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Abstract

Triply Periodic Minimal Surfaces have been identified as good candidates for the generation of
lattice structures produced with additive manufacturing. These TPMS-based lattice structures
avoid sharp features that are characteristic of strut-based lattice structures because of their
constant zero mean curvature. Although studies have explored part-scale optimization using
TPMS-based lattice structures, they have only varied the volume fraction by changing the level
set in the approximate surface equations. By defining new parameterizations in the approxi-
mate surface equation, we can redistribute volume within the lattice structure at any volume
fraction. In this paper, we introduce an approach for optimization of this new parameterization
of TPMS equations using the Borg multi-objective evolutionary algorithm. We demonstrate
this framework on the IWP exo-skeletal lattice under uniaxial compression. A relationship
between the new parameters and the level set is derived for designs on the Pareto frontier of
the optimized IWP TPxS. The performance of the Pareto optimal designs and the efficacy of
the optimization approach are shown by comparing to the standard IWP lattice and four other
lattices that share the same topology. The optimized designs are implemented and shared in
custom nTopology blocks.
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1 INTRODUCTION

One of the major draws of additive manufacturing (AM) is that components can be redesigned to
reduce weight with the same or improved performance by taking advantage of the design freedom
offered by AM [1]. One method of reducing weight in parts designed for AM is by incorporating
lattice structures into designs. Lattice structures, also known as lattices, are repeating three dimen-
sional structures that can be used to fill regions of the component. These structures exist between
the macro-scale structure of the component and the microstructure of the material, unlocking new
design opportunities. A lattice offers the ability to generate regions that are not completely solid
but retain a significant portion of the mechanical properties of the material it is made from, thus
reducing the resulting part’s weight [2, 3]. Many studies have proposed a large variety of different
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(a) (b) (c) (d)
Figure 1: Models of (a) the Body Centered Cubic (BCC) unit cell and (b) the I-graph–Wrapped Package
graph (IWP) exo-skeletal (TPxS) lattices which share the same topology. Finite element analysis (FEA) of
each lattice in uniaxial compression is presented in (c-d) with a 13% reduction in peak von Mises stress in
the IWP TPxS compared to the BCC. The stress concentrations where struts in the BCC lattice intersect
is avoided by the smooth curvature of the IWP TPxS. The boundary conditions and loads for the FEA are
identical to those of the validation models which are given in Table 1

.

lattice topologies [e.g., 4, 5, 6]. Two classes of lattice structures have recently seen significant
traction within the field, those based on struts and those based on Triply Periodic Minimal Surfaces
(TPMS) [7]. A strut-based lattice is a three dimensional truss like structure composed of individual
struts that join together at discrete nodes. One limitation of strut-based lattice structures is that
the sharp intersections between struts result in stress concentrations. These concentrations can be
minimized by applying rounds to the junctions, but this can be computationally expensive when
the lattice structure has many members [8, 9]. TPMS-based lattices are modeled using approximate
equations defined by 3D Fourier series fits of surfaces of zeromean curvature (minimal) that exhibit
periodicity inR3 (triply periodic) [10]. By definition, a minimal surface cannot have sharp corners,
as it would violate the zero mean curvature. This property reduces stress concentrations, allowing
for better utilization of material. The majority of strut and TPMS lattice structures vary greatly
from one another, however, the strut-based Body Centered Cubic (BCC) and TPMS-based I-graph–
Wrapped Package-graph (IWP) exo-skeletal (TPxS) lattice structures share the same connectivity
(See Figures 1a and 1b). As shown in Figures 1c and 1d, the IWP TPxS shows improvements
to the mechanical properties compared to the BCC, which is consistent with Zhao et al. [11]. In
addition, using a TPMS as a basis can be an efficient way to generate large and variable lattice
structures [12].

The Fourier series fit used to model lattices based on the IWP TPMS, given in Equation 1, was
derived by Von Schnering and Nesper [10]. In this work we use the following shorthand for the
cosine function Cni = cos

(
2πn
di

i
)
where i is a spatial coordinate (i.e. x,y,z), di is the period of the

lattice’s unit cell in direction i, and n is the number of periods of the trigonometric function in one
period of the lattice in direction i. (e.g. 1,2), when n is one, it is omitted simplicity.

2(CxCy +CyCz +CzCx)−1
(
C2x +C2y +C2z

)
= t (1)
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TPMS Endo-skeleton (TPnS) Surface (TPSf) Exo-skeleton (TPxS) Combined

Figure 2: The IWP surface and the three types lattice structures modeled from it using Equation 1.
Reproduced with permission from [13].

The two terms on the left hand side of Equation 1 define the surface that approximates the IWP
TPMS, and t is a level set that provides an offset to that surface allowing the volume of material in
the lattice to be changed.

Implicit equations that approximate TPMS, including Equation 1, can be used to model three
unique types of lattice structures by defining solid material based on the value of the field in
space. The three types are: the endo-skeleton (TPnS), the exo-skeleton (TPxS), and the surface
(TPSf) [13]. Respectively, these three lattice structures are modeled by defining the following
regions of the field as solid: less than t, greater than t, and those between t and −t. We show these
three lattices for the IWP in Figure 2, highlighting the unique geometries. For this work, we focus
on the TPxS.

For the discussion of lattice structures, we define the volume fraction as the volume of the solid
material in the lattice normalized by the volume of the space that the lattice is filling. Lattice
structures are often discussed in terms of their volume fraction in the literature as it provides
a common basis for comparison between lattices that is independent of lattice topology and the
geometry of the space that the lattice is filling.

