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Abstract 

 

 In Wire Arc Additive Manufacturing (WAAM), a geometric defect is a defect that creates voids in 

the final printed part due to incomplete fusion between two non-uniform overlapping bead segments. Such 

a defect poses the onset of a severe problem during multi-bead prints. In our earlier work, a methodology 

has been developed to construct machine learning (ML)-based models to identify geometrically defective 

bead segments using acoustic signals. In this paper, we investigate the performance of these single-bead 

segments trained defect detection model scalability for identifying voids during multi-bead prints. A 

comparative study of the performance of a variety of ML models is explored based on Inconel 718 material 

printing. The results show that the single bead segments-based defect identification model can effectively 

identify defective and non-defective segments in both single-layer multi-bead printing and multi-layer multi-

bead printing. 

 

Introduction 

 

 Wire Arc Additive Manufacturing (WAAM) is an arc-welding-based additive manufacturing 

technique where weld beads are deposited layer-by-layer to form 3D metallic components [1, 2]. WAAM 

employs an electric arc as the heat source and metal wires as a material feedstock to fabricate parts. During 

the fabrication process, an electric arc melts the metal wire within a shielded environment provided by gas 

such as argon or helium. Using a shielding gas reduces the potential for contamination, helps with the 

material transfer, and protects the molten pool and its surroundings from oxidation [4]. WAAM features a 

high deposition rate suitable for fabricating moderate to large-scale components. Furthermore, it is a low-

cost, environmentally friendly approach with a high material utilization ratio. This makes such an approach 

advantageous over alternative additive manufacturing processes, especially in the aerospace, oil, gas, and 

offshore marine industries [14, 15]. WAAM has become a promising fabrication process for various 

engineering materials such as titanium, aluminium, nickel alloy, steel, and bronze [12]. 

 

  WAAM technologies have faced different challenges. Defects, such as lack of fusion, porosity, 

cracks, distortion, oxidation, etc., limit the accuracy achievable in the deposition process. These defects 

reduce the strength of the final printed product, thus affecting its lifespan and performance. Hence, it is 

important to identify the defective printing process correctly. This paper focuses on detecting geometrically 

defective segments, or geometric defects, that create voids in the final printed part due to incomplete fusion 

between two non-uniform overlapping bead segments. Such a defect needs to be better studied in the 

literature, and it poses the onset of a severe problem during multi-bead prints [8, 9]. 

 

 Numerous non-destructive techniques have been employed in the literature to sense defects, such as 

acoustic signals, X-ray radiation, image, thermal measurement, etc. [16]. Among these, acoustic-based 

sensing has the advantage of low cost and shows the most potential to identify both external and internal 

defects. The acoustic sound generated by the electric arc comes from the pulsation of the electric arc and the 
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vibration of the weld pool metal [13]. Several works explored the relationships between the geometry of 

beads and the properties of acoustic signals [3]. Polajnar et al. [7] showed that irregularities in the bead 

geometry are reflected in the intensity of acoustic signals. Pal et al. [6] showed that acoustic signals could 

identify metal transfer modes and weld defects. Lv et al. [5] showed that the height of the arcs constituting 

the shape of the bead has a linear relationship with the pressure of the acoustic signal. The relationships 

mentioned above between the properties of the bead geometry and the measured acoustic signals inspire us 

to extract and use acoustic features to capture the geometric defects of the WAAM with appropriate feature-

based models. 

 

 In our earlier work, we have developed a methodology to construct machine learning (ML)- based 

models to identify geometrically defective bead segments using acoustic signals for the WAAM process. 

The proposed methodology uses a heuristic dataset labeling approach to identify good and bad bead 

segments based on a variety of bead geometrical and process-related metrics. The heuristic search is 

performed by finding threshold values for these metrics that minimize the overlapping area between the 

Kernel Density Estimation (KDE)s formed by the distribution of the good and defective bead segments [10, 

11]. 

 

 In this paper, we investigate the performance of these single-bead segments trained defect 

detection model performance in identifying geometric defects during multi-bead prints. A comparative 

study of the performance of a variety of ML models is conducted. Experiments are carried out on Inconel 

718 material based on two raster printing. One is based on single-layer multi-bead printing, and the 

another is based on multi-layer multi-bead printing. The results show that the single bead segments-based 

defect identification model can effectively be extended to identify defective and non-defective segments 

for multi-bead prints. 

