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Abstract 
Additive manufacturing has revolutionized structural optimization by enhancing component 
strength and reducing material requirements. One approach used to achieve these improvements 
is the application of multi-lattice structures. The performance of these structures heavily relies on 
the detailed design of mesostructural elements. Many current approaches use data-driven design 
to generate multi-lattice transition regions, making use of models that jointly address the geometry 
and properties of the mesostructures. However, it remains unclear whether the integration of 
mechanical properties into the data set for generating multi-lattice interpolations is beneficial 
beyond geometry alone. To address this issue, this work implements and evaluates a hybrid 
geometry/property machine learning model for generating multi-lattice transition regions. We 
compare the results of this hybrid model to results obtained using a geometry-only model. Our 
research determined that incorporating physical properties decreased the number of variables to 
address in the latent space, and therefore improves the ability of generative models for developing 
transition regions of multi-lattice structures. 
 

1. Introduction 
 
Additive manufacturing has enabled more design freedom, however, these freedoms have forced 
designers to become more creative due to continuous pushes for optimization and material 
reduction. One approach to keep pace with these pushes is to utilize lattice structures, which can 
be used to reduce weight while maintaining performance [1,2]. By simply applying lattice 
structures to a design, weights have been shown to decrease by as much as 40% while maintaining 
overall strength [3]. This is one of many benefits that have sparked further interest in lattices, 
leading to the development of multi-lattice structures which are structures created using multiple 
types of unit cell topologies [4–7]. Multi-lattice design has become a major area of interest among 
researchers in additive manufacturing due to its versatility in terms of properties. Of note, multi-
lattice structures exhibit better strength and stiffness properties than uniform structures of 
comparable density [6,8].  
 
However, the success of multi-lattice structures is dependent on their ability to distribute stress 
evenly, as stress concentrations can cause part failures [6]. Due to the complex nature of this design 
problem, researchers have explored approaches that use machine learning to design multi-lattice 
transition regions [9–13]. These models often make use of both geometry and stiffness information 
in the training data to create generative models that are responsive to both. Stiffness is a physical 
property that is considered in most of the literature that analyzes the performance of lattices 
[2,14,15], as it is a primary physical descriptor of the performance of a lattice. While incorporating 
stiffness properties into these models has proven successful, the relative value of incorporating 
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physical properties into these generative models has not been evaluated [9–13]. In other words, it 
is unclear whether the added complexity and computational requirements incurred through the 
addition of stiffness information provide an associated increase in design performance to justify 
those costs.  

This study aims to determine whether it is necessary to incorporate physical properties into 
variational autoencoders (VAEs) that use geometrically-defined latent spaces to optimize the 
physical performance of transition regions of multi-lattice structures. Specifically, we examine 
stiffness continuity, a measure of the change in stiffness across adjacent unit cells, as an indicator 
of the stiffness throughout a transition region. Our primary research questions address the 
unknowns regarding the role of physical properties in unit lattice cell latent spaces:  

1. How does incorporating physical properties into VAEs affect the relationship between
geometric smoothness, distance, and transition length in the latent space?

2. How does incorporating physical properties into VAEs affect the relationship between
stiffness continuity, distance, and transition length in the latent space?

2. Methodology

This section outlines the architectures developed and the methods of testing used to evaluate our 
VAEs. Additionally, it will briefly outline our use and development of data for this work.  

The data used was originally generated in prior work by Wang et al. and consists of 248,396 unique 
orthotropic microstructures, or unit cells [10,12,16]. In addition to this data, we developed a 
function for calculating the stiffness tensors of generated geometries based on a MATLAB 
topology optimization code [17]. This code was validated against those computed by Wang et al 
in prior work [10,12,16]. A subset of 10,000 random data points was used to develop architecture 
of the models without excessive training times. The individual pieces of data were binary arrays 
of size 50×50 that represented an individual unit cell’s geometry. Additionally, each unit cell had 
a corresponding 3×3 stiffness tensor. 

