for leveraging big data in 
SMS [84]; collaborating with OAGi to develop standards for cloud-based services in manufacturing; Leading an 
effort on cyber security for industrial systems, which is of significant importance to manufacturers [85]; 
coordinating the deployment of advanced manufacturing institutes across the United States; These institutes 
specialize in various areas of advanced and smart manufacturing and aim to transfer research capabilities into 
practical production. Through these initiatives, NIST is actively working towards advancing and promoting smart 
manufacturing by developing frameworks, standards, and collaborative efforts that enable the seamless 
integration of cutting-edge technologies and research into industrial production processes. 

7 Development of Digital Twin 
This section discusses digital twin (DT) and state-of-the-art in DT. 

7.1 Definition of Digital Twin 
A DT is a virtual replica of a functioning object or physical process. Its purpose is to accurately represent 

the object or process in a virtual environment. This is achieved using multiple sensors that capture data from the 
physical system and feed it to the digital twin. According to NASA’s Modeling, Simulation, Information 
Technology & Processing Roadmap 2010, a DT is described as an integrated multi-physics, multi-scale, 
probabilistic simulation of a vehicle or system that utilizes the best available physical models, sensor updates, 
and fleet history, to mirror the life of its real-world counterpart [86]. Therefore, DT simulates the physical process 
while incorporating real-time monitoring and control of the physical counterpart. A DT is a virtual replica of a 
functioning object or physical process. Its purpose is to accurately represent the object or process in a virtual 
environment. This is achieved using multiple sensors that capture data from the physical system and feed it to the 
digital twin. According to NASA’s Modeling, Simulation, Information Technology & Processing Roadmap 2010, 
a DT is described as an integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or system that 
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utilizes the best available physical models, sensor updates, and fleet history, to mirror the life of its real-world 
counterpart [86]. Therefore, DT simulates the physical process while incorporating real-time monitoring and 
control of the physical counterpart. 

DTs can be used to predict, monitor, optimize or study the concerned physical phenomenon virtually [87]. 
A DT combined with real-time control and two-way interaction between the object or process and the virtual 
replica results in a cyber-physical system. Time period of “real-time interactions” is often subjective and can vary 
from a few microseconds to few hours depending on the physical phenomenon. With advancements in controls, 
monitoring, artificial intelligence and machine learning, definition of a DT is being evolved rapidly. Different 
terms such as digital environments, digital prototypes, digital models, digital shadows are used with varying levels 
of complexity for the developed replica [88], as shown in Fig. 8. 

Figure 88. Variation of complexity in physical-digital object integration in different levels; based on the 
information in Ref. [88]. 

7.2 Current State-of-the-art 
The development of DTs began even before the term was coined by Michael Grieves in 2003 during his 

research on product lifecycle management [89]. Various industrial leaders such as Rolls Royce, General Electric, 
and Siemens have been using simulations for the design and analysis of mechanical components in product 
development. However, the development of a simulation model into a DT requires certain requirements. A DT is 
dynamic in nature as it continuously monitors the functioning of the physical entity, predicts possible outcomes 
or properties of concern, and controls significant influencing parameters to achieve desirable characteristics. This 
is accomplished through bidirectional data transfer between the physical and digital counterparts. One significant 
criterion that a digital model or digital shadow fails to address is the incorporation of artificial intelligence. A 
comprehensive DT model should be capable of learning from both real and simulated data about its environment 
to make decisions that help achieve the desired characteristics, thereby imparting a form of autonomy to the 
model. 

Various researchers have recently developed different levels of DTs for AM and SM systems. These systems 
can be categorized into different levels within a digital twin hierarchy based on factors such as autonomy, data 
transfer, monitoring, and real-time control. Phua et al. [90] introduced a DT hierarchy specifically for metal 
additive manufacturing. This hierarchy consists of four verticals: implicit, instantiated, interfaced, and intelligent 
DTs. Fig. 9 provides a schematic representation of this hierarchy. 
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Figure 99. Hierarchy of a metal AM digital twin [90]; with permission from publisher. 

7.3 Preliminary Work in Using Digital Twin for Creating Distributed Digital Factory 
The concept of cyber-physical systems (CPS) was systematically defined in 2015. Lee et al. [52] proposed 

the connection of components’ cyber-twin, which can provide self-awareness and self-prediction, to achieve CPS, 
as depicted in Fig. 10. 