 

Experimental Procedure 

 

Overview 

 Figure 1 gives an overview of the experimental approach. First, we collect acoustic signals from 

two different printing which we call the testing samples, i) single-layer multi-bead printing and ii) multi-

layer multi-bead printing. Then we divide the whole acoustic signal of each testing sample into several 

segments. After that, we extract twelve-time domain features from each acoustic signal segment whose 

names and formulas are listed in Table 2.  

 

 

Figure 1: Overview of defect identification 
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Then we pass all signal features to three of our previously trained single bead segments ML models. These 

were trained based on K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random Forest 

(RF). Finally, these trained models are evaluated based on their prediction of the quality of the printed 

multi-bead samples. 

 

Experimental Setup 

 The experiments were conducted on our robotic WAAM system at the Singapore University of 

Technology and Design (SUTD), as shown in Figure 2. The system consists of a robot manipulator (ABB 

IRB1660ID), a welding power source (Fronius TPS 400i) equipped with a welding torch (Fronius WF 

25i Robacta Drive), a cartesian coordinate robot made up of three linear rails (PMI KM4510) powered by 

three servos (SmartMotor SM34165DT), and a microphone (UMIK-1 miniDSP) installed at around 80 

cm above the substrate in order to minimize environ- mental noise. 

 

Training Dataset 

Data Collection We printed 33 weld beads of lengths 100 mm using the Inconel 718 (BOHLER 3D print 

AM 718) wires using a different combination of torch speed and wire feed rate to obtain different weld 

bead geometry. The torch speed and wire feed rate used to span the entire material process map and were 

in the range of [1,20] mm/s and [2,8] m/min, respectively.  

 

                                     Table 1: Process parameters used for printing 

 

Torch 

Speed 

Wire 

Feed 

Rate 

Torch 

Speed 

Wire 

Feed 

Rate 

Torch 

Speed 

Wire 

Feed 

Rate 

10 4.5 7 4.5 10 8.5 

9 4.5 5 4.5 9 8.5 

8 4.5 17 2.5 8 8.5 

12 2.5 6 4.5 10 3.5 

15 2.5 10 6.5 10 5.5 

1 2.5 9 6.5 10 7.5 

1 4.5 8 6.5 20 2.5 

2 2.5 7 6.5 7 8.5 

3 3.5 6 6.5 6 8.5 

2 3.5 5 6.5 5 8.5 

3 4.5 4 4.5 10 2.5 

 

All different combination of process parameters to print 33 beads are shown in the Table 1. We used 

around 70% Ar and 30% He as our shielding gas with a constant gas flow rate of around 25 L/min. We 

set the nozzle to deposit the material at around 15 mm above the substrate surface. We collected point 

cloud data of the printed beads using the GOM ATOS III Triple scanner. Next, we separated all the beads 

from the substrate using RANSAC plane segmentation. Then, we divided each bead into N = 20 segments, 

with each segment measuring about 5 mm. Similarly, we collected acoustic signals at 44 kHz during the 

printing process and segmented each bead signals into 20 acoustic signal segments, with each segment 

containing the acoustic signal for a 5 mm bead segment. Thus, with 33 beads, we get a total of 660 signal 

data segments. 
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Table 2: Time-domain features 

 
Features Formula Features Formula 

Root Mean 
Square 

Pressure 
(RMSP) 

𝑃 = √1/𝑇 ∫𝑝2(𝑡)𝑑𝑡

𝑇

𝑖=0

 ZCR 

𝑍𝐶𝑅 =
𝑓

𝑁
∑|𝑠𝑔𝑛(𝑥(𝑛))

𝑁

𝑖=1

− 𝑠𝑔𝑛(𝑥(𝑛 − 1))| 
 

Energy 𝐸 =
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 
Crest 

Factor 

𝐶𝐹 =
max|𝑥𝑖|

√1
𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1

 

Mean 
Amplitude 𝐴 =

1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

 
Peak- 

to-Peak 𝑦 = max(𝑥) − min(𝑥) 

Kurtosis 
𝐾𝑟 =

1
𝑁
∑ (𝑥𝑖
𝑁
𝑖=1 − 𝑥)4

𝜎4
 

Impulsion 

Index 
𝐼 =

𝑥𝑚
𝑥

 

