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Abstract 

Our study aims to develop an automated method for identifying layers on images of 3D-
printed walls from a LAAM printer, as manual identification is subjective and can be time-
consuming. We applied three different image processing methods to identify edges between layers: 
simple thresholding, Otsu thresholding, and Canny edge detection. Otsu thresholding was found 
to be the most accurate and required minimal manual intervention. From our study, we propose a 
new approach by going through essential steps for greater accuracy. This research demonstrates 
the feasibility of using computer-based methods to automatically identify layers in 3D printing, 
reducing manual time and effort and improving the strength and quality of 3D-printed parts.  

Introduction 

The advancements in Large Area Additive Manufacturing (LAAM) have ushered in a new 
era of efficient and cost-effective production of intricate three-dimensional structures. As LAAM 
structures are composed of layers of thermoplastic filaments, often planar, a significant factor in 
how a LAAM structure performs is the quality and consistency of adhesion at the layer interfaces. 
In most cases, it is very easy to identify the layer's boundaries on the surface of a 3D-printed object 
with human eyes. However, the precise localization of all layers and boundaries on the surface of 
LAAM-printed objects is a complex and time-consuming task when performed manually, as a 
single print may contain hundreds of layers, each potential meters long.  

The development of an automated way to identify layers in 3D-printed walls is motivated 
by the need to quantify layer and boundary consistency while avoiding the time-consuming nature 
of manual identification. By accurately and automatically identifying layer boundaries, it becomes 
possible to detect anomalies as well as to analyze and optimize the printing conditions.  In addition, 
the quality of layer adhesion and layer defects affect the overall quality, structural integrity, and 
many other mechanical properties of the printed object.  Manual identification of layers in 3D-
printed LAAM walls is performed at the Advanced Structures and Composites Center (ASCC), 
but the process is subjective, tedious, error-prone, and not scalable for large-scale or time-sensitive 
projects. By developing an automated method, we aim to streamline the process and eliminate 
human subjectivity in identification. An automated method could be applied to a large number of 
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images in a shorter time frame, making it more efficient and practical for industrial applications 
and real-time analysis and optimization.  

To develop an automatic layer identification method, our research is currently focused on 
state-of-the-art image processing techniques. We execute a comparative analysis of image 
thresholding and edge detection techniques. Three different methods are used to identify edges 
between layers in images of 3D-printed walls obtained from a LAAM printer. Initial analysis 
revealed that Otsu thresholding, a well-established image segmentation technique, exhibited the 
highest accuracy in identifying layer boundaries. Notably, it required minimal manual 
intervention, making it an attractive choice for practical implementation within LAAM processes. 
Each of these techniques is integrated into an image-to-layer data pipeline that is composed of a 
4-step sequence of data processing steps. 

Two relevant developments that have influenced our research on layer identification in 
Large Area Additive Manufacturing (LAAM) are the Peregrine software [1]" and digital image 
correlation [2]." The Peregrine software is designed for in-situ quality control in powder bed 
systems and introduces AI-based software for defect detection in the top layer of a powder bed 
system, whereas digital image correlation addresses in-situ monitoring of residual thermal stresses 
and warpage in polymer composite printed components using digital image correlation. We have 
taken inspiration from these studies and developed a new method for the specific purpose of 
automated identification of layer boundaries in LAAM structures, which has not been addressed 
before. 

Materials and Methods 

Data collection 

We used rectangular, vertically-printed 3D-printed walls as the primary material for our 
layer identification work (Figure 1). These walls were produced using a LAAM printer as part of 
an effort to produce material test specimens from ABS thermoplastic infused with carbon fiber, 
creating a black appearance, and were composed of 120 layers, each about 5mm high. The images 
were captured using a high-resolution camera at 8192 x 5464 pixels with overhead, uncontrolled 
overhead lighting from the facility ceiling.  The wall itself was the primary feature in the camera 
scene and covered about 2/3rds of the image. We sampled from three different images with 
representative edge identification features. The layers of the walls were generally printed 
imperfectly and included many variations and inconsistencies commonly encountered in LAAM.  
In addition, the various walls were printed at different speeds, resulting in further inconsistency. 

Other available LAAM materials included wood-fiber composites, which are more 
reflective but have a less smooth texture - these are considered for future work. 
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Figure 1: 3D Printed Wall 

Data Preprocessing and Tiling 

To avoid image segmentation complications and focus on layer boundaries, the first step 
was to remove the background from our input images. As you can see in Figure 1, there are 
different types of objects around the wall, and the wall itself contains painted writing and ragged 
areas. To tackle this, we initiated the process by cropping the images and selecting specific regions 
that could be accurately labeled, effectively removing the background and the irregular portions 
on the wall images (Figure 2).  

Each image is sliced into 128x128 tiles to be used when proceeding to the automated layer 
identification for consistency in our metrics.  