The first two terms of Equation 1 can be inspected separately to understand the impact that
each has on the topology of the resulting surface. Structures produced using each term alone are
shown in Figure 3. Informally, we can say that the two terms respectively draw mass toward and
away from the “nodes” of the lattice at the center and corner of the unit cell. If the second term
in Equation 1 had a coefficient greater than one, the “nodes” would be smaller and the “beams”
thicker. In Equation 1, the ratio of the two is fixed as 2:1, which provides a best fit to the IWP
TPMS when t = 0 [10]. Since this equation was derived at a single level set (which is also a single
volume fraction), and not based on any criteria specific to lattice design, it is likely that variation
on Equation 1 can improve the performance of the lattice. With this motivation, we define a new
equation with variables in place of the coefficients 2 and 1, shown below in Equation 2. We also
define our first research question: Can the response of the IWP TPxS lattice be improved at
one or more volume fractions by varying the coefficients A and B present in its equation?

A(CxCy +CyCz +CzCx)−B
(
C2x +C2y +C2z

)
− t > 0 (2)
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(a) (b)
Figure 3: Models generated with (a) the first and (b) second terms of Equation 1 in isolation. The balancing
of the two terms provides a useful approximation of the IWP TPMS. Both terms show mirror symmetry in
x, y, and z through the center of the unit cell.

The values of A, B, and t can be varied to generate unique structures, producing a 3D design
space in which to search for optimal designs. The optimization of TPMS-based lattice structures
has been performed at the component scale by changing value of the level set t to redistribute mass
within the lattice to meet the performance requirements of the component [14, 15, 16]. In addition,
the optimization of strut-based unit cells has appeared multiple times in the literature with differ-
ent approaches. Ground structure approaches, utilizing a multi-objective evolutionary algorithm
(MOEA), have been demonstrated for generating novel unit cells for specific applications [17].
Several optimizations have been performed on the BCC lattice to improve the response of the
lattice. Wang et al. [8] approached the optimization by adding rounds to the intersection of the
struts whose radius was a function of the strut radius. Lee, Zhang, and Gu [18] applied a machine
learning approach to optimize the profile of the struts which they parameterized as 30th order Bézier
curves. Zhao et al. [19] defined the BCC lattice using struts that have a hexagonal cross-section that
taper linearly from the nodes to the center of the beam. This approach reduces the complexity of
the model, replacing curved surfaces with trapezoidal faces that are more easily meshed; however,
this approach does result in different stress concentrations at the mid-span of the struts where the
planer faces intersect. We show examples of the geometry generated using these three approaches
in Figure 4. When discussing these different lattices in this work, we will reference them by the last
name of the first author (i.e. Wang, Lee, and Zhao). These three optimizations of the BCC lattice
all included uniaxial compression as a load case in their optimization, giving a common point of
comparison. This leads to a second research question: Do the results of optimization of the
IWP TPxS outperform optimizations of the BCC lattice which share the same topology? For
TPMS-based lattices, no studies have performed this type of optimization on the unit cell prior to
utilizing it at the component scale. As demonstrated by prior works (e.g., [8]), such an optimization
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(a) (b) (c)
Figure 4: Optimized BCC unit cells from (a) Wang et al. [8], (b) Lee, Zhang, and Gu [18], and (c) Zhao
et al. [19] at volume fractions of 0.1970, 0.2409, and 0.1977, respectively. The smooth curvature of (b)
shows a strong similarity to the IWP TPxS; however, creases at the intersections of the struts persist through
the optimization that lead to stress concentrations.

can increase the performance of the lattice structure. In the new parameterization in Equation 2, the
coefficients A, B, and the parameter t can be used as inputs for the optimization of the lattice since
they are not fixed values. Unit cells that have been optimized can then be utilized in component
level optimization. In addition to other optimizations including uniaxial loading cases, the majority
of lattice structure analysis and mechanical testing is performed in uniaxial compression [20, 4, 16].
For consistency, we target the same loading conditions. By applying periodic boundary conditions,
we can approximate the response of an infinite lattice using a single unit cell [21].

The BCC optimizations mentioned previously resulted in geometry that is defined either for
any volume fraction or for only discrete volume fractions. Specifically, Wang et al. [8] and Zhao
et al. [19] developed mathematical relationships which can be used to model lattices at any volume
fraction, where Lee, Zhang, and Gu [18] developed lattices only at discrete volume fractions. The
former of these two is advantageous because they can be used to smoothly transition between
different volume fractions when performing part scale optimization as demonstrated by [22, 8,
15]. Comparing these types of results motivates an additional research question: Do relationships
between the optimal coefficients at different volume fractions exist, leading to a reduction of
parameters?

For each research question, we hypothesize the results below.

RQ1: Can the response of the IWP TPxS lattice be improved at one or more volume fractions
by varying the coefficients A and B present in its equation? We hypothesize that lattice
performance can be improved, and at all volume fractions, by changing the weighting of A
and B with an appropriate selection of t.

RQ1.1: Do relationships between the optimal coefficients at different volume fractions exist,
leading to a reduction of parameters? We hypothesize that such relationships exist

1957



between coefficients of true Pareto-optimal solutions, but the recovery of such rela-
tionships is contingent on the objective evaluation approach and optimality criteria.
We note that optimization can only approximate the Pareto frontier [23, p. 17], so any
relationships we find between coefficients will depend on this approximation.

RQ2: Do the results of optimization of the IWP TPxS outperform optimizations of the BCC lattice
which share the same topology? As we have shown (for a single volume fraction) the IWP
TPxS out performs the BCC lattice in uniaxial compression (see Figure 1) andwe hypothesize
that optimization of the IWP TPxS will outperform optimization of the BCC provided both
maintain the same topology.

To answer these questions, we have developed a method of optimizing the unit cells of the IWP
TPxS lattice. In Section 2, we present the definition of the design space and the problem definition;
we then define the objective function and the method we use to evaluate it before discussing
the selection of our optimization scheme. In Section 3, we evaluate relationships between the
Pareto-optimal designs and compare the Pareto-optimal lattices to existing lattices and discuss our
research questions. We then apply homogenization approaches to study the lattice performance and
anisotropy before summarizing our work and discussing possible extensions in Section 4.