Skewness 𝑆𝐾 =
1

𝑁
∑(

𝑥𝑖 − 𝑥

𝜎
)
3

𝑁

𝑖=1

 Mean 𝑀 =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 

Standard 

Deviation 

𝑆𝑇𝐷

= √
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥)2
𝑁

𝑖=1

 

Shape 

Factor 
𝑆𝑓 =

𝑥𝑟𝑚𝑠

𝑥
 

 

Labeling: For dataset labeling, we follow the procedure of our published paper [10]. According to the 

paper, we consider three parameter metrics namely range curvature RC, maximum height MH, and range 

power RP. First, we collect point cloud scan data and acoustic signals for all bead segments. Next, for 

each bead segment, we extract the parameter metrics used for labeling. From the point cloud, i) we 

compute the mean curvature at each point in that segment, followed by the range of all these mean 

curvatures, RC; and ii) we compute the bead segment maximum height, MH. Similarly, from the acoustic 

signal, we compute the instantaneous power of its sound intensity, followed by the range of its 

instantaneous power, RP. Then, we perform a heuristic search to determine the optimal thresholds to 

separate the bead segments based on the proposed parameter metrics. This is a two-step procedure where 

we search through various threshold values that separate the bead segments and determine a candidate 

threshold that minimizes the overlapping area between their associated Kernel Density Estimation (KDE). 

Finally, we combine the various optimal parameter metrics thresholds to label geometrically good and 

defective segments. We consider all bead segments are bad above these thresholds. Otherwise, they are 

good. For more details refer to [10].  

 

After labeling the dataset, we extract the previously mentioned (Table 2) time domain features from the 

training acoustic signals. To test the performance of the models, we use 10 fold stratified cross-validation 

approach, and the results of the models will be discussed in the next Section. Then we use all the training 

datasets for training the models and save the trained models for later use. 
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Testing Dataset 

We printed two raster printing to verify the performance of our trained models on new datasets. 

 

Single-layer Multi-Bead: Figure 3 shows our testing multi-bead printing where 6 consecutive beads are 

printed together using the Inconel 718 (BOHLER3D print AM 718). The length of each bead is around 

100 mm. We use a constant TS=5 mm/s and WFR=6.5 m/min for printing all the beads except for the 

yellow rectangle region in the 4th bead, where we set the WFR=4.5 m/min. Since we change the WFR in 

this region, it creates a non-uniform printing that we consider defective printing. Other parameters, such 

as gas flow rate, and distance of the nozzle to the deposition plate are the same as the training dataset. 

 

We collected acoustic signals at 44 kHz during the printing process and segmented the entire audio data 

into 120 segments so that each bead can be divided into 20 segments. Then we extracted time domain 

features from the signals and passed those features into our trained models. 

 
 

Figure 2: Experimental setup of SUTD Robotic WAAM for Bead Printing and Acoustic Data 

Collection 

 

Multi-layer Multi-Bead: We printed 6 layers’ multi-bead block whose length, thickness, and height are 

around 80 mm, 20 mm, and 15 mm respectively. Figure 4 shows the top layer of a multi-bead multi-layer 

printing of Inconel material. We used a constant TS=12 mm/s and WFR=6.5m/min for printing all the beads. 

We divided the audio of each bead into 10 segments. Therefore, for each layer, we get 100 audio 

segments and for total 6 layers, we get 600 audio signals. 
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Figure 3: Schematic representation of single-layer multi-bead printing (left) and Actual printing (right). We 

intentionally induce a new WFR at the 4th bead lower part indicating a yellow rectangle. 

 

 

 

Figure 4: Schematic representation of top layer of a multi-layer multi-beads printing (left) and 

Actual printing (right).  

 

From Figure 4, the yellow rectangle indicates a void that occurs at the joining of two bead segments 

(starting segment of one bead and ending segments of another bead). The void is created 

unintentionally. Again some segments of beads also non-uniform.  

 

Results and Discussion 

 

Performance Evaluation of Defect Detection Models 

 

In this section, we report and discuss about the performance of our trained models on single beads, single 

layer multi-bead and multi-layer multi-bead prints. 

 

Single beads: Table 3 shows the comparative accuracy of the various models based on single beads. From 

the table, it can be seen that the combinatorics of time domain features and three ML models can be able 

to identify geometrically defective segments accurately with accuracy that ranges from 85% to 87%. 

