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Abstract 

Metamaterials, widely studied for its counterintuitive property such as negative Poisson’s ratio, negative 
refraction, negative thermal expansion, and employed in various fields, are recognised to provide foundation for 
superior multiscale structural designs. However, current mechanical metamaterial design methods usually relay 
on performing sizing optimisations on predefined topology or implementing time-consuming inverse 
homogenisation methods. Machine Learning (ML), as a powerful self-learning tool, is considered to have the 
potential of discovering metamaterial topology and extending its property bounds. This work considers the use 
of Neural Networks (NNs), (De-Convolutional Neural Networks) DCNNs and Generative Adversarial Networks 
(GANs) to speed up the generation of new topologies for metamaterials. NNs and DCNNs are trained to inversely 
generate metamaterial designs based on the input target effective macroscale properties, whilst the generator in 
GANs is expected to output diverse metamaterial microstructures with random noise inputs. This work highlights 
the potential of data-driven approaches in Design for Additive Manufacturing (DfAM) as an alternative to the 
time-consuming, conventional methods. 

Introduction 

Metamaterials are structures that are designed to exhibit extraordinary mechanical, electromagnetic, 
optical, or other properties not found in natural materials. Auxetic materials are a category of mechanical 
metamaterials which have negative Poisson's ratios [1] (i.e. materials would expand under tension, while compact 
under compression [2]). Auxetic metamaterials can be potentially applied in various fields, like aerospace, 
biomedical, sport wears, automobile, vehicles, etc. Additive Manufacturing (AM) provides larger manufacturing 
flexibility and facilitates the complex design of structures  [3]–[6]. Metamaterials, which usually rely on complex 
microscale architectures to achieve unusual properties at the macro-scale, would benefit from AM. 

A few classes of auxetic metamaterials have been reviewed in [1][7], including re-entrant models [8]–[10], 
rotating polygonal models [11][12], chiral models [13], crumpled sheets models [14], perforated sheets models, 
etc. Apart from existed templates, an automated way using a numerical topology optimisation method to design 
periodic microstructures possessing prescribed elastic properties was proposed in [15]. The design objective of 
this topology optimisation method is to minimise the error between obtained elastic properties and prescribed 
properties with a constraint on material volume. 

Machine Learning (ML) as a fast-developing technique, has attracted immense attention in the past few 
years. Several different roles of ML in structural design have been discussed in [16]. ML, in contrast to physics-
based methods, has demonstrated its superior efficacy in exploring and extending microstructure design domain. 
For instance, ML showed its capability of automatically discovering microstructures which exhibit extremal 
elastic macroscale properties in [17]. Similarly, a self-learning algorithm for a given hierarchical material to hone 
on superior microstructure designs which can achieve higher strength and toughness was proposed [18].  
K-means clustering was adopted to cluster the elements to 3 or 4 cell clusters based on elemental densities before
the subsequent micro-structure optimisation of each cluster [19]. Autoencoder was employed to predict
mechanical properties of a micro-lattice using the encoder and to generate micro-lattices from the desired
mechanical properties using the decoder [20]. Neural Networks (NNs) were deployed to establish relations
between regular triangular lattice structure and its elasticity properties for the design of architectured lattices with
tunable anisotropy [21]. Convolutional Neural Networks (CNNs) are applied to de-homogenisation method to
reduce computational cost and seek for possibility in future interactive high-resolution topology optimisation [22].
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ML was found to provide DfAM with extraordinary structural designs in our early work [23], where the 
well-trained NNs-based inverse generator has been proved to have the capability of generating 2D lattice cells 
with desired mechanical property and achieving high-efficient graded lattice design when combined with TO. 
Moreover, ML-based inverse design has greater potential to be explored, as advanced ML methods could provide 
extra functionalities to structural design cases. 

In this work, a type of auxetic metamaterial from re-entrant model class is adopted as an example to 
provide insights in the utilisations of ML in metamaterial inverse design. The aim is to inversely generate 
microstructural designs that perform desired properties, which are prescribed elastic constitutive matrix with 
negative Poisson’s ratios. Different types of ML models are adopted and compared to show the advantages and 
potentials in metamaterial design, including NNs, De-Convolutional Neural Networks (DCNNs), and Generative 
Adversarial Networks (GANs). 

The paper follows the following structure. Firstly, the adopted auxetic metamaterial structure is introduced, 
accompanied by an overview of the data collection process and the dataset sizes. Subsequently, the main 
methodologies employed for the inverse generation of auxetic metamaterials using three proposed machine 
learning (ML) models are presented, including detailed explanations of the model training and testing procedures. 
Finally, a comparison of results from different ML models is conducted, taking into account accuracy metrics as 
well as computational costs. 