2 METHODS

In this section, we outline our approach to defining out optimization problem, the optimization
method employed, and the implementation of the methods.

2.1 Design Space & Problem Definition

The design space for our optimization problem is a real three dimensional space consisting of the
parametersA, B, and t fromEquation 2. We bound this space to a right rectangular prism by defining
the following inequality constrains:

0 ≤ A ≤ 1 (3)

0 ≤ B ≤ 1 (4)

−1 ≤ t ≤ 1 (5)

Negative values of A or B were found to produce topologically distinct structures that do not
share connectivity with the IWP TPxS. Therefore, we consider only positive values. Not all designs
within the space defined by Equations (3) to (5) are valid. To fully define the feasible region of
the design space, we first evaluate Equation 2 over a linearly-spaced 3D grid of 128,000 designs
(a 40×40×80 grid). We evaluated each point for two criteria: connectivity and topology. To test
connectivity, each design Equation 2 is evaluated over a 3D grid in x, y, z space. Taking a level set
of this grid at t, we apply Lewiner’s Marching Cubes algorithm to define the surface of the lattice
geometry as a triangular mesh [24]. The faces of this mesh are then used to construct an undirected
graph. If all vertices of this graph are connected, the geometry of the design is connected also. We
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(a) (b) (c) (d)
Figure 5: Example structures that are possible outside the feasible region. (a) a design that is discontinuous,
and (b-d) connected designs with whose topology is inconstant with the IWP TPxS, because the second term
of Equation 2 dominates to an increasing degree. The structure in (b) has internal voids at both the center
and corners of the unit cell.

note that this is not universally true for all unit cells of all TPMS-based lattices, such as the common
unit cell of the gyroid which appears to have disconnected volume “floating” in the corners [13].
However, the “floating” volumes in the gyroid connects to the rest of the structure through adjacent
unit cells. For the lattices of the IWP surface, the volume remains connected inside the unit cell,
so the connectivity check described previously can be applied. To test the topology of the lattice,
we evaluated Equation 2 at a corner point of the unit cell. To match the desired topology this point
must fall within the lattice. Examples of four designs that fall outside the feasible region are shown
in Figure 5.

For valid designs, we evaluated two metrics of interest: volume fraction and minimum hy-
draulic diameter of the “beams” using Equation 6. Where Ac and p are the cross-sectional area
and perimeter of the “beam” at the mid-span of the “beam”. We evaluated Ac and p using the
surface mesh generated using the Marching Cubes algorithm. The hydraulic diameter is used in
Section 2.1.2 to highlight the variation between the geometry of different valid designs independent
of volume fraction.

dh = 4
AC

p
(6)

The design space was visualized using the ARL Trade Space Visualizer1[25] to plot each valid
design as a cube colored by the volume fraction of the design (see Figure 6). The design space is an
irregular octahedron, five of whose faces are already defined by Equations (3) to (5). Constraints
for the remaining three faces were defined using the equation of a plane in 3D, commonly expressed
as:

ax+by+ cz−d = 0 (7)

where x, y, and z are the design variables A, B, and t, respectively. We compute the coefficients
a, b, c, and d for each of the three surface using a modified version of the MATLAB function

1http://www.atsv.psu.edu/whatisatsv.html
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Figure 6: Exploration of the 3D design space resulted in a polyhedron with 8 faces representing the feasible
region (Ω). Color indicates the volume fraction which is the percentage of the lattice unit cell that is solid.

plot_plane [26] and three noncollinear design points on each face of the domain. The coefficients
a, b, and c respectively are the A, B, and t components of the plane’s unit normal, and d is the offset
from the origin in the direction of the normal. The constraints derived for the three faces are:

−0.24A+0.24B+0.08t +0.0010 ≤ 0 (8)

−0.45B+0.15t −0.0019 ≤ 0 (9)

0.21A+0.21B−0.22t +0.0027 ≤ 0 (10)

The feasible region of the design space (Ω) for our optimization is defined using the inequalities
of Equations (3) to (5) and (8) to (10).

2.1.1 Scalability of Design Space

The standard definition of the IWP equation uses A = 2, and B = 1, and t ranges from −5.0
to 3.0 [13]. Because the multiplicative property of equality applies to implicit equations like
Equation 1, the standard designs are within the feasible region Ω, even though the feasible region
is defined on the scale of unity.
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2.1.2 Independence of A and B

Wohlgemuth et al. [27] explored the variation of surfaces by varying the coefficients of terms in
several implicit equations, including in Equation 2. When implementing Equation 2 the authors
fixed t = 0 and applied the relationship B = 1− A to reduce the number of parameters to one.
They then varied A from zero to one to study the changes to the surface topology. Applying the
same relationship to our 3D design space, we once again considering the multiplicative property of
equality to show that we can scale any values of A, B, and t by a common factor such that A and
B satisfy the relationship B = 1−A without changing the geometry of the lattice. As a result, the
design space can be reduced to a 2D space with A (or B) and t. However, for reasons discussed in
Section 3.1, we found that giving the optimizer independent control over A and B was preferable
so we maintain three dimensions in the design space of our study.