 

Table 3: Comparative study of defect identification models based on accuracy 

 
Models Accuracy 

Time+KNN 85±0.02 

Time+SVM 85.24±0.03 

Time+RF 86.96±0.03 

 

 

Single-layer Multi-Bead: Figure 5 shows the prediction results of the single-layer multi-bead printing 

using our previously trained models. From the figures, we observe that all the models can pick out the 
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defective region and predict the last segment as defective which we did not intentionally induce. In addition, 

the Time+SVM model can pick out all defected areas and the starting and ending segments. Though some 

good segments are falsely identified as bad by the trained models, the percentage is low that is around 

less than 7%. Overall, the prediction accuracy for single-layer multi-bead printing is above 90%. Therefore, 

we can conclude the trained models can pick out both the defective and defect-free segments. 

 

Multi-layer Multi-Bead: Figures 6, 7 and 8 show the predicted results of multi-bead multi-layer 

printing using Time+KNN, Time+SVM and Time+RF models, respectively. The figures show that 

all the models can pick out the voids created in layers 5 and 6. In addition, all the models can pick 

out some obvious bad segments created randomly during printing. From the original images of different 

layers, we observe that layer 1, 2 and 3 looks more uniform than layers 4, 5 and 6. And our trained 

models also pick out more bad segments in layers 4, 5 and 6.  Overall, the Time+SVM model can pick 

out more bad and good segments accurately than others. However, all models falsely pick out some good 

segments as bad that percentage is less than 10%. Therefore, we can conclude the trained models can pick 

out both the defective and defect-free segments. 

 

 

 

Figure 5: Prediction of single-layer multi-bead defect detection on its schematic representation. 1 

indicates bad and 0 indicates good. Red 1 represent obvious defect and blue 1 represent the 

possibility of a defect. 
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                       Layer 1                                  Layer 2                                             Layer 3                                                         

                        
                      Layer 4                                     Layer 5                                             Layer 6    

                                                    

Figure 6: Prediction of multi-layer multi-bead defect detection using Time+KNN model on its 

schematic representation. 1 indicates bad and 0 indicates good. Red 1 represent obvious defect and 

blue 1 represent the possibility of a defect. 

 

                     Layer 1                               Layer 2                                             Layer 3                                                         

 

 

                Layer 4                                     Layer 5                                             Layer 6                                                       

 

Figure 7: Prediction of multi-bead multi-layer defect detection using Time+SVM model on its 

schematic representation. 1 indicates bad and 0 indicates good. Red 1 represent obvious defect and 
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blue 1 represent the possibility of a defect. 

 

 

                       Layer 1                               Layer 2                                             Layer 3    

                                                      

                   Layer 4                                     Layer 5                                             Layer 6                                                       

 

Figure 8: Prediction of multi-bead multi-layer defect detection using Time+RF model on its 

schematic representation. 1 indicates bad and 0 indicates good. Red 1 represent obvious defect and 

blue 1 represent the possibility of a defect. 

 

 

Conclusion 

In this paper, we investigate the performance of our previously proposed single-bead segments- 

trained defect detection machine learning (ML) models’ scalability for identifying voids in the multi-bead 

prints for the WAAM process. We explore three-time domain feature-based trained models based on Inconel 

718 datasets. The models are trained using various time domain features from the acoustic signals and the 

labels of the features are determined based on a heuristic search thresholds approach. The accuracy of the 

single bead-based models ranges from 85% to 86%. To verify the performance of the trained models on new 

datasets, we print one single-layer multi-bead and one multilayer multi-bead printing for testing. The results 

of the multi-bead printing show that the single bead segments-based defect identification models can identify 

defective and non-defective segments for single-layer multi-bead printing and multilayer multi-bead printing 

effectively. Our objective is to identify defects, and our models have proven adept at detecting all problematic 

segments. However, a significant limitation of our current defect detection approach lies in its occasional 

misclassification of good segments as bad. In our future research, we intend to mitigate this issue by 

incorporating data from a range of multimodal sensors, such as vision and thermal sensors, into the training 

process for individual bead segments. We hypothesize that leveraging multiple sensor inputs will substantially 
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enhance the precision of our single-bead inspections, thereby reducing the occurrence of false positives when 

deploying our trained models for multi-bead testing. 
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