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Abstract 

This research applies Green's function solutions to simulate temperature and thermal stress fields 
in laser powder-bed fusion (LPBF) processes.  Using a semi-infinite domain and 2D Gaussian laser 
profiles, the analytical model achieves high computational efficiency, has the potential for real-
time controls and predictions in LPBF processes.  The model highlights the role of principal 
stresses in determining crack formations, aligning closely with experimental results. 

1. Introduction

The laser powder-bed fusion (LPBF) process stands as a pivotal technique in additive 
manufacturing, known for its proficiency in crafting products with high dimensional accuracy and 
complex geometries [1].  A crucial element in this domain is fast multiscale-multiphysics modeling 
[2] which facilitates the model-driven feedforward control of the temperature field [3], inherent
strain homogenization [4], and deformation prediction[5], thereby enhancing the manufacturing
process.  Furthermore, these models can be seamlessly integrated with in-situ monitoring systems
[6,7]  to bolster the prediction of defects[8], porosity [9], and powder properties [10,11], steering
towards the real-time digital twin of additive manufacturing [12,13].

Despite considerable advancements in computational modeling of multiphysics at various 
scales, the dominant focus has remained on finite difference [14,15] or finite element methods 
[16,17].  These approaches suffer from low computational efficiency hindering their real-time 
implementation.  Analytical solutions emerge as a viable alternative, offering higher computational 
efficiency compared to numerical models [18] and enabling an explicit representation of 
correlations between material properties, scanning strategies, laser power parameters, and the end 
performance of the produced part [19]. 

A promising avenue in this area is the application of Green’s function for simulating 
temperature and thermal stress fields, which significantly enhances computational speed and 
efficiency [19,20,21].  The inherent parallel computing capabilities of Green's functions align well 
with the requirements of high-performance computing environments, offering compatibility with 
cloud-based computer clusters [22]. 

In this paper, the temperature field originating from a semi-infinite domain heated by a 2D 
Gaussian profile laser beam is studied.  Green’s function solution for this temperature field is 
represented, laying the groundwork to calculate the temperature field history according to arbitrary 
scanning strategies.  Furthermore, the displacement equilibrium equation— also known as the 
Navier equation — for a semi-infinite domain with a traction-free surface is discussed, denoting 
the Green’s function solution and delineating all components of the final thermal stress tensor. 
The results are validated through a comparison with experimental results from other researcher’s 
results. 
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2. Temperature Field of Semi Infinite Domains  
 
The heat transport model under investigation is illustrated in Fig. 1.  In this model, the printing 
laser scans the top surface of a semi-infinite domain.  To simulate the laser source utilized in 
printing, a 2D Gaussian profile is employed, which is represented as: 
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where (x0,y0,0) denotes the central coordinate of the heat source, while R0 refers to the radius of 
the Gaussian circle.  To ensure that the total absorbed heat power meets the condition P0(t), the 
coefficients in the expression are chosen as reflected in the equation: 
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The heat transport phenomenon in a semi-infinite medium obeys the following equation: 
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where the variables k, ρ, c are indicative of the thermal conductivity, density, and specific heat, 
respectively.  The model assumes material properties that are independent of temperature.  Initial 
conditions are defined by a temperature T0 and an adiabatic surface.  The analysis leverages several 
assumptions: the material is homogeneous and isotropic, elastic deformation does not influence 
the temperature field, and no phase transformations or precipitations are involved.  Additionally, 
the volumetric heat absorption is neglected in this study. 

 
Fig. 1. Illustration of the laser printing process. 

 
The analytical Green’s function solution to the heat equation is given by the expression: 
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where α denotes thermal diffusivity and is defined as α = k/ρc.  Figure 2 presents the fields of 
temperature during the laser scanning process, delineated by a dashed line with an arrow to indicate 
a meandering scanning strategy.  By applying a predetermined scanning strategy defined by 
coordinates (x0, y0), it becomes possible to quickly obtain the temperature field.  Solving the heat 
equation with a moving laser source through commercial finite element software can be incredibly 
time-consuming, often requiring hundreds of hours.  In contrast, utilizing the analytical solution, 
the temperature field in Fig. 2 is obtained less than one second. 