2.2 Definition and Evaluation of Objectives

For a given volume fraction, we seek to produce the stiffest version of the lattice possible. To
this end, we consider two objectives. First, maximize the stiffness in the direction of compression
(E11), whichwe redefine as: minimize the reciprocal of the stiffness in the direction of compression.
Second, minimize the volume fraction (VF). These two objectives will produce a Pareto frontier
of designs each of which, within the limits of the convergence criteria (discussed in Section 2.4),
will be the stiffest for that volume fraction. We apply two additional inequality constraints to the
problem on the volume fraction objective, limiting the volume fraction to the range of [0.1, 0.9].
This lower limit avoids thin features that fail to mesh well, and this upper limit was imposed to
prevent excessive evaluation time spent on designs that are not of particular interest to the authors.
We now formulate the optimization problem as:

min
A,B,t

(1/E11,VF)

s.t. Ω
0.1 ≤ VF ≤ 0.9

(11)

To evaluate the first objective function, we use a linear finite element model using a voxel
meshing approach based on Dong, Tang, and Zhao [21]. This is a computationally efficient ap-
proach that can be used to generate a highly regular volume mesh directly from an implicit equation
without first extracting a surface mesh from the field. The voxel mesh is used to generate a mesh of
constant strain three dimensional eight node (C3D8) brick elements. The Young’s modulus (E) of
each element is linearly weighted based on the number of nodes (n) of that element that are inside
the lattice using Eq. 12.

Eelement = Ematerial
n
8

(12)

For the optimization, we aim to simulate the far field response of the lattice, not that of only a
single, isolated unit cell [5]. When performing physical testing of lattices, a minimum of 64 cells
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(in a 4x4x4 grid) is required to effectively eliminate edge effects [28]. However, in linear elastic
simulation, we can take advantage of the periodic nature of the unit cell, by applying additional
boundary conditions, to reduce the size of the model to a single unit cell of the lattice. The IWP
TPxS has a cubic crystalline structure (like the BCC), which is a subset of orthotropic materials that,
in addition to containing three orthogonal planes of symmetry [21], are invariant to 90° rotations
of the lattice. Thus, we would require only three simulations to compute the three values needed
to generate the homogenized constitutive matrix. Because we are only interested in minimizing
the compliance of the lattice in one direction, the constitutive matrix is not expressly required. We
therefore further reduce the computational load by evaluating the response of the lattice in only one
load case which yields the first column of the constitutive matrix C. Because we do not calculate
the full matrix, we cannot invert it to find the stiffness matrix, and we instead calculate an effective
normalized stiffness in the direction of the compression load using Hooke’s law solved for the
elastic modulus given in Equation 13 and use in the first objective in Equation 11:

E11eff =
σ11

dεC11
(13)

where σ11 is the (1,1) element of the stress tensor, dε is the applied displacement, andC11 is the
(1,1) element of the constitutive matrix. We calculate the reciprocal of E11eff to get our objective
function, which we note is an analog for compliance as it was not generated using the full matrix.

For the IWP lattices, the faces of the unit cell, shown in Figure 1b, are also planes of symmetry.
To account for the additional cells of the lattice that are not modeled, the nodes on the face of the
cubic unit cell are restricted to move in the plane of the given face, to enforce symmetry, with the
exception of nodes on the x = Px face which have a fixed, uniform displacement in the−x direction.
We use an isotropic material model with Young’s modulus and Poisson’s ratio of 2 GPa and 0.394,
respectively.

When validating the results of the optimization and comparing against other lattice designs that
share the same topology, the boundary conditions and performance metric are different from those
described above. The validation model setup is presented in Section 2.5 and both the optimization
and validation model setups are summarized in Table 1.

We note that because of the form of Equations 1 and 2, and the resulting rotational symmetry
of the cubic crystal unit cell of the lattice, the response to a given loading in the y or z direction will
always be the same as in the x direction. While this likely limits how much improvement in the x
direction we can achieved, it results in a lattice that is more useful in application. Future work can
explore the effects of allowing direction changes to the lattice geometry.

To evaluate the second objective, we compute the value of Equation 2 over a 3D grid in x, y,
z space with 200 points in each direction, The number of points inside the lattice (points where
Equation 2 ≤ 0) is divided by the total number of points in the unit cell to calculate the volume
fraction.
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Table 1: Summary of boundary conditions applied to FEA models for optimization runs and validation runs
that are introduced in Sections 2.2 and 2.5, respectively. The two models use different boundary conditions
at the x = Px surface of the unit cell as well as different criteria to measure the performance of the model due
to differences in software capability. We use ∆ to signify the prescribed displacement in the stated direction.

Boundary Conditions
Boundary Optimization Runs Validation Runs

x = 0 ∆x = 0 ∆x = 0
y = 0 ∆y = 0 ∆y = 0
z = 0 ∆z = 0 ∆z = 0

x = Px ∆x =−0.01Px

Fixed load in −x
direction distributed

across surface
y = Py ∆y = 0 ∆y = 0
z = Pz ∆z = 0 ∆z = 0

Model Performance Criteria

1/E11
Maximum nodal
displacement

Per RQ1.1, the designs on the Pareto frontier will be related to one another in the design space
such that the coefficients A and B can be defined as functions of t, allowing us to produce an
equation with a single input parameter, similar to other TPMS-based lattice designs; however, the
voxel approach we use to evaluate the objective function results in discrete steps in the performance
space, making the derivation of these relationships more challenging.

2.3 Selection of Optimization Algorithm

In this work, we use the Borg MOEA to solve our optimization problem defined in Eq. 11. prior to
applying Borg to this problem, two other optimization approaches were tested. First, we explored
gradient based methods. These methods are compelling for this work because it was expected
that they would result in a smooth Pareto frontier from which design space relationships could be
derived. However, the voxel FEA approach used for expedient meshing and analysis does not pro-
duce locally smooth gradients in the performance space. Because these methods rely on the slope
of the gradient to converge, they could not be used. Next we explored purely genetic approaches,
the results of these optimization runs indicated that these approaches were not appropriate, as some
designs on the Pareto frontier failed to outperform the standard equation (which is within the design
space). This lead to the exploration of MOEAs that could adapt to the problem, and the selection of
Borg. Borg is a high performance adaptive algorithm that was developed to solve difficult multi and
many objective optimization problems and was selected because its auto-adaptive search features
resolved issues with tuning the other algorithms considered [29].