2.1 Architectures 
This section outlines the VAE architectures used for investigating the research questions. 
Specifically, this entails two main architectures: (1) a geometry-only VAE based on prior work, 
and (2) a hybrid representation VAE that encodes both stiffness and geometry information. Both 
architectures in this work used identical training parameters: training using a batch size of 32 and 
an Adam optimizer [18], where 85% of the dataset was used for training. Additionally, training 
was terminated early if the loss failed to improve after 10 full epochs, where the loss term measures 
the difference between the reconstructed data and the original data. 

The geometry VAE simply encodes and decodes the geometry using a standard VAE architecture 
(see Figure 1). The architecture of the model in Figure 1 was based on our previous works [19,20]. 
The purpose of this model is to serve as a baseline for comparison against the hybrid architecture. 
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Figure 1: Geometry VAE Architecture* where the input consists of only the unit cell geometry 

 
The hybrid VAE (see Figure 2) has a similar encoder and decoder framework to the geometry 
VAE. However the encoded geometry is appended with a flattened stiffness matrix before 
calculating the mean and log variance. This architecture is intended to encode information relating 
to the stiffness tensor into the latent space. The decoder of this architecture is identical to the 
decoder of the geometry decoder architecture to enable a consistent comparison. 
 

 
Figure 2: Hybrid VAE Architecture* where the input consists of unit cell geometry and the 
corresponding stiffness tensor 

 
2.2 Evaluating Performance of Architecture 
The geometry VAE and hybrid VAE must be evaluated in terms of both geometric smoothness 
and stiffness continuity. Prior work establishes a procedure for evaluating geometric smoothness 
and shows that it is related to the distance in latent space and transition length [19,20]. We use the 
same analysis procedure and geometry smoothness metric here. Specifically, distance is measured 
with respect to number of standard deviations, and transition length is simply the number of points 
in a transition region. We also introduce a new metric for evaluating stiffness continuity.  

 
2.2.1 Evaluating Geometric Smoothness 
The success of a latent space is dependent on the performance of the interpolations that can be 
produced from that latent space. When evaluating geometric transitions in a latent space, 
continuously and smoothly changing geometries are desired. To perform this evaluation, we utilize 
a smoothness metric that was developed in our previous work to evaluate the geometric 
smoothness of a 2D interpolation [19,20]. This metric calculates the gradients between multiple 
layers in an interpolation, essentially measuring the flow between each layer of pixels. The root 
mean squared error (RMSE) is calculated between the flows and then normalized to produce a 

 
* Image created with http://alexlenail.me/NN-SVG/AlexNet.html 
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value of smoothness over an entire interpolation. This metric will be utilized in this work to 
evaluate the smoothness of interpolations among the various models. More details on the 
implementation of this smoothness evaluation are available in prior work by the authors [20]. 
 
2.2.2 Evaluating Stiffness Continuity 
When evaluating the equivalent of geometric smoothness for stiffness tensors, the changes within 
a single tensor are not important as each element represents a unique piece of information. 
Therefore, the tensors are evaluated by comparing values only with the neighboring tensor. To 
achieve this, we implemented an RMSE framework to calculate a stiffness continuity value. First, 
the stiffness tensors in the interpolation were normalized with respect to the entirety of the training 
data. Then, the RMSE must be computed between each pair of values in the stiffness tensor using 
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where 𝑅𝑀𝑆𝐸! denotes the root mean squared error between a pair of stiffness tensors at indices i 
and i+1, K is the normalized flattened stiffness tensor, j is the index that identifies the specific 
term in flattened stiffness tensor, and N is the number of terms in a single stiffness tensor (in this 
case, 9). Since the stiffness tensors are normalized before computing the RMSE, the maximum 
possible value is 1. This allows the direct evaluation of the continuity of the stiffness by averaging 
the values in Equation 1 using  

 
𝐶) = )1 − 𝑎𝑣𝑔(𝑅𝑀𝑆𝐸!), ⋅ 100%	 ( 2 ) 

 
where 𝐶) is a value representing the continuity of stiffness over the entire transition region. Higher 
values indicate a smoother and more continuous transition in stiffness, while lower values indicate 
abrupt transitions.  
 
