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Abstract 

The NIST Additive Manufacturing (AM) Data Integration Testbench is a platform 

designed to evaluate data models, communication methods, and data analytics for AM 

industrialization. This paper describes a reference framework for AM data integration, named 

AMIF, and the design of the testbench based on AM Integration Framework (AMIF) for testing 

the integration of in-process data acquisition, real-time feature extraction, process control, and 

predictive models under a data management system. A specification of this testbench is developed 

to manage and stream voluminous data captured by high-speed cameras and performing data 

analytics using common information models and functional interfaces. The integration of the data, 

models, and computer tools sends operational decisions to an AM machine in real time. On top of 

the real-time control functions, AM data integration with MES and ERP systems is also included 

using a high-performance data warehouse for long-term data archiving and metadata management. 

The architecture of this testbench is illustrated in this work. AMIF can guide AM practitioners and 

system integrators to build their integrated AM manufacturing systems for production. The NIST 

AM testbench’s plug-and-play features allow both internal and external researchers and developers 

to assess the effectiveness of their individual data models, data analytics, and decision-making 

algorithms on the systems engineering level. 

1. Introduction

Additive Manufacturing (AM) demonstrates its capability of building complex geometry 

and customized products. AM is a strong contender to the current manufacturing methods with 

many successful applications, including fabrication of biomedical implants and aerospace engine 

parts [1]. Laser Powder Bed Fusion (LPBF) is a kind of metallic AM technology that employs 

lasers to fuse layers of metallic powder at specific energy levels and speeds. This technique builds 

near-net-shape parts using a layer-by-layer approach.   

LPBF can significantly reduce processing steps to build complex parts; however, a long 

list of variables may affect the quality of AM parts, such as process parameters, environmental 

conditions, and material status. For example, the microstructure and mechanical features of the 

AM build parts are deeply dependent upon the process parameters, such as laser power, and scan 

speed. By fine-tuning the process parameters, the mechanical characteristics of the building 

samples can be enhanced [2]; however, when multiple build samples are created using the same 
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process parameter conditions, the quality of each finished sample is dissimilar with each other. 

This result can be due to different factors, such as coating homogeneity, airflow stability, and 

fusion capability [1]. Also, building a delicate AM part usually takes a long time to complete the 

process. Evaluating the quality of the building process in real-time can assist the in-process 

decision-making and improve productivity. 

To better evaluate an LPBF process, the in-situ measurements can provide rich information 

in different length and time scales. Different types of sensors are added to AM machines and these 

sensors generate large volumes of structured or unstructured measurement data at high frequencies. 

Successful integration of data and their analysis will enable effective in-process monitoring and 

real-time control [3].  

At the same time, the maturation of AM into broad production and industrialization 

requires an expanded notion of integration for both AM systems and AM data.  System and data 

integration includes other types of traditional manufacturing systems, manufacturing operation 

functions, and broader business processes across AM value chains, which are defined by ISA 95 

Level 3 and 4 functions. Figure 1 shows the function hierarchy of manufacturing systems defined 

in ISA 95.  

Figure 1. ISA 95 Standard [4] 

ISA 95 is an international standard from the International Society of Automation for 

developing integration interfaces between enterprise and control systems. Level 0 defines the 

physical production processes. Level 1 defines the activities included in sensing and manipulating 

the physical processes. Level 2 defines the activities of monitoring, supervising, and controlling 

the physical processes. Level 3 defines the activities of the workflow, such as the process of 

manufacturing products from raw materials to finished products. Level 4 defines the business-

related activities required for Level 3. 

For AM process manufacturing systems, integration is needed to automate engineering 

workflow and improve decision-making across all the function levels of ISA 95 covering a 

complex set of engineering domains, such as design, material, process, machine, and 

manufacturing. However, the ISA 95 function architecture is not a sufficient guide to model the 

system and data integration for AM industrialization. The desired system requires high-speed data 

processing and integration for advanced data analytics, including the use of machine learning or 

deep learning for process planning, control, and part qualification. Figure 2 captures the system 

integration scope for AM and highlights its specific need for data integration (in blue fonts).  
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Figure 2. AM Specific Integration Requirements 

 

In this research, we developed an AM integration framework that leverages ISA 95 

addressing the specific high-speed data integration and analytics needs. Based on this reference 

architecture, we designed an AM integration testbench that can be used to test various 

communication protocols, information models, and advanced AI functions for AM development 

production and deployment. This testbench covers data collection, management, and analysis to 

automate offline engineering functions and data flow in real-time or near real-time. The testbench 

is designed for both internal and external use.  