Figure 2: Image cropping 
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Manual edge identification 

 After tiling, the images are ready for manual and automatic labeling. Two different image 
manipulation and editing software tools were used - The first tool was Gimp, an open-source image 
editing tool [3], which we used to draw white lines along each edge between two layers, as shown 
in Figure 3. As this was very time-consuming, we started using ImageJ [4], another open-source 
scientific image tool, which included more dedicated manual edge-detection tools. In ImageJ, we 
first had to convert the images to an 8-bit color format in order to apply a manual threshold to it. 
By adjusting the values depending on the intensity variations on the image, contiguous lines are 
possible. Figure 4 shows the same image manually labeled with ImageJ. After completing the 
manual labeling for each image, we would similarly tile the labeled masks into 128x128 tiles to 
match the image tiles.  

 

 
 

Figure 3: Manual edge labeling with GIMP  Figure 4: Manual edge labeling with ImageJ 
 

 
Automated edge identification - Overview 

 
 The pipeline in Figure 5 goes through the steps of our layer identification research. The 
solid arrows are for the manual steps, while the dashed arrows are for the automated steps. 
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Figure 5: Layer interface identification pipeline 
 
 
Automated edge identification - Step 1: Thresholding 
 

After manually labeling the sample images, we proceeded with the automatic labeling of 
the same images. We opted to employ three specific methods:  

 
● Simple thresholding 
● Otsu thresholding [5] 
● Canny edge detection [6] 

 
First, we use simple image thresholding to identify the layers on the 3D-printed walls. 

Simple thresholding provided a straightforward and intuitive way to identify layers based on pixel 
intensities. The simple thresholding method converts the input image into a binary representation. 
A manually selected threshold value was applied to classify pixels as either edge or non-edge. 
Figure 6 shows the image sample, and Figure 7 is the resulting binary image. The edge pixels were 
colored in white, and the black areas were the non-edge pixels.  
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Figure 6: Camera image sample  Figure 7: Method 1: Simple thresholding mask.  
  White pixels are considered edge pixels. Black pixels are considered non-edge. 

 
 
For the second method, we utilized Otsu image thresholding, a well-known automatic 

technique for determining the optimal threshold value for each layer based on the histogram of 
pixel intensities (Figure 8). Otsu thresholding separates layer and edge pixels by finding the value 
that minimizes the variance between light and dark classes. It automatically analyzes the pixel 
intensity distribution, iterates through possible thresholds, and identifies the one that yields the 
clearest separation. By incorporating Otsu thresholding, we achieved precise layer identification, 
enhancing our image analysis and enabling further investigation (Figure 8).   

 
 
 

 
Figure 8: Method 2: Otsu thresholding. Histogram of pixel intensities and typical results. Red 

pixels are considered edge pixels while blue pixels are considered non-edge pixels. 
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Lastly, we employed Canny edge detection, a well-established edge detection algorithm 
developed by John Canny in 1986. Given its popularity and effectiveness in image processing and 
computer vision tasks, we selected Canny edge detection as our third method for layer 
identification. Canny edge detection identifies edges in an image based on the gradient of pixel 
intensities. It includes key steps for identifying edges in an image. It starts by applying a Gaussian 
filter to reduce noise and enhance edge quality. Then, the gradient of pixel intensities is calculated 
using the Sobel operator, providing the rate and direction of intensity change. Non-maximum 
suppression thins out edges by preserving only local maxima in the gradient direction. Finally, 
hysteresis thresholding connects potential edge pixels to form continuous strong edges. Canny 
detection is expected to produce accurate, well-defined edges while handling noise. By following 
these steps, we were able to extract the edges of interest for most of the images (Figure 9), 
providing valuable information for our analysis. 

 
 

 
 

Figure 9: Method 3: Canny edge detection. White pixels correspond to identified edges 
while black pixels are considered as non-edge pixels. 

 
For each image, the three methods, simple thresholding, Otsu thresholding, and Canny 

edge detection, are applied in parallel. This approach allowed us to explore different techniques 
and assess their utility for layer identification purposes. 

 
Automated edge identification - Step 2: Clustering 
 

In order to address irregularities in the identified pixels of the images, the incorporation of 
clustering techniques was found to be necessary. The pixel identifications in the images exhibit a 
certain level of noise, as you can see in Figure 10. This is characterized by numerous small 
discontinuities and outliers.  

 
To tackle this challenge, we employed the DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) algorithm [7] for grouping the identified pixels into contiguous 
horizontal rows. DBSCAN is a powerful clustering method widely used in machine learning for 
separating clusters of high density from areas of low density, which, in our case, corresponds to 
distinguishing edge clusters from non-edge clusters. 
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One of the key reasons behind our selection of DBSCAN was its robustness in handling 

noise and outliers. Designed specifically for noisy and sparse datasets, DBSCAN effectively 
differentiates between clusters and noise points by considering the density of the data points. Any 
outliers or isolated points that do not belong to any cluster are labeled as noise, enabling DBSCAN 
to maintain its reliability even in the presence of noisy data. 
 