Figure 1010. Cyber-twin components and workflow [52]; with permission from publisher. 

Subsequently, Vijayakumar et al. [91] integrated DTs with distributed manufacturing to establish a 
distributed digital factory. The research involved developing a digital assembly line capable of monitoring 
machine status, workpiece location, and identifying defective parts, as depicted in Fig. 11. This schematic 
provides an illustrative representation of the digital factory. 
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Figure 1111. Digital factory architecture [91]; published under open-access license. 

To expand the application of DTs in the creation of a DDF, Park et al. [92] devised and executed a DT for a 
micro smart factory. In this instance, the DT encompassed not only machine models but also DTs for robotic arms 
and CNC machines, as illustrated in Fig. 12. Given the self-prediction and self-awareness capabilities of DTs, 
data collection is commonly employed in the design of digital factories. 

Figure 1212. Synchronization of digital smart factory (a) physical buffer handler by robotic arm, (b) digital twin of buffer 
handler by robotic arm, (c) physical CNC tool tower handler, and (d) digital twin of CNC tool tower handler [92]; with 

permission from publisher. 

Liu et al. [93] organized the structure of data that could be collected during the development of a digital 
factory, as depicted in Fig. 13. The digital factory incorporated the potential process parameters of AM. While 
numerous ML/AI techniques have been applied in manufacturing, there still exists a gap between the development 

1383



of digital factories and the effective utilization of ML/AI in the development process, which warrants further 
exploration. 

Figure 1313. Structure of metal AM data model; based on the information in Ref. [93]. 

7.4 Tools for Digital Twin Development: Research, open-source, and Commercialized software 
The development of a DT is a complex process that necessitates knowledge and expertise across multiple 

domains. Qinlin et al. [46] conducted a comprehensive review of enabling technologies and tools for DT 
development. The various tools for DT development were categorized broadly as follows: tools for the physical 
world, tools for DT data, tools for DT services, tools for DT modeling, and tools for connections in DT. Each 
category comprised several sub-categories, as illustrated in figure 14. 
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Figure 1414. Framework of tools for digital twin; based on the information in Ref. [46]. 

Currently, an increasing number of companies and researchers are actively engaged in the development of 
tools for DTs. This has resulted in the availability of several comprehensive open-source, commercial, and 
research software and tools that facilitate DT development. Table 4 provides a comparison of the capabilities of 
leading software and tools for DTs [46]. Sergey et al. [94] established an evaluation criterion and compared the 
tools for developing DTs throughout the lifecycle of manufacturing systems. Most of the available tools’ focus 
on multiple capabilities rather than being limited to a single dimension. For instance, ANSYS Twin Builder offers 
capabilities such as geometric modeling, finite element analysis, data analysis, optimization, and troubleshooting. 
Currently, an efficient DT development process requires the combination of various enabling tools. However, the 
lack of a common format and protocols among these tools poses a hindrance to their simultaneous use, which 
needs to be addressed to ensure the efficient utilization of these available tools for DT development. 

Table 44. Comprehensive Tools and their roles in different aspects of digital twin [46]; 
with permission from publisher. 

Predi
x 

PTC 
Thingworx 

Siemens 
Mindsphere ANSYS Dassault 3D 

 Experience 
Foxconn's 
Beacon 

DT 
Evolution 

Knowing the 
physical world - - -   - 

Changing the 
physical world  -  - - - 

Modelling Geometry 
modelling - - - -  -
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Physical 
modelling - - -   - 

Behavior 
modelling - - -  - - 

Rule modelling -  - - - - 

DT Data 
Management 

Data Collection    - -  
Data 
Transmission -   - - - 

Data Storage -  - -   
Data processing  - - -   
Data Fusion  - - -   
Data 
Visualization - - - -   

Services 

Simulation 
services  -     

Optimization 
services  -  - -  

Diagnosis and 
Prognosis 
services 

    -  

Platform 
Services    -   

Connections 

Connection in 
Digital world  -  -   

Connection 
between digital 
and physical 
world 

   -   

7.5 Datasets available for Digital Twin Training 

The development of DTs is rapidly progressing to incorporate real-time control of their physical 
counterparts. This involves the utilization of machine learning methods to predict probable outcomes based on 
real-time monitored parameter values, followed by adjusting the corresponding parameters as suggested by the 
ML model. This infusion of autonomy into the DT enables it to achieve the highest level of the DT hierarchy - 
interfaced and intelligent DTs. However, the accuracy of ML predictions relies on the availability of pertinent 
high-fidelity data to train the model. The presence of extensive high-fidelity datasets improves the process 
mapping during the training of the ML model, resulting in enhanced accuracy for optimization during DT 
operation. Consequently, the availability of relevant high-fidelity datasets holds significant importance in the 
development of DTs. 