Fig. 2. Temperature field at different scanning time predicted by the analytical solution. 

3. Quasi-Static Thermoelasticity

The compatibility condition establishing the relationship between the displacement u and strain ε 
is expressed as 
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Within the material's interior point, the displacement vector u comprises three components, 
whereas the strain tensor ε has nine components.  The isotropic material’s Hook’s Law, accounting 
for thermal expansion, is represented by: 
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In this equation, γ is determined by αL(3λ + 2µ), where αL, λ, µ are the thermal expansion, 
lame parameter and shear modulus, respectively. T is the temperature from Eq. (4).  The 
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summation of the normal stresses, εkk, is denoted by εkk = εxx + εyy + εzz.  Here, σ stands for the stress 
tensor encompassing nine components.  The equation of motion is depicted as: 
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where X is the body force vector and the terms on the equation's right side represents acceleration.  
Given that the body force X, primarily gravity, is substantially lesser than the stress divergence, it 
is disregarded in this analysis.  Assuming a quasi-static scenario nullifies the acceleration term as 
well.  Substituting the compatibility condition (Eq. (5)) and Hook’s law (Eq. (6)) into the equation 
of motion (Eq. (7)), derives the following displacement equilibrium equation (Navier equation): 
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The Lame parameter (λ) and shear modulus (µ) can be expressed in terms of Young's 
modulus (E) and Poisson’s ratio (ν) as shown: 
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Setting the boundary conditions for the Navier equation involves defining a traction-free 
surface as: 
 0= = =zz zx zyσ σ σ  (10) 

 
The displacement solution u to the Navier equation Eq. (8), at the point (ξx, ξy, ξz), is 

formulated as: 
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where the dilatation term U(n)
k,k(x ,y ,z|ξx, ξy, ξz) is the divergence of the displacement u instigated 

by a unite force δ(x − ξx, y − ξy, z − ξz) at the point (ξx, ξy, ξz) along xn direction.  It can be outlined 
as 
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where the R is the distance between (x, y, z) and (ξx, ξy, ξz) and R1 is the distance between (x, y, -z) 
and (ξx, ξy, ξz) calculated as 
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The final thermal stress can be determined by substituting the calculated displacement from 
Eq. (11) into the compatibility condition Eq. (5) and Hook’s law Eq. (6), yielding: 
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Figure 3 shows the predicted thermal stress field incorporating all nine components.  It 
reveals that the shear stresses are considerably less than the normal stresses, which proves that 
these three normal stresses (σxx, σyy, σzz) are almost the principal stresses and the contribution of 
the shear stresses (σxy, σxz, σyx, σyz, σzx, σzy) can be neglected. 
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Comparative analysis with experimental data from existing literature can validate these 
analytical thermal stress predictions.  Figure 4 from reference [23], for instance, delineates the 
morphology of a single-track ternary ceramic under varied process parameters, where σxx aligns 
with the scanning direction, and σyy is orthogonal to it.  The figure exhibits transverse cracks 
induced by thermal stress σxx, and longitudinal fissures attributable to stress σyy.  A conspicuous 
absence of 45° cracks corroborates the negligible role of shear stress, aligning seamlessly with the 
analytical predictions of thermal stress outcomes. 

 
Fig. 3. Thermal stress field predicted by the analytical solution. 
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Fig. 4. Morphology of single-track ternary ceramic at different laser process parameters [23]. 

4. Conclusion

In conclusion, this study rigorously delineated a multiscale-multiphysics modeling approach 
employing Green’s function solutions for simulating the temperature field and thermal stress field 
in the context of LPBF processes.  Through the incorporation of semi-infinite domain analysis and 
2D Gaussian profile laser beam, the study unearthed pivotal insights into the dynamics of 
temperature fields, paving avenues for rapid and precise simulations that are aligned with high-
performance computing requisites.  Furthermore, the deployment of Navier equations in a semi-
infinite domain calculated displacement and stress fields, thereby unraveling the predominant role 
of principal stresses in the crack formations.  These analytical solutions presented herein show 
better computational efficiency and a potential in real-time control and monitoring of LPBF 
processes, pave a path towards the realization of a real-time digital twin in additive manufacturing. 
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