2.4 Implementation

In this section we briefly describe details pertaining to the implementation of Borg and the function
it calls for evaluation of the objectives. When Borg makes a call, it first evaluates the feasibility of
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the design by computing the validity of each constraint and the distance from the constraint surface
to the design, which is returned to Borg. If one or more constraints were violated, the analysis is
bypassed, and the objective functions are returned to Borg as artificially high values

(
i.e.1020),

because Borg always expects real values to be returned.

When Borg was called, we used a maximum number of iterations of 100,000 and ε values of
0.01 for both objectives. The epsilon values effect both the density of designs on the Pareto frontier
as well as the stagnation/convergence criteria of the algorithm. Respectively these are because Borg
utilizes an ε-box dominance archive and an ε-progress method. Our epsilon values were selected
because they produced a Pareto frontier of the desired density of approximately 1 design per 1%
change in volume fraction.

Borg is available natively in both C and Python. The C implementation is more computationally
efficient and offers wrappers to interface with other languages. The C implementation of Borg was
compiled into a MATLAB executable allowing it to be called within MATLAB, allowing Borg to
interface with existing meshing and analysis codes written natively in MATLAB.

The optimization was performed using MATLAB 2022a on a desktop workstation with an Intel
Xeon W-2133 CPU and 128GB of RAM running Windows 10. Borg was run in series and the
resources of the computer were not fully utilized, motivating parallel evaluation in future studies.

2.5 Validation Models

In order to evaluate the performance of our optimized lattice in comparison to existing designs
in the literature, we first developed matching models to represent each using nTopology’s internal
analysis package. nTopology is able to natively model, mesh, and analyze lattices based on implicit
equations, struts, and high order Bézier curves, allowing for easier integration and analysis which
are used to model the IWP TPxS, BCC, and optimized BCC from Lee, Zhang, and Gu [18] respec-
tively. Like other FEA tools, CAD models can also be imported for evaluation of the optimized
BCC lattices from Wang et al. [8] and Zhao et al. [19].

The FEA was carried out using linear tetrahedral mesh elements that were generated by dis-
cretizing the surface of a given lattice model with triangles before populating the volume of the
model uniformly with tetrahedrons. The unit cells were modeled as 10mm cubes, and the tetrahe-
drons were defined with an edge length between 0.1mm and 0.25mm depending on volume fraction
and a fixed growth rate of 1.1 for all the models. The size of the triangles in the surface mesh were
matched to that of the tetrahedrons to produce consistent element sizes at the surfaces of the model.

In addition to this change to the model setup, the validation models do not use the same perfor-
mance metric. Instead, when validating the optimized structures against similar geometries from
the literature, we use the maximum deflection of the model’s nodes to quantify stiffness instead
of calculating E11 using Equation 13. Table 1 shows the model setups for both the optimization
and validation cases. While the differences between the two models means the results cannot
be compared against each other, they can be used to compare to other lattice topologies that are
analyzed with the same boundary conditions.
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Figure 7: Borg output compared to standard IWP TPxS plotted in the performance space. Showing that the
optimized structures outperform the standard across the range of volume fractions considered.

3 RESULTS

We present the Pareto frontier resulting from our Borg optimization in Figure 7. We also include
the standard IWP TPxS in Figure 7, evaluated using the same model setup and solver to illustrate
that the designs of the optimized version Pareto dominate those of the standard equation, answering
RQ1. The optimization took 67 hours to convergewithin the limits given for the objectives, utilizing
just over 85,000 evaluations, 72% of which fell within the feasible region.

To quantify the improvement of the optimized lattice over the standard IWP TPxS across the
Pareto frontier, we evaluate the standard IWP TPxS was at 200 points, equally spaced in t-space.
For each Pareto optimal design, the standard design from the dataset with the lowest volume fraction
that was greater than that of the optimized volume fraction was used for comparison From this
comparison the optimized design improves performance by between 2% and 18%. We tabulate
these data in Appendix A for the 80 Pareto optimal IWP TPxS designs.

3.1 Relationships in the Design Space

We now seek empirical relationships between A, B, and t for the Pareto optimal designs in the
design space. In Figure 8, we plot A and B as functions of t and no relationship between A and
t or B and t were found when considered independently. Both A and B vary across the range of
t values with only a slight trend to the data. Initial curve fits that included all points shown in
Figure 8 resulted in designs that performed worse than the standard IWP TPxS. 3D visualization
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Figure 8: The A and B parameters of the designs on the Pareto frontier plotted as functions of the level set
t. The designs in red are a subset of the Pareto frontier which are scaled and fit with a polynomial shown in
Figure 10.

of the design space in Figure 9 illustrated that a relationship between A, B, and t for some, but
not all, of the points on the Pareto frontier was likely to exist. To derive a relationship, we again
invoked the multiplicative property of equality and normalized the parameters of each design such
that A= 2. After normalizing, in Equation 14 we plot the scaled B values against the scaled t values.
In this scaled B–t space, the data follow a generally linear trend, the spread of which is significant.
When fit, this results in under-performing designs. We note that in this space the designs exhibit
a distinct upper bound that is of interest. To identify points on this edge, we apply the concept of
Pareto optimally to the existing designs in this B–t space, with the objective of maximizing B and t.
These points are marked in red in both Figures 8 and 10. We then fit the second-order polynomial
presented in Equation 14, plotted in red in Figure 10.

Bscaled =−0.007046t2
scaled −0.322tscaled +1.972 (14)

We now use the fixed value of A and the scaled B = f (t) relationship with Equation 2 to model
lattice structures. We analyze the designs on this curve using the same model setup and solver in
as the optimization, and in Figure 11 we plot them with the optimized and standard IWP TPxS
designs. We find that the designs generated with the curve fitting are distinct from the Pareto
optimal designs found using Borg. The curve fit designs Pareto dominate all of the standard designs,
but do not Pareto dominate any of the Borg optimized designs, answering RQ1.1. We therefore
provide two results from this work. First, 80 discrete designs that show improvement over the
standard design with volume fractions ranging from 0.1 to 0.9 and second, a new single variable
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Figure 9: Pareto optimal designs plotted in the design space. A trend that involves A, B, and t can be seen.
However, a 3D surface fitting of would not yield single value functions for A and B for a given value of t.

equation for modeling lattices which shows less improvement but is continuous. Both results have
been packaged into custom nTopology blocks. These blocksmake design and analysis of the lattices
accessible and they can be downloaded from GitHub2 under a Creative Commons Attribution 4.0
International License.