This paper is organized in three sections. In section 2, we describe the AM Integration 

Framework (AMIF) as a reference architecture for any modern manufacturing systems including 

AM processes. In section 3, we present an implementation architecture for the NIST AM 

integration testbench, which employs an AM emulator instead of a real AM machine. We also 

listed some potential communication protocols, information models, and advanced analytical 

functions. In section 4, we explain the use of AM big data storage and display the test results for 

determining the current data streaming capabilities. 

 

2. AMIF Leverage on ISA 95 

 

 We leverage ISA 95 to define an AMIF for specifying the common AM data exchange 

scenario between various functions or applications to offer a generic reference framework for AM 

data integration. 

 

 The AMIF we propose is to leverage the ISA 95 function architecture but only define three 

different levels for integration purposes. In Figure 3, the AMIF displays the process relationship 

of how data, information, and events work between each function. Level 1 defines the main 

functions provided to AM machines, which corresponds to ISA 95 Level 0 and 1. Between the 

AMIF Levels 1 and 2, we have a stage called “real-time” monitoring & control. This stage is 

necessary to support third-party advanced monitoring add-ons and functions faster than edge 

computing can offer; for example, FPGA is required to support this kind of high processing speed. 

Level 2 defines the activities including near real-time monitoring and control, which corresponds 

to the ISA 95 Level 2. This level relies mostly on edge computing. Level 3 defines activities, 
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including data management, manufacturing operation, and enterprise application, which 

corresponds to ISA 95 Levels 3 and 4. 

 

2.1 AMIF Diagram 

 

 
Figure 3. AMIF Diagram 

 

2.1.1 Functions in AMIF Level 1 - AM Machine/Emulator 

 

 The AMIF Level 1 captures common functions the AM machines are designed with. 

Process Monitoring is for monitoring the process with high and low speed to collect the raw data 

for process analysis. Process Control is for controlling machine operation or monitoring devices 

with control systems based on the original process design command or command generation 

function during feedback control. Machine Information is for outputting or updating the 

information of the current machine status (Event-based). Each edge-calculation function should 

activate according to the current process status, so an operating system dedicated to function 

communication must be installed for near real-time feedback control. 

 

 

2.1.2 Real-Time Monitoring & Control Stage 

 

 High-Speed Data Acquisition is needed for capturing and processing data from advanced 

in-situ monitoring systems in AM machines, facilitating both high-speed operation and real-time 

control. Feature Extraction is for analyzing the data from high-speed data acquisition and 

discovering useful features for anomaly detection. Anomaly Detection is based on the feature 

extraction results. This is used to detect abnormalities in each sampling data. Command 

Generation is based on the anomaly detection result. This is used to generate the command for 
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high-speed feedback control. Feedback Control is for transmitting the command to the process 

control function located in the AM machine level for high-speed process compensation. 

2.1.3 Functions in AMIF Level 2 – Near Real-Time Monitoring & Control 

Data Aggregation is for carrying out corresponding data grouping according to different 

analysis requirements of scale. Aggregated Feature Extraction is based on the aggregated data 

performing feature calculation allowing the acquisition of useful features at a certain 

scale/resolution. Data Streaming is for uploading the aggregated data to an online data archive 

service located in the data management level. Quality Estimation is for using an AI/ML model 

for online quality estimation. The model is created offline in a model creation function located in 

the AMIF Level 3. Updated Command Generation is based on quality estimation results. This 

level generates the command for event-based feedback control. Machine Operation Control is 

for getting the AM machine information and controlling the process according to the different 

feedback control requirements. The function to update the machine information, located in the AM 

machine/emulator level, is based on the event-based command of feedback control. 

2.1.4 Functions in AMIF Level 3 - Data Management/Manufacturing Operation/Enterprise 

Application 

Big Data Repository is for archiving AM raw data. Metadata Store is for saving and 

managing the metadata of big data objects or building pedigree information. Data Visualization 

is for visualizing the processed data of functions in AMIF Level 2. Model Creation Offline is for 

creating the AI/ML model for online quality estimation, including feature selection, model 

training, and validation for different prediction targets or purposes. Product Lifecycle 

Management (PLM) is an information management system that integrates data, processes, and 

business systems. By estimating AM part quality, we can optimize the AM product geometry 

design. Machine Monitoring is for monitoring the machine information, including process 

operation, parameters, and sensors. Quality Management System (QMS) is a collection of 

business processes focused on consistently meeting customer requirements and enhancing their 

satisfaction. Build Planning uses data analysis results to optimize the building strategy and design. 

After build optimization, it generates the pre-program command. 