An additional advantage of DBSCAN is its ability to automatically determine the number 
of clusters without requiring pre-specification. By dynamically detecting densely populated 
regions and ensuring their connection, DBSCAN offers a flexible approach for approximating 
layer boundary contours, which was highly beneficial for our research objectives. 
 

Figure 10 provides an illustrative example showcasing the application of DBSCAN to a 
sample ground truth image and a sample obtained through our simple thresholding method. The 
effectiveness of DBSCAN in accurately clustering the pixels and identifying layer boundary 
contours can be observed. 
 

By utilizing DBSCAN in our analysis pipeline, we were able to overcome the challenges 
posed by the "messiness" of pixel identifications, enabling us to achieve more accurate and 
representative results in our research. 
 

 
 

Figure 10: DBSCAN clustering applied to a manually labeled image (top) and automated labeled 
image (bottom). 

 
Automated edge identification - Step 3: Function fitting 
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We then implemented an interpolation function that drew a 1-D smoothing spline that fit 
every group of edge cluster points of every image [6] (Figure 11).  

 

 
 

Figure 11: Interpolation function applied to pixel clusters. 
 
 

Performance evaluation 
 
This step allowed us to compare and evaluate the error between the edges on each image 

labeled manually and its corresponding image automatically labeled. Performance metrics were 
computed to assess the effectiveness of each method. To quantify the error between the sets of 
splines, we defined a function that takes two sets of splines as input. This function calculates the 
error by comparing the values of the splines at multiple points (in this case, 128 points) along the 
x-axis. The absolute difference between the spline values at each point is accumulated to compute 
a running total of the error. 

Subsequently, we iterated through pairs of ground truth and predicted sets of splines. For 
each pair, we calculated the error between the corresponding splines and tracked the total error for 
each set of splines. To determine the average pixel error for one pair of splines, we divided the 
total error by the number of pixels. 

Next, we calculated the average error for each set of splines (each image) by dividing the 
total average error by the number of splines in that set (image). Additionally, we computed the 
average error for all sets of splines by dividing the total average error across all sets (images) by 
the total number of processed sets of splines. 

Finally, we calculated average pixel errors for all sets of splines. In cases where the number 
of predicted splines differed from the number of ground truth splines, we considered it a failure 
and reported failures separately. 

Results 
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In this section, we present the results of our study on automated layer identification in 3D-printed 
walls from a LAAM printer. Figures 12 and 13, respectively, show examples leading to low and 
high accuracy for all methods. (The specific accuracy for each method depends on the light 
intensity variations over the image.) One can see the difference between the definition of the 
clusters for each automated method and our ground truth. For the simple thresholding method, we 
observed that this method was sensitive to variations in image quality and noise, leading to 
inaccurate results. Next, we employed Otsu thresholding, which performed better than simple 
thresholding in terms of accuracy and was less sensitive to noise and image quality variations. 
However, it was computationally more expensive. Finally, Canny edge detection produced 
accurate results but was computationally most expensive and could be sensitive to noise.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 12: Example of Low accuracy DBSCAN clustering results on manually labeled image 
and automated labeled images 
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Figure 13: Good Example of High accuracy DBSCAN clustering results on manually labeled 
image and automated labeled images 

 
 

For each image, the three methods were applied in parallel, and the resulting layer 
identification outputs were compared against manual identifications.  We achieved highly accurate 
layer identification in 70% of the images using Otsu, 40% using Canny edge detection, and 30% 
using our simple thresholding method, with an average error of only 1 pixel per image when 
comparing the manually labeled and automatically labeled images for our best method. In Figure 
14, we have the average pixel errors for all sets of splines. In cases where the number of predicted 
splines differed from the number of ground truth splines, we considered it a failure and factored it 
into the evaluation. This is shown in Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Average pixel error of edge identification 
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Figure 15: Edge Identification Failure graph 

 

Conclusion and Future Work 

  Our main goal is to develop an automated method for layer identification in 3D-printed 
walls produced by a LAAM printer. We tested three image thresholding methods: simple 
thresholding, Otsu thresholding, and Canny edge detection for layer boundary identification. Otsu 
thresholding was the most accurate method with minimal manual intervention, handling image 
quality variations and noise in approximately 70% of our images. Otsu thresholding is a promising 
approach for automated layer identification, providing high accuracy and reduced manual effort. 
Canny edge detection is effective but computationally complex. Simple thresholding may be 
suitable in specific scenarios, despite lower accuracy compared to the other methods. 

In the future, we would like to apply our methods to thermal images, to different types of 
materials, and potentially look into video streams. Finally, we expect to embed our approach to 
obtain an automatic image-to-layer data pipeline and integrate it into an optimization framework 
for manufacturing quality assessment and control. 
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