Methodology 

Auxetic Metamaterial Candidate 

This work focuses on an example of 2D auxetic metamaterials, which are pixelised with a resolution of 
28×28 (see Figure 1 for a repetitive base unit cell). 

Figure 1: An example of auxetic metamaterial adopted 

The shape of the microstructure is controlled by three parameters ℎ, 𝑑, 𝑡 (see Figure 2). 

Figure 2: Illustration of nodal parameters for re-entrant honeycomb cell 
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In this study, the focus is on the effective macroscale elastic property of the microstructure, which is 
characterized by the constitutive matrix 𝑫: 

 𝝈 = 𝑫𝜺 (1) 

 where 𝜺 is the strain, 𝝈 is the stress. 
  

For 2D anisotropic material, because of the symmetry of the 𝑫 matrix, there are 6 independent variables 
in 𝑫. These 6 independent variables are represented using 𝐷ଵଵ, 𝐷ଵଶ, 𝐷ଵଷ, 𝐷ଶଶ, 𝐷ଶଷ, 𝐷ଷଷ in this paper, where 𝐷 
refers to component in the i-th row and j-th column. Considering the re-entrant honeycomb auxetic metamaterial 
cell type adopted, it can be derived that: 

 𝑫𝟏𝟑 = 𝟎, 𝑫𝟐𝟑 = 𝟎 (2) 
  

Therefore, four parameters (𝐷ଵଵ, 𝐷ଵଶ, 𝐷ଶଶ, 𝐷ଷଷ) are used to represent the constitutive matrix 𝑫. In the case 
of auxetic metamaterials, it is expected that the value of 𝐷ଵଶ is negative. The homogenisation method [24] is 
employed to compute the effective elastic properties of the auxetic metamaterial designs. 

 
To create the dataset for ML training and testing, the three parameters ℎ, 𝑑, 𝑡 are randomly generated with 

upper and lower bounds: 
S 𝒅 + 𝟎. 𝟐𝟓𝒂 < 𝒉 < 𝟎. 𝟗𝒂 

𝟎. 𝟏𝒂 <  𝒅 < 𝟎. 𝟔𝒂 
𝟎. 𝟎𝟓𝒂 < 𝒕 < 𝟎. 𝟑𝒂 

(3) 

where 𝑎 is the length of unit cell. 
 
A dataset of size 5000 was collected, which was then randomly divided into a training dataset consisting 

of 4000 samples and a testing dataset containing 1000 samples. In order to augment the dataset further, diagonal 
flipping of the unit cells, as shown in Figure 3, resulted in an additional 5000 data points. These flipped unit 
cells can be incorporated into the training dataset as another metamaterial type when training pixel-based 
machine learning methods such as DCNNs and GANs. 

 

      
Figure 3: Original cell and flipped cell 

 

Structures of ML Models 

Three different types of ML models are considered herein, which are NNs, DCNNs, and GANs. NNs 
deal with 1-dimensional inputs and outputs, which requires the predefinition of cell type, whilst DCNNs and 
GANs can output pixel-based images. Different model structures are explained in detail: 

 
 
 
 
 
 
 
 

1992



 
Fully-connected NNs 

 

 
Figure 4: Illustration of NNs structure 

 
 A structure of the NN for this auxetic metamaterial inverse generator problem is shown as Figure 4. The 
inputs are constitutive matrix (𝐷ଵଵ, 𝐷ଵଶ, 𝐷ଶଶ, 𝐷ଷଷ) and the volume fraction (𝑣𝑓) of microstructure, while the output 
is the 3-dimensional cell parameter controlling the unit cell shape. The hidden layer number and number of 
neurons in each layer are pre-determined as a trade-off between training time and model accuracy. Adjustment 
would take place if the evaluation of the trained model is not satisfactory. The finally adopted NN structure has 
four hidden layers, with 16, 64, 128, 32 neurons respectively and 13731 total training parameters. By leveraging 
the benefits of 1-dimensional data structures, it is possible to deliberately restrict the total number of training 
parameters to a smaller magnitude, which plays a crucial role in effectively managing the computational cost at 
a lower level. 
 