3. Testbench Design for AM Operation and Control

The functional components in Figure 4 are essential to facilitate comprehensive testing of 

AM data integration scenarios. The NIST AM Data Integration Testbench implements the AMIF 

function architecture at three levels. However, instead of working directly on AM machines, which 

may result in the disruption of AM processes, the AM testbench at NIST utilizes an AM emulator. 

The AM Emulator level focuses on AM process event generation and sends the in-situ monitoring 

images out with a high-speed camera protocol. The Edge Computing level focuses on high-speed 

image acquisition and other necessary functions, such as streaming or decision-making. This level 

also implements a machine operation control. The Cloud level is for saving and managing raw 

data and metadata. These data can be used by manufacturing operations and management functions 
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or enterprise functions for decision-making. In this section, we will introduce the main test 

modules for different levels of data integration for AM operation and control. 

Figure 4. Testbench Design to Optimize AM Data Integration Performance 

3.1 AM Process Event Generator 

The event generator is for simulating the occurrence of events and utilizing a 

publish/subscribe interface to communicate with the functions of AM operation control. A working 

AM operation control follows the AM process step allowing the function in edge computing to 

work at the right time. If the decision-making needs to do a certain AM process for feedback 

control, the system utilizes this event generator to generate that event. 

For example, when getting the ending event of the powder coating in Figure 5, this 

mechanism will inform the global camera to take the global image. After the function analyzes the 

image, a decision is sent back to the event generator to decide if we need to perform a recoat to 

control the coating quality. After the laser melting process, we estimate if the surface roughness is 

under the desired specification and send the decision to the event generator for the next step [1][5]. 

Figure 5. AM with Feedback Control 
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3.2 AI-Based Image Generator 

Figure 6 illustrates the input and output of the AI-based image generator. The generator 

takes one-dimensional process parameters, such as laser power, scan speed, and direction along 

with random noise as its inputs, to produce the corresponding melt-pool image (MPI). This 

generator is built upon deep learning generative models, including generative adversarial networks 

and the Diffusion Model. Within the workflow of the AM emulator, the image generator emulates 

the MPI based on prescriptions of the AM process event generator. 

Figure 6. AI-Based Image Generation 

3.3 Camera Simulator with High-Speed Communication Protocol 

The purpose of using a high-speed camera in AM is to study material behavior, process 

monitoring, and quality control. By recording the process in real-time at high frame rates, 

manufacturers can closely observe potential defects and perform in-process feedback control. 

The camera simulator can generate a high-speed video stream or test patterns for testing 

frame grabbers or vision/imaging systems. It allows developers to quickly prototype their vision 

and imaging systems without the need for physical cameras. It also enables the testbench to 

evaluate the performance of the high-speed camera interface, such as CoaXPress and CameraLink, 

in transmitting image data. CoaXPress reaches 50 Gbps by using four lanes which enables a higher 

data rate than CameraLink. Table 1 shows the comparison between CoaXPress and CamerLink 

[3].  

If the camera requirement generates less than 125 MB/s (1 Gbps), both Gig-E and USB3 

Vision can be used. For example, each grayscale image is 120 by 120 pixels, and the bit depth is 

8 bits. To capture 10,000 images per second, the data rate needs to achieve 137 MB/s (1.07Gbps) 

[6][7]. 

Table 1. Comparison between CoaXPress and CamerLink [6][7] 

Interface CoaXPress Camera link 

Connector BNC MDR or SDR 

Cable Length 30 to 212 meters 1 to 10 meters 
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Data Rate 

12.5 Gbps per lane 

(CoaXPress 2.0). 

Uses four lanes 

which can reach 50 

Gbps. 

255 Mbps to 850 Mbps, 

depending on the specific 

implementation mode. 

(Base, Medium, Full, 

Extended-Full)  

Real Time Trigger Yes Yes 

3.4 Event-Based Communication Protocol 

Machine monitoring is crucial for a variety of applications. Preventive maintenance, 

optimizing productivity, quality estimation, or feedback control all rely on process and sensor data 

transmitted by machines. OPC UA and MQTT are common communication protocols used in 

industrial settings for data exchange and interoperability. Table 2 shows the comparison between 

them. If the message includes structure data, the OPC UA is more suitable. If the message is 

similar to a trigger signal, MQTT is the better choice for the lightweight case. 

Table 2. Comparison between OPC UA and MQTT 

Protocol OPC UA MQTT 

Use case 

Provide security and 

reliability.  

Widely used in complex 

industrial automation, PLC 

communication, etc. 

Lightweight messaging 

protocol. For resource-

constrained environments, like 

IoT devices, telemetry 

applications, or various low-

bandwidth conditions. 