The manufacturing sector stands to gain significant benefits from recent advancements in AI, data science, 
and ML. These advancements can contribute to improvements in manufacturing quality, waste reduction, quality 
checks, and process cost optimization. Currently, there are multiple sources of data available. The progress in 
global network connectivity over the past decade has enhanced data accessibility through various repositories and 
open-source websites. Table 5 provides a list of websites that offer data on manufacturing and technology-related 
topics, which can be valuable for DT development. 
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Table 55. List of few datasets available for digital twin development. 
Source Domain 

Kaggle Datasets https://www.kaggle.com/datasets 

Google Datasets https://datasetsearch.research.google.com/ 

U.S. Government's Open Data https://data.gov/ 

National Institute of Standards 
and Technology 

https://www.nist.gov/el/ammt-temps/datasets 

Fraunhofer Big Data AI https://www.bigdata-ai.fraunhofer.de/s/datasets/index.html 

Data world https://data.world/ 

8 Research Gaps and Future Directions 
Based on the results, the following research gaps and future directions can be identified: 

• Existing digital factory research has concentrated on digital twins (DTs), additive manufacturing (AM),
subtractive manufacturing (SM), and some security issues. However, a comprehensive approach that includes
the integration of devices with dynamic provisions to activate DTs via the distributed digital factory (DDF)
idea is required. Future studies should investigate and create frameworks that allow for the seamless
integration and interaction of physical and digital systems in DDFs.

• Further research into the components of cyber systems utilized in DDFs is required. This entails a thorough
examination of AM and SM equipment, sensors, communication protocols, and monitoring software. The
focus of research should be on establishing efficient and optimal cyber-physical systems that allow for
effective coordination and synchronization of physical and digital elements in DDFs.

• The issues associated with the design and deployment of DDFs should be addressed through research, with a
focus on security, scalability, and interoperability. This includes adopting strong security measures to
safeguard the integrity and confidentiality of DDF data and systems. Furthermore, scalable frameworks should
be investigated to handle the different locations and capabilities of DDF vendors and participants. To enable
seamless communication and collaboration among different components and systems inside DDFs,
interoperability standards and protocols should be defined.

• Future research should focus on the creation of open frameworks for DDFs, which will allow system
integration from vendors and participants with various locations and skills. Within the DDF ecosystem, this
would promote collaboration, knowledge sharing, and resource optimization.

• The development and deployment of scalable and safe frameworks should be prioritized in DDF
implementation. This ensures the dependability and availability of the DDFs' on-demand manufacturing
operations. The focus of research should be on building and implementing frameworks that can support
variable production requirements while effectively addressing security concerns.
Addressing these research gaps and focusing on the indicated future initiatives would allow the field of DDFs

to progress toward more efficient, secure, and networked manufacturing systems. 
9 Conclusions 

This study sheds light on the current state of research in digital factories (DF) and distributed digital factories 
(DDFs). The concept of a DF has evolved as a powerful integration of physical and digital systems, leveraging 
the capabilities of additive and subtractive manufacturing (AM and SM) to enable decentralized component 
production. The concept of distributed digital factory (DDF) is novel and requires significant attention from 
research community. This research sought to fill that void by giving a thorough examination of the cyber-physical 
and digital systems utilized within DDFs. The components of cyber systems, especially AM and SM equipment, 
sensors, communication protocols, and monitoring software, have been intensively investigated. Furthermore, the 
difficulties in designing and deploying DDFs, such as security, scalability, and interoperability, have been 
highlighted. One significant finding of this study is the importance of an open framework for DDF development. 
This type of architecture enables smooth system integration by allowing vendors and stakeholders from various 
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locations and capacities to participate. This emphasis on openness fosters collaboration, knowledge exchange, 
and resource optimization within the DDF ecosystem. Furthermore, the study emphasizes the crucial need of a 
scalable and secure framework for DDF implementation success. Such a framework contributes to the overall 
reliability and efficiency of DDF operations by ensuring the dependability and availability of on-demand 
manufacturing processes. 
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