 

3. Results 
 

In this section we discuss results of the models in three main areas: (1) the reconstruction 
capabilities, (2) the test interpolations outlined in the methods, and (3) an ordinary least squares 
evaluation based on the interpolation results. 
 
3.1 Model Reconstruction 
Initially, we evaluate the performance of a machine learning model by examining the performance 
during training and testing (here using a mean squared error (MSE) loss and coefficient of 
determination). This indicates whether or not the model can appropriately reconstruct the desired 
data. If the model can reconstruct data, then an examination of the learned latent space may be 
informative. The results from the geometry VAE (see Figure 3) showed that geometry can be 
effectively reconstructed to 80% accuracy for testing data, and 87% accuracy for training data. 
This model serves as the baseline and represents the original model developed in previous work 
[19,20]. The decrease in accuracy from our previous work is likely due to the increase in 
dimensionality of the data, as well as the randomness of the data. The performance of the validation 
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data was likely extremely inconsistent due to the lack of similarity between all the data points. 
This is a matter to consider when evaluating the other model types, as this model serves as the 
baseline. 

Figure 3: Geometry VAE: Plot of Loss and Coefficient of Determination (left) and Visualization 
of the Latent Space using PaCMAP Dimensionality Reduction (right) 

The hybrid VAE was nearly identical to the geometry VAE, with matching performance for 
accuracy for both training and testing data (see Figure 4).  This is a good indication that the model 
will perform well when reconstructing data, and the results in the evaluation section should be 
directly comparable.  

Figure 4: Hybrid VAE: Plot of Loss and Coefficient of Determination (left) and Visualization of 
the Latent Space using PaCMAP Dimensionality Reduction (right) 

In addition, Pairwise Controlled Manifold Approximation (PaCMAP) was used to visualize the 
latent space produced by each of the trained models (see Figure 3 and Figure 4) [21]. This approach 
has been shown in prior work to accurately provide a representation with balanced preservation of 
local and global features for engineering-relevant data [22]. There are distinct similarities in the 
learned embeddings, despite the addition of unique performance information. The overall shape is 
similar, consisting of approximately four lobes. In addition, the unit cells with lower average 
density are placed at the periphery of the latent space.  
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3.2 Interpolation Performance 
As discussed previously, the evaluation technique for consistent results was traveling through 
latent space using standard deviations as the distance metric. This metric is discussed in further 
detail in prior work [19,20]. Each point on a plot represents an interpolation, with the average 
value of a metric (y-axis) over a distance in the latent space (x-axis). The points are labeled using 
color to denote the length of the transition region.  
 
The results from Figure 5 (left) are consistent with the results seen in previous work [19,20]. As 
distance in the latent space increases, the smoothness decreases. Additionally, the higher transition 
lengths have higher smoothness values relative to one another.  
 

       Geometry Smoothness            Stiffness Continuity 

 
Figure 5: Geometry VAE: Geometry Smoothness versus Number of Standard Deviations in the 
Latent Space (left) and Stiffness Continuity (𝐶)) vs Number of Standard Deviations in the Latent 
Space (right). 
 

The predicted geometries from Figure 5 (left) were used to the calculate the corresponding stiffness 
tensors, which were evaluated using the metrics described in the methods section to produce Figure 
5 (right). This figure serves as the baseline of stiffness continuity for our hybrid geometry/property 
model. From visual observations, the stiffness continuity begins to plateau as the distance in the 
latent space increases. This indicates that the effect of distance in the latent space is limited to 
some degree.  
 
The results from the hybrid VAE are consistent with the results from the geometry VAE, where 
the relationship between smoothness, distance, and transition length are comparable (see Figure 6 
(left)). This is a desirable trait, as it indicates that the latent space has similar embeddings to the 
baseline model. Which means that we can directly compare the performance of the two models in 
terms of the stiffness continuity. However, the pattern of the results displays a much more 
aggressive plateau starting at 4 standard deviations between endpoints.  
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Geometry Smoothness         Stiffness Continuity 

Figure 6: Hybrid VAE: Geometry Smoothness versus Number of Standard Deviations in the 
Latent Space (left) and Stiffness Continuity (𝐶)) vs Number of Standard Deviations in the Latent 
Space (right). 