Communication Models 

Client-Server Architecture 

Publish-Subscribe mechanism. 

 (Introduced in OPC UA 1.04). 

Publish-Subscribe mechanism. 

Overhead Higher overhead Lower overhead 

Read/Write Operations Read and write Read and write 

3.5 AM Data Streaming and Management 

Automating the process of uploading data to the cloud in real time during AM process is 

important. We can utilize the cloud services to set up cloud storage for data integration. NIST has 

already developed a collaborative AM data management system, providing data storage in clouds 

structured by an AM lifecycle data schema [8]. In this data integration testbench, we will also build 

a similar AM data management system to simulate the data streaming and archiving application as 

well as explore the different methods of storage and evaluate their capabilities. 
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The process of AM produces large amounts of data for long-term archiving and future data 

analysis. AM big data may include CAD model files and in-process melt-pool images. The new 

framework desires two different types of storage systems for archiving AM big data and metadata 

separately. Currently, the Additive Manufacturing Materials Database (AMMD) [8], a NoSQL 

MongoDB document data warehouse developed by NIST, is the data storage used to store 

structured and unstructured AM metadata. However, there are limitations with the current storage 

system that may affect the potential speed and performance of the AM testbench. 

 

3.5.1 AM Metadata Store 

As the quantity of generated AM data grows, searching for a specific dataset in a big data 

repository becomes increasingly difficult. This system requires cooperation with a database 

capable of holding structured metadata that provides details for data objects stored in the cloud. 

An acceptable option for a metadata store would be a document database, as it allows highly 

structured documented data architecture for immutable AM metadata. Another option worth 

exploring is a graph database, which focuses on graphing node entities and edge relationships. 

 

3.5.1.1 Document Storage 

The current AMMD [8] storage system stores AM metadata in XML format and follows 

an XML Schema Definition (XSD) data structure which partitions XML documents into 9 types. 

Each document type has its own validated structure layout and are linked together by identification 

values. These databases can handle large quantities of data storage and are flexible to small 

changes to the schema structure. What makes the system limited is the difficulty in establishing 

complex relationships between metadata located in different XML documents. Each separate 

document establishes a connection by the document’s identifier; however, the relationships 

between subsets of metadata within each document are not clearly specified. This makes data query 

a slightly more tedious task. 

 

3.5.1.2 Graph Storage 

Graph databases serve to be an efficient AM data analysis tool with easily navigable node 

and edge relationships. In comparison to document-based databasing, the graph makes use of 

relationships between node entities as the primary way to draw connections between data in the 

entire graph view. This method is great for data analytics because it consolidates data, enabling 

quicker traversal between the node entities and edge relationships; however, the database’s 

performance is reliant on a well-defined data ontology. An unnecessary or undefined relationship 

in the ontology may result in a separation of important information between two related nodes. 

Much remains unknown about integrating AM data with graph databases. We are currently 

investigating the metadata storage and query capabilities of Deep-Lynx [9], an open-source graph 

data warehouse developed by Idaho National Laboratory (INL), to obtain a closer understanding 

of the compatibility of node and edge architecture along with the AMIF. 
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4. AM Big Data Streaming and Archiving

To determine if a storage system fits our criteria, we emulate the AM data generation and 

streaming processes to test a database’s features and capabilities. The original system utilizes batch 

uploads to archive all types of AM data, but this method is an inefficient use of time. By streaming 

AM data during the AM process, we can improve the speed of archiving data, making data readily 

available for analysis at any time. 

4.1 Utilize S3 Cloud Storage 

Streaming and archiving AM big data requires a high-volume file storage system 

compatible with fast and continuous upload. Amazon Simple Storage Service (S3) is the selected 

cloud object data lake storage which offers scalable file storage, configurable security access, and 

several API software development kits. The concern of using this service is the lack of 

understanding about the S3 capabilities and internet data transfer rate. A vital component of near 

real-time data streaming is a consistent high-speed connection between local AM machines and 

cloud services. Slower connections result in a growing backlog of data queued for upload. To 

ensure timely processes, an AM in-process simulation is constructed to emulate the procedure of 

generating image data, compressing each package, and streaming the data to the designated S3 

bucket destination. 

4.2 Upload Speed Test Dataset 

The AM in-process simulation consists of artificial parameters representing the desired and 

testing upload speed configurations. The build is a 12-part model each constructed with 250 layers. 

One package contains sample image data for each part of each layer resulting in a total of 3000 

packages produced per test run. Regarding the internet connection, the simulation uses an RJ45 

ethernet cable to connect local AM processors to the AWS cloud services. The simulation 

compresses each package into a ZIP file since compressed data results in a quicker internet transfer 

rate. In Table 3, if we divide the data size per package by the compressed data size per package, 

the compressed package is estimated to be ¼ of the full package size. 