When applying this method to the Pareto frontier from the optimization run with two objectives
we found that the points had no relationships that could be found and no significant differences be-
tween the frontier presented in this work and the two objective Pareto frontier. To avoid unnecessary
confusion, we do not present the results of the two objective run.

3.2 Comparison to Other Lattices

In addition to comparing the optimized and standard IWP TPxS using voxel based FEA in MAT-
LAB that is shown in Figures 7 and 11, we compare the optimized designs against four additional
lattices that share the same topology using nTopology’s FEA package. For this analysis, we use the
Pareto optimal designs, not the sub-optimal fitting found in Section 3.1. We compare against the
standard BCC lattice (shown in Figure 1a) as a baseline, and three optimized BCC lattices (shown

2https://github.com/jwf23/Optimized_IWP_TPxS
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Figure 10: Down-selection of designs in the scaled B-t space for fitting B = f (t) using Pareto optimality
and maximization of the scaled B and t values. Showing the polynomial fit to the Pareto front.

in Figure 4) for a range of volume fractions. We discuss the definition of the FEA models used in
Section 2.5 and summarized in Table 1.

Visual comparisons between the different versions of the BCC and our optimized designs like
those shown in Figures 12 and 13 highlight the difference in performance at low volume fractions,
however at high volume fractions it visually unclear which version out performs and to what
degree. To quantify the difference, we evaluate the standard BCC, Wang optimized BCC, and
Zhao optimized BCC lattices at nine volume fractions matching volume fractions of the optimized
IWP TPxS across the range of volume fractions. For the Lee optimized BCC, we compare to the
nearest value from the optimized designs as both exist only at discrete volume fractions. These data
as well as the percent difference between the compliance analog for each run and the optimized IWP
TPxS are presented in Tables 2 and 3. From the tabulated data, it is clear that the Pareto optimized
IWP TPxS shows improvement over the other designs across the full range of volume fractions
with one exception. At a volume fraction of 0.1089 it is outperformed by the optimized BCC with
rounds between the struts from Wang et al. [8], addressing RQ2.

The lattice in Zhao et al. [19] was optimized for a more limited range of volume fractions
compared to this work. As a result, at larger volume fractions the performance is worse than the
other designs, which can be seen in Table 2. At volume fractions of 0.4, 0.5, 0.6, 0.7, and 0.8,
the Lee optimized BCC exhibits a change of topology caused by multiple minima along the Bézier
curve that is used to define the struts [18]. This results in the struts intersecting away from the
nodes of the lattice, ultimately changing the topology. Because of this new topology, these lattices
are not directly comparable to those in this study and have therefore been omitted. Table 3 contains
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Figure 11: Comparison between the B = f (t) designs, Pareto optimal, and standard IWP TPxS. The B-
f(t) designs outperform the standard IWP TPxS. However, they fail to achieve the same performance as the
optimized IWP TPxS.

the three volume fractions: 0.1734, 0.2, and 0.3 for which the Lee optimized BCC exhibits the
intended topology.

3.3 Geometric Comparison to Standard IWP TPxS

To highlight spatial differences between the geometry of the standard and optimized IWP TPxS, we
perform Boolean subtractions between the two at the same volume fractions (±1%) such that all
material that is contained in one lattice but not the other can be identified. We show this comparison
for five volume fractions in Figure 14. The color indicates which of the structures the different
regions of “additional volume” are a part of. We see a trend in the optimized designs of material
being drawn away from the “nodes” (at the corners and center of the cell) and moved toward the
mid-span of the “beams”. This trend aligns intuitively with the initial FEA of the IWP TPxS, shown
in Figure 1d, where the stress is minimal at the “nodes”. The one exception to the trend occurs at
a volume fraction of 0.8925, and is shown in the last row of Figure 14. This is the largest volume
fraction on the Pareto frontier and the only design where the relative weighting of the second term
(coefficient B) of Equation 2 is lower than the standard in Equation 1.

3.4 Homogenization and Anisotropy Comparison

Although the optimization of the IWP TPxS lattice we performed did not consider the response of
the lattice in other directions or the anisotropy. Because in application the loading conditions will be
more complex than uniaxial compression, understanding the directional response and anisotropy is
useful. The IWP TPxS is highly anisotropic at low volume fractions [13]. To visualize and quantify
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Figure 12: Comparison of the Pareto optimal designs to the strut-based BCC lattice analyzed in nTopology.
Showing that our optimized lattices outperforms the standard BCC across the range of volume fractions
considered.

the directional response and anisotropy, we can apply linear elastic homogenization based on the
methods of Dong, Tang, and Zhao [21], and visualize the Young’s Modulus surface at volume
fractions of 10.89%, 19.76%, and 29.81%, which we show in Figure 15. From the elements of the
homogenized constitutive matrices (Ci j), we compute the Zener ratio using Equation 15, which is
a measure of the anisotropy of cubic crystals [30]:

Z =
2C44

C11 −C12
(15)

Compared to the standard IWP TPxS at the same volume fraction, the optimization increases all
non-zero elements of the constitutive matrices by the percentages shown in Table 4. From this, we
find that the Young’s modulus increases in all directions, but the anisotropy also increases slightly
in the optimized designs because the difference between the standard and optimized is not uniform
for each element of the homogenized constitutive matrices.