The predicted geometries from Figure 6 (left) were used the calculate the corresponding stiffness 
tensors, which were evaluated using the metrics described in the methods section to produce Figure 
6 (right). The stiffness continuity of the data in Figure 6 (right) appears to plateau much sooner 
than the points in Figure 5 (right).  

Visually, Figure 5 (left) and Figure 6 (left) are consistent with prior work, showing that smoothness 
has a clear relationship to distance and the length of the transition region. Smoothness appears to 
be positively correlated with the length of the transition region, and negatively correlated with the 
distance in the latent space between the endpoints. Figure 5 (right) and Figure 6 (right) show the 
relationship between stiffness continuity, distance in the latent space, and length of the transition 
region. These plots demonstrate that the effect of distance and transition length does not have as 
significant of an impact as they do on geometric smoothness. However, these values may be 
skewed arbitrarily high, given that symmetric geometries contain zeros in the stiffness tensor [23]. 
The next section serves to further explore the validity of these visual observations. 

3.3 Evaluating Latent Space Relationships 
This section will outline the relationships between the primary variables in the latent space. The 
independent variables are smoothness of geometry and continuity of stiffness properties of the 
respective geometries. The dependent variables are distance in the latent space and the length of 
the transition region. Using these variables, an ordinary least squares regression can be executed 
based on the results in the interpolation performance section.  

Table 1 displays the ordinary least squares regression analysis of the results from Figure 5 (left), 
which evaluates the relationships between geometric smoothness and latent properties for the 
geometry model. Again, the geometry model serves as the baseline since it has architecture similar 
to that used in prior work [19,20]. Table 2 displays the ordinary least squares regression analysis 
of the results from Figure 5 (right), which evaluates the relationships between stiffness continuity 
and latent properties for the geometry model. 
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Table 1: Geometry VAE: Ordinary Least Squares Regression Analysis for Geometry Smoothness 
versus Number of Standard Deviations in the Latent Space  

R-Squared = 0.958 Coefficient Standard 
Error 

p-value

Constant: 95.7815 3.742 < 0.0001 
Number of Standard Deviations (Distance): -8.2559 0.961 < 0.0001 
Transition Length: 0.3930 0.346 0.276 
Interaction Term: 0.2838 0.089 0.007 

Table 2: Geometry VAE: Ordinary Least Squares Regression Analysis for Stiffness Continuity 
versus Number of Standard Deviations in the Latent Space  

R-Squared = 0.767 Coefficient Standard 
Error 

p-value

Constant: 97.0878 3.482 < 0.0001 
Number of Standard Deviations (Distance): -2.9178 0.894 0.006 
Transition Length: 0.1877 0.322 0.570 
Interaction Term: 0.1392 0.083 0.115 

The results from Table 1, are consistent with prior work, where the transition length alone does 
not have a significant relationship with geometric smoothness and distance has the most significant 
impact on geometric smoothness [19,20]. This is evident based on the p-values in Table 1. The 
high R-squared value is indicative that the variability in the geometric smoothness is almost fully 
described by the two independent variables, distance and transition length. 

Based on the results of Table 1 and Table 2, the relationship between stiffness continuity and the 
properties of the geometry defined latent space are not as strong as the relationship with geometric 
smoothness and the properties of the latent space. This is based on the low R-squared value of the 
stiffness continuity of the geometry VAE in Table 2. An R-squared value of 76% indicates that 
24% of the variability of the stiffness continuity is not accounted for by the two independent 
variables explored. This suggests that there are additional variables that affect the performance of 
stiffness continuity. Therefore, the true underlying relationship between stiffness continuity, 
distance, and transition length is unclear.  