DCNNs 
 

 
Figure 5: Illustration of DCNNs structure 

 
 As shown in Figure 5, de-convolution layers (also called as transposed convolution layers) are used in the 
DCNNs model to construct the metamaterial inverse generator. During the training process, the loss function is 
formulated to quantify the disparity between the reconstructed cell topology and the original cell topology. By 
representing the metamaterial unit cell designs as pixel-based images, DCNNs possess the capability to handle 
diverse cell types with one single model. In this particular DCNNs architecture, the dimensions of output images 
remain constant, while additional layers can be incorporated to facilitate the conversion of the image to user-
defined resolutions. An increase in the desired output image size necessitates a more intricate DCNNs structure, 
resulting in higher computational requirements. 
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GANs 

Figure 6: Illustration of GANs structure 

Generative adversarial networks (GANs) consist of two components, namely the “Generator” and the 
“Discriminator”, which act as adversaries. The Generator, serving as an inverse generator for metamaterial 
designs, is trained to generate realistic images from noise vectors, while the Discriminator is trained to distinguish 
between the output of the Generator and real data. The Generator is a simple unit cell output model mimicking 
the random generation of microstructure topology without restrictions. With a series of random noises, the 
generator is expected to provide several choices. Presently, the structure of GANs does not enforce any specific 
constraints on cell properties. However, in future research endeavours, conditional GANs (cGANs) will be 
explored as a means to incorporate cell property requirements as conditions. This integration of conditions will 
enable the cGANs to function effectively as inverse generators for metamaterial designs. 

Results and Discussions 

NNs 

Figure 7: Results from NNs-based inverse generator 

The accuracy of the NNs-based inverse generator is assessed by comparing the target 𝑫 (input for the 
inverse generator) with the actual 𝑫 of the generated metamaterial cells. This comparison is illustrated in Figure 
7, where the x-axis represents the target 𝑫 values, and the y-axis represents the corresponding actual 𝑫 values of 
the output cells obtained from the inverse generator. The 𝑅ଶ  values for all four components of 𝑫 exceed 0.99, 
indicating a high level of accuracy achieved by the NNs-based inverse generator.  
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DCNNs 

Figure 8: Results from DCNNs-based inverse generator 

The DCNNs-based inverse generator is evaluated for model accuracy by comparing the reconstructed 
metamaterial cells (generated based on the target properties) with the original cells. Figure 8 provides a visual 
representation of these comparisons, where the first row presents the original cells considered as the ground truth, 
and the second row shows the output structures generated by the DCNNs-based inverse generator. The figure 
serves as evidence that the inverse generator effectively handles both the original hourglass type and the diagonal-
flipped type of metamaterials, as observed through the comparison. 

Pixel-based ML models offer the capability to capture intricate details from discretized structures without 
predefined cell topologies, which enables the build of general generators. In most cases, when incorporating 
additional cell types, a larger training dataset is typically needed. In the context of this DCNNs model, it is 
hypothesised that the amount of additional data required diminishes as the number of species increases. This 
implies the potential to train a more generalised generator that can effectively handle diverse metamaterial types 
with a reduced reliance on extensive additional training data. 

GANs 

Figure 9: Results from GANs-based generator 

Figure 9 depicts the output metamaterial cells generated by the GANs-based generator. It can be observed 
from the figure that the trained generator is capable of producing metamaterial cells that closely resemble the real 
cells from the training dataset. This initial experimentation with applying GANs to metamaterial generation 
provides valuable insights into utilising the generator from GANs as a generator for further exploration of the 
metamaterial design domain.  

To incorporate property requirements, additional conditions can be introduced in conditional GANs 
(cGANs) to ensure that the generated cells meet the desired specifications. This approach enables the exploration 
of new, previously unseen metamaterial designs using a more generalised generator. Moreover, the introduction 
of noise input allows for the generation of diverse cell options, thus facilitating exploration within the design 
space. 

Conclusion 

Metamaterials possess exceptional properties and have garnered significant attention for their potential 
applications in various fields. The fabrication of metamaterials has improved substantially with the rapid 
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development of AM, allowing for more complex and precise designs. However, the design strategies for 
metamaterials need to evolve in order to achieve desired material responses and structural behaviours while 
minimizing computational time. 

This work serves as an extension of previous research on lattice design using an inverse generator, with 
the objective of exploring the feasibility of applying other advanced ML models to microstructural design 
problems. Specifically, this study adopts NNs, DCNNs and GANs to assist in the generation of metamaterial cells. 
Each of these models exhibits distinct advantages as metamaterial generators. NNs offer fast training and high 
accuracy, particularly suitable for inverse generation with predefined metamaterial types. DCNNs provide pixel-
based inverse generation, allowing for the potential development of a generalised generator capable of handling 
unseen metamaterial types. GANs enables the generation of metamaterial cells from randomly generated noises, 
opening up possibilities for exploring new metamaterial types. Additionally, the computational cost for training 
the models increases following the order of NNs < DCNNs < GANs. 

In future work, further development of the metamaterial generator will focus on several aspects. Firstly, 
efforts can be directed towards building a general generator capable of accommodating various metamaterial 
types. Secondly, exploring unseen metamaterial designs can help uncover novel and innovative designs. Lastly, 
enhancing compatibility with user-defined resolutions for microscale structures would enable greater flexibility 
and customisation.  
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