4 Conclusions

Lattice structures in additive manufacturing offer a significant opportunity to reduce the weight of
components without lose of structural integrity. The implementation of lattice structures can be
further improved though the optimization of lattice structures, first at the unit cell level and then at
the component level. The workflow of the optimization of the IWP TPxS for a single load case has
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Figure 13: Comparison of the Pareto optimal designs to the optimized BCC lattices generated by Wang
et al. [8] and Zhao et al. [19] analyzed in nTopology. Showing that our optimized lattices outperform the
optimized BCC designs with one exception at a volume fraction of 0.1089.

been demonstrated and the resulting designs have been available as easy to use blocks importable
to nTopology.

In this work we have demonstrated an approach to the optimization of TPMS-based lattices
for the IWP TPxS using the Borg MOEA to minimize compliance and volume fraction. We share
the results as blocks that can be imported into nTopology for lattice generation. In Section 1, we
pose three research questions motivating the optimization of the IWP TPxS, and in Section 3, we
present our results pertaining to these questions. We find that improvements over the standard IWP
TPxS are possible across a wide range of volume fractions (0.1 to 0.9), addressing our first research
question. The sub-question RQ1.1 relates to design space relationships between the Pareto optimal
solutions. From the results of our optimization we derive a relationship between the coefficient B
and the level set t after fixing A= 2. We demonstrated the outperformance of the standard equation;
however, the performance of designs on this curve fall short compared to the discrete Pareto optimal
designs from Borg. We developed FEA models based on the results of three optimizations of the
BCC lattice, as well as the BCC as a baseline. The optimized IWP TPxS outperformed the four
variations of the BCCwith the exception of the design fromWang et al. [8] which out performed the
optimized IWP TPxS at a single volume fraction of 0.1089. Therefore, we find that the optimized
IWP TPxS outperforms the BCC designs for most volume fractions tested, but not all (answering
RQ 2).

Given the higher stiffness independent of direction, that is shown in Section 3.4, the Pareto
optimal lattice replace the standard IWP TPxS in applications where higher stiffness for a given
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(a) (b) (c) (d)
Figure 14: Differences between the optimized IWP TPxS (column a) and standard IWP TPxS (column d) at
volume fractions of 0.1089, 0.2460, 0.4987, 0.7481, and 0.8925, from top to bottom. Column b shows the
material that is part of the optimized lattice and not part of the standard, and column c shows the opposite.
From top to bottom, the percent differences by volume between the two lattices are: 14.6%, 2.2%, 8.2%,
4.8%, and 0.2%. Errors in rendering of thin sections are seen in columns b and c.

weight is desired and in applications where smooth grading of the lattice is needed. The sub-optimal
B = f (t) designs can be used in the same manner as the standard IWP TPxS.
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(a)

(b)

min max
Figure 15: Young’s modulus surfaces for (a) the standard IWP TPxS and (b) the optimized IWP TPxS at
volume fractions of 0.1089, 0.1976, and 0.2981 from left to right. The respective Zener ratios are: 10.4 and
11.3 (left), 4.84 and 5.15 (middle), and 2.85 and 2.89 at (right). The range of the color bar is normalized for
each volume fraction (column) to highlight the differences between the two designs.

We propose four extensions of this work to expand the impact of our results. First, the blending
of neighboring unit cells of different, discrete volume fractions should be explored, similar to work
performed by Maskery et al. [5]. This technique would offer the ability to use multiple Pareto
optimal volume fractions without sharp step changes in geometry at the interfaces. Second, our
optimization can form the basis of a larger optimization scheme, where the unit cell is optimized
for multiple cases and the results either balanced to produce a globally “optimal” unit cell or used
in a component-scale optimization that utilizes optimal unit cells from different loading conditions
depending on the local response of the component. Third, application of this optimization method
to other TPMS-based lattices including the TPnS and TPSf of the IWP as well as those based on
other TPMS. Fourth, application of this optimization approach to equations for the IWP and other
TPMS with additional coefficients that allow directional changes to the lattice.
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Table 2: Comparison of designs from the Pareto frontier to the standard BCC and optimized BCC versions
from Wang et al. [8] and Zhao et al. [19].

Optimized IWP TPxS BCC Wang Optimized BCC Zhao Optimized BCC
VF Deflection VF Deflection Difference VF Deflection Difference VF Deflection Difference

0.1089 0.28577 0.1089 0.29811 4.14% 0.1084 0.27311 -4.63% 0.1090 0.31523 9.35%
0.1976 0.11946 0.1976 0.13718 12.91% 0.1970 0.12093 1.22% 0.1977 0.13821 13.56%
0.2981 0.06125 0.2981 0.07594 19.34% 0.2987 0.06594 7.12% 0.2983 0.07358 16.76%
0.3984 0.03650 0.3984 0.04648 21.48% 0.3969 0.04129 11.61% 0.3986 0.04502 18.93%3

0.4987 0.02348 0.4987 0.03075 23.65% 0.4998 0.02693 12.79% 0.4987 0.03064 23.36%3

0.5979 0.01612 0.5979 0.02074 22.25% 0.5991 0.01853 13.01% 0.5981 0.02232 27.76%3

0.6983 0.01140 0.6983 0.01428 20.15% 0.6990 0.01290 11.64% 0.6986 0.01735 34.28%3

0.7970 0.00814 0.7970 0.00987 17.54% 0.7980 0.00909 10.47% 0.7971 0.01517 46.38%3

0.8925 0.00599 0.8925 0.00679 11.83% 0.8924 0.00646 7.26% 0.8926 0.01547 61.29%3

3These volume fraction values fall outside the range for which the lattice was optimized.

Table 3: Comparison of designs from the Pareto frontier to the optimized BCC from Lee, Zhang, and Gu
[18]. Fewer values are compared because of topological changes at higher volume fractions.