Table 3 displays the ordinary least squares regression analysis of the results from Figure 6 (left), 
which evaluates the relationships between geometric smoothness and latent properties for the 
hybrid model. Table 4 displays the ordinary least squares regression analysis of the results from 
Figure 6 (right), which evaluates the relationships between stiffness continuity and latent 
properties for the hybrid model.  

Table 3: Hybrid VAE: Ordinary Least Squares Regression Analysis for Geometry Smoothness 
versus Number of Standard Deviations in the Latent Space  

R-Squared = 0.896 Coefficient Standard 
Error 

p-value

Constant: 92.5313 5.709 < 0.0001 
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Number of Standard Deviations (Distance): -7.1776 1.466 < 0.0001 
Transition Length: 0.6077 0.529 0.269 
Interaction Term: 0.2079 0.136 0.148 

Table 4: Hybrid VAE: Ordinary Least Squares Regression Analysis for Stiffness Continuity 
versus Number of Standard Deviations in the Latent Space  

R-Squared = 0.908 Coefficient Standard 
Error 

p-value

Constant: 101.4797 1.450 < 0.0001 
Number of Standard Deviations (Distance): -2.5201 0.372 < 0.0001 
Transition Length: -0.0682 0.134 0.619 
Interaction Term: 0.1162 0.034 0.005 

The results from Table 3 illustrate that incorporating physical properties into the model removed 
the effects of transition length on geometric smoothness. This conclusion is based on the p-values 
of the transition and interaction terms in Table 3. Alternatively, stiffness continuity in the hybrid 
model has a relationship with the transition length, based on the p-values from Table 4. However, 
the R-squared values of nearly 90% suggest that other variables account for approximately 10% 
of the variability of the geometric smoothness and stiffness continuity. 

Overall, the results indicate that incorporating physical properties into the VAE changed the 
relationships with distance and transition length. The results suggest that incorporating physical 
properties into the latent space decreased the likelihood that transition length influences geometric 
smoothness. However, stiffness continuity demonstrated a greater likelihood that the combination 
of distance and transition length have an effect. As expected, none of the models showed a 
relationship with transition length alone. The results from the hybrid VAE indicate that its latent 
space is better suited to create multi-lattice transitions with continuous geometry, given that fewer 
variables affect its performance. However, none of the results relating the two models were 
statistically significant, thus further testing is warranted.   

4. Conclusion

The development of multi-lattice transition regions is increasingly dominated by generative 
machine learning models. These models aim to produce multi-lattice transition regions with 
smooth geometric and physical properties. This work compares two approaches to constructing 
transition regions: a model that uses only geometric information and another hybrid model that 
merges geometry and property information. The first model, the geometry VAE, created a 
geometrically defined latent space only using the unit cell topologies. The second model, the 
hybrid VAE, utilized a combination of unit cell topologies and unit cell stiffnesses to define the 
latent space.  

The geometry VAE performed much like our previous model, where geometric smoothness is 
influenced by distance and the combination of distance and transition length. Further testing is 
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necessary to fully explain the relationships between stiffness continuity and the latent space. The 
hybrid VAE exhibited very different relationships than the geometry VAE. The results of the 
ordinary least squares regression indicate that incorporating stiffness into the generative model 
decreased the effect of transition length with respect to geometric smoothness. This is a desirable 
trait as it indicates that the geometric smoothness will only be affected by the distance in the latent 
space. Alternatively, the continuity of stiffness is affected by the combination of transition length 
and distance when analyzing the hybrid model. However, there appears to be a set of additional 
variables that account for ~10% of the variability for both stiffness continuity and geometric 
smoothness.  

When analyzing the reconstruction accuracy of the models, they can only perform at 80% 
accuracy, which is much lower than previous work. The drop in accuracy from our previous work 
is likely due to the increase in dimensionality of the data, from 28×28 to 50×50. Although the 
accuracy is sufficient for the current analysis, further work should seek to train more accurate VAE 
models. In addition, there are many ways in which property information can be combined with 
geometric information in the training process of hybrid models. Therefore, future work should also 
explore the design freedom that is present in the design space of deep learning models. 
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