Table 3. Upload Speed Test Dataset Base Parameters 

Configuration Data 

# of Layers 250 

# of Parts 12 

Total # of Packages 3000 

# of Images per Package 1500 

Single Image Size 43.3 KB 

Data Size per Package 64.881 MB 

Compressed Data Size per Package (ZIP) 16.92 MB 
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 The setting for the camera frame rate is around 4000 FPS. During the time frame of layer 

scanning and recoating, image data is captured and streamed to the cloud. 

 

Table 4. Upload Speed Test Scan and Recoat Time Parameters 

Configuration Data 

Scan Time per Layer 4.8 seconds 

Recoat Time per Layer 5 seconds 

Total Time for Minimum Buffer 9.8 seconds 

 

 

4.3 Desired Speed Calculation 

Estimating the minimum upload speed requirement involves creating mock configuration 

parameters that imitate an actual AM process. Results of the upload speed simulation that fall short 

of the minimum requirement could end up with an undesirable stockpile of data files queued for 

cloud transfer. 

Table 5. Minimum Desired Upload Speed Base Parameters 

Configuration Data 

# of Layers 250 

# of Parts 12 

Data Size per Package 60 MB 

Scan Time per Layer 4.8 seconds 

Recoat Time per Layer 5 seconds 

 

In Table 6, the calculated desired upload speed for one package is obtained by dividing 

data size per layer by total time per layer. The actual and compressed data size from the upload 

speed testing dataset is rounded to a ¼ compression ratio, so the estimated desired upload speed 

for the compressed package is acquired by dividing the desired upload speed by 4. 

 

Table 6. Minimum Desired Upload Speed Calculated 

Configuration Data 

Total Time per Layer 9.8 seconds 

Data Size per Layer 720 MB 

Desired Upload Speed 73.469 MB/s 

Desired Compressed Upload Speed (ZIP) 18.367 MB/s 

 

 

4.4 Upload Speed Test Results 
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The test results will be compared to the estimated desired upload speed. If the upload speed 

test results exceed the desired speed, we can say the AM data transfer to the S3 bucket will be able 

to keep pace with AM machine data generation. In Table 7, the average data upload speed displays 

the theoretical transfer speed of the data size within a compressed package, not the upload speed 

of each individual data file. 

Table 7. Local to S3 Upload Speed Test Results 

Configuration Data 

Avg ZIP Upload Time per Package 0.446 seconds 

Avg ZIP Upload Speed 37.937 MB/s 

Avg Data Upload Speed 145.459 MB/s 

After multiple simulations, the accumulated data averaged a ZIP package transfer rate of 

37.937 MB/s meaning the data inside each package uploaded at a speed of around 145.459 MB/s. 

The test results more than doubled the minimum required upload speed. 

Table 8. Comparison between Desired and Test Result Upload Speed 

Upload Speed Desired Test 

Compressed Package (ZIP) 18.367 MB/s 37.937 MB/s 

Data inside Package 73.469 MB/s 145.459 MB/s 

It is important to note that the upload speed test simulation does not contain each layer’s 

time configurations for laser printing, powder filling, build plate descent, and other factors. 

Theoretically, adding these time parameters would significantly lower the estimated desired 

upload speed making the current simulation test results even more qualified for near real-time AM 

data streaming. 

4.5 Combining Image and Metadata Streaming Processes 

The AM data streaming simulation runs simultaneously with each other. When generated, 

data is recognized and uploaded to the specified endpoint. What makes this process problematic is 

how both streaming methods are run asynchronously from each other. This means data in Amazon 

S3 is not linked with metadata within the graph database. A potential solution could be to send an 

identifier metadata value within the S3 upload response back to the local computer. Then, a 

separate process will send an API request containing the S3 object identifier to the graph database 

and update the corresponding node metadata in the graph view. 
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5. Summary

AMIF is designed as a framework for AM system developers to integrate process data and 

sensor signals. The NIST AM data integration testbench is a use case that emulates a real AM 

system process for testing the interoperability of computer tools and evaluating the machine 

operation control. The testbench also demonstrates its capability to handle high-speed, high-

volume in-process data in an autonomous workflow. This testbench can serve as a standard 

platform to test the integration of data flow and the pipeline of software operations. The goal is to 

integrate industrial cases on the testbench to evaluate the various communication protocols, 

information models, and numerical simulations. Also, utilizing this testbench can enable testing 

advanced LPBF process monitoring and predictive algorithms for near real-time or real-time data 

analysis and process control. 
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