Optimized IWP TPxS Lee Optimized
VF Deflection VF Deflection Difference

0.1792 0.13547 0.1757 0.16981 20.22%
0.1976 0.11946 0.1961 0.15611 23.47%
0.2981 0.06125 0.2998 0.06867 10.81%

Table 4: The percent increase in the three unique members of the homogenized constitutive matrix from the
standard to the optimized IWP TPxS at three volume fractions.

VF C11 C12 C44

0.1089 13.14% 15.00% 11.45%
0.2981 7.05% 10.45% 5.14%
0.3984 4.04% 6.63% 1.79%
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Appendix A

Our Borg optimization described in Section 2, resulted in 80 designs along the Pareto frontier of
the optimized IWP lattice. The volume fraction and compliance analog objectives are tabulated
alongside points of similar volume fraction from the standard IWP and the percent difference
between the compliance analogs for each. The percent difference shows that, even at a slight
volume fraction disadvantage, the optimized design outperforms the standard across the frontier.

Table A1: All points on the Pareto Frontier for the optimized IWP lattice and associated points from the
standard IWP dataset shown in Figure 7.

Optimized IWP Standard IWP Optimized IWP Standard IWP

VF Compliance
Analog VF Compliance

Analog
Percent

Difference VF Compliance
Analog VF Compliance

Analog
Percent

Difference

0.1089 106.407 0.1094 122.777 13.3% 0.5092 6.191 0.5112 6.721 7.9%
0.1193 82.447 0.1216 98.424 16.2% 0.5178 6.050 0.5248 6.403 5.5%
0.1273 71.439 0.1327 87.241 18.1% 0.5252 5.883 0.5319 6.231 5.6%
0.1395 66.233 0.1435 76.450 13.4% 0.5395 5.601 0.5443 5.845 4.2%
0.1490 61.150 0.1538 69.847 12.5% 0.5496 5.318 0.5507 5.616 5.3%
0.1570 54.750 0.1640 61.087 10.4% 0.5585 4.931 0.5649 5.291 6.8%
0.1683 51.846 0.1739 55.446 6.5% 0.5686 4.674 0.5711 5.211 10.3%
0.1792 47.964 0.1847 51.831 7.5% 0.5768 4.576 0.5770 5.109 10.4%
0.1888 43.133 0.1936 46.647 7.5% 0.5896 4.493 0.5907 4.810 6.6%
0.1977 38.084 0.2029 42.515 10.4% 0.5983 4.335 0.6037 4.549 4.7%
0.2087 33.161 0.2122 38.979 14.9% 0.6093 4.072 0.6099 4.421 7.9%
0.2187 32.068 0.2212 37.110 13.6% 0.6190 3.908 0.6227 4.213 7.2%
0.2286 30.887 0.2309 33.914 8.9% 0.6223 3.830 0.6227 4.213 9.1%
0.2383 28.062 0.2394 32.092 12.6% 0.6397 3.683 0.6421 3.950 6.8%
0.2459 27.084 0.2478 30.113 10.1% 0.6486 3.562 0.6554 3.776 5.7%
0.2594 25.328 0.2648 25.830 1.9% 0.6599 3.384 0.6611 3.602 6.0%
0.2699 22.732 0.2732 24.946 8.9% 0.6681 3.265 0.6742 3.457 5.6%
0.2774 20.321 0.2819 23.692 14.2% 0.6788 3.189 0.6806 3.383 5.7%
0.2886 19.398 0.2902 22.208 12.7% 0.6854 3.025 0.6869 3.324 9.0%
0.2983 18.460 0.3069 19.677 6.2% 0.6976 2.926 0.6989 3.169 7.7%
0.3093 17.642 0.3148 19.116 7.7% 0.7092 2.832 0.7118 3.042 6.9%
0.3194 16.234 0.3221 17.885 9.2% 0.7189 2.726 0.7244 2.859 4.7%
0.3297 15.311 0.3302 17.302 11.5% 0.7297 2.634 0.7297 2.801 6.0%
0.3392 14.956 0.3458 15.843 5.6% 0.7333 2.581 0.7373 2.753 6.3%
0.3499 14.305 0.3534 14.922 4.1% 0.7481 2.466 0.7545 2.570 4.1%
0.3591 13.223 0.3610 13.982 5.4% 0.7588 2.325 0.7610 2.532 8.2%
0.3700 12.755 0.3768 13.013 2.0% 0.7684 2.212 0.7730 2.395 7.6%
0.3766 11.071 0.3768 13.013 14.9% 0.7773 2.155 0.7796 2.325 7.3%
0.3890 10.795 0.3907 12.376 12.8% 0.7875 2.113 0.7911 2.245 5.9%
0.3980 10.306 0.3982 11.803 12.7% 0.7969 2.003 0.7974 2.198 8.9%
0.4090 10.151 0.4137 10.643 4.6% 0.8096 1.966 0.8100 2.082 5.6%
0.4165 9.513 0.4200 10.353 8.1% 0.8190 1.857 0.8219 1.999 7.1%
0.4287 9.247 0.4348 9.707 4.7% 0.8298 1.738 0.8347 1.900 8.5%
0.4393 8.662 0.4421 9.299 6.8% 0.8396 1.700 0.8402 1.856 8.4%
0.4472 8.319 0.4490 9.139 9.0% 0.8439 1.629 0.8462 1.805 9.7%
0.4573 7.650 0.4636 8.562 10.6% 0.8570 1.579 0.8586 1.710 7.7%
0.4699 7.481 0.4702 8.158 8.3% 0.8698 1.524 0.8706 1.650 7.6%
0.4782 7.110 0.4840 7.587 6.3% 0.8757 1.490 0.8767 1.582 5.8%
0.4894 6.611 0.4910 7.438 11.1% 0.8894 1.398 0.8953 1.457 4.0%
0.4992 6.384 0.5045 6.871 7.1% 0.8916 1.380 0.8953 1.457 5.3%

Continued

1977




