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Abstract 

Hybrid additive manufacturing of advanced ceramics facilitates the production of highly 

dense and precise parts by combining additive and subtractive processes. However, extrusion-

based processes are susceptible to stochastic defects such as voids, or under extrusions, which can 

degrade material properties, leading to premature failure and lower yield. This research 

demonstrates deep learning informed selective layer reworking for a ceramic hybrid additive 

manufacturing platform. Each layer was evaluated in-situ using a vision-based monitoring system, 

consisting of a camera and a laser profilometer. Through closed-loop control, a decision was made 

autonomously to pause production, allowing for defect repair prior to reprinting the layer. The deep 

learning model detected voids with a precision of 90%, and the laser algorithm achieved F scores 

greater than 98% across a range of parts, facilitating future corrective actions to repair these 

regions. This unlocks new opportunities for regulated industries aiming to exploit quality-assured 

ceramic components that benefit from freeform fabrication.  

Introduction 

Hybrid additive manufacturing (Hybrid-AM) systems are becoming increasingly popular 

in both research and industrial settings, as the combination of multiple processes, particularly 

additive and subtractive, creates new manufacturing opportunities [1–3]. Integrating multiple 

processes into a singular machine offers several advantages including: higher levels of autonomy, 

multi-material or functionally graded parts, improved part quality, and shorter cycle times [3–5]. 

Hybrid-AM has been used successfully for metals, ceramics, and polymers. As the technology is 

still emerging, there is need for improved software packages to utilize the true potential of these 

machines; most existing software for Hybrid systems consists of bespoke, application specific 

toolpath generation software [5,6]. The software control offering for these machines is based on 

existing CNC/3D printing motion controllers, which does not support new operations being 

generated on the fly based on process feedback. To encourage further academic and industry 

adoption of Hybrid-AM, the software control of these machines, in particular sensor-driven 

feedback, must be improved. 

In-situ monitoring of extrusion AM processes has been explored significantly in existing 

research, with a variety of different sensing methods [7–11]. Extrusion-based AM processes are 

vulnerable to process defects [12], which can cause parts to fail mid-production, or lead to 

premature failure during use. Underextrusions, or voids, are particularly problematic as they 

influence the final properties of a part [13,14]. However, the majority of this work primarily 

concerns detecting defects, with few opting to extend the issue to defect repair [15,16]. While this 

is largely down to a standard 3D printer being limited to only deposit material, with the emergence 

of hybrid-AM systems new corrective measures can be explored for defect-free manufacturing. 

Additionally, multi-modal sensing is becoming more common, allowing for a greater 
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understanding of processes. Multi-modal sensing, can be used to alleviate the disadvantages of 

individual sensors, allowing for a wider selection of defect types or process instabilities to be 

monitored. For example, vision-based defect detection is unable to detect internal voids, or capture 

3D measurements, but when combined with a measurement systems like acoustic monitoring or 

laser triangulation, more detailed evaluations of part integrity can be generated.  

 

Methodology 

Manufacturing Apparatus 

 The manufacturing system used in this work was a Ceramic Hybrid Additive 

Manufacturing Platform (CHAMP). The CHAMP combined a high viscosity ceramic paste 

extruder, machining spindle with automatic tool changer, IR drying lamp and an in-situ, multi-

modal sensing system. 

 The multi-modal sensing system uses a high-resolution camera and a laser profilometer to 

record part data. Multi-modal sensing incorporates two or more sensors to generate more data about 

a process. The proposed method was a two-step monitoring process; first the camera captured 

images of each layer, and a deep learning model was used to determine if the layer contained any 

under or over extrusions. If the layer contained under extrusions, the entire layer was considered 

defective and would require repair. In the case where only over extrusions were detected, and were 

large relative to the part size, a laser scan was carried out. A point-cloud was generated, and 

compared to a point-cloud generated from the gcode file to determine the significance of the over 

extrusion, and when required a correction was performed. The YOLO model provided fast 

detection of voids, but the laser system was introduced because the model could not quantify the 

scale of the over extrusions in the Z direction. Over extrusions that deviated from the intended layer 

height significantly were more influential on subsequent layer quality than over extrusions with a 

Figure 1: A) Overview of the CHAMP, B) the in-situ measurement system, C) the laser 

coordinate system 
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lesser Z deviation but greater X, Y area, based on operator experience. This was due to the nozzle 

being dragged through the surplus material, which stuck to the nozzle and can foul non-defective 

regions.  

 

 The measurement system consisted of a monochrome camera (VCXU.2-201M.R, Baumer 

Vision Technologies) with a telephoto lens (V1226-MPZ, Computar), and a laser profilometer 

(scanCONTROL 2900-50, MicroEpsilon). The camera sensor pixel size was 2.4µm and the image 

resolution was 5472x3648px. The laser scanner was positioned 70 mm from the build plate, giving 

a resolution of 0.045 mm and 0.004 mm in the Y and Z direction, respectively. In the X direction, 

scans were captured in 0.5 mm intervals. The acquisition of both camera and laser data was 

controlled by a bespoke process monitoring script written in Python.  

 

YOLO Model 

 A You-Only-Look-Once (YOLO) [17] v8 small model was used in this work, a high-level 

network architecture is shown in Fig 2. The YOLO model was selected as it is one of the best 

performing models for object detection both in terms of accuracy and inference speed. A small 

model was chosen to limit inference time and reduce the computational requirements for training. 

The model was trained on the COCO dataset [18] before being trained on a bespoke data set 

consisting of 432 images containing 3289 under extrusions and 3125 over extrusions. The data was 

labelled using bounding boxes by an operator familiar with the process, and contained naturally 

occurring defects, forced defects and non-defective images. This was divided using a 70:20:10 split 

into training, validation, and test images. The remaining 300 training images underwent data 

augmentation to increase the variation in the data and the number of images. The following 

augmentations were applied: horizontal and vertical flips (P=0.5), rotation ±45˚ (P=Rand), 

brightness adjustment ±25% (P=Rand), gaussian blur 0-2.5px (P=Rand) and 2% noise. This 

Figure 2: High-level overview of the YOLOv8 network architecture 
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increased the training set to 3000 images. Finally, the images were downsized to 2048x1365 to 

reduce the computational cost of training. The YOLO model was trained using PyTorch and the 

Ultralytics python packages. This work was undertaken on ARC4, part of the High Performance 

Computing facilities at the University of Leeds, UK. A single node of the ARC4 cluster was used, 

consisting of an Intel Xeon Gold 6138 CPU, four Nvidia Tesla V100 GPUs, and 192Gb of RAM. 

Two GPUs were required during training due to the high-resolution images.  

 

 The model was trained for 300 epochs using a batch size of 8, and an Intersection-over-

Union, (IoU) threshold of 0.7, which is the required overlap between predictions and ground truth 

labels to count as positive prediction. All other variables were left as their default values stated in 

the Ultralytics package. In training, multiple metrics were used to evaluate the performance of the 

model using the validation dataset, and after training the unseen test data was used to determine 

how well the model had generalized. These metrics were as follows:  

• Precision, P – The ratio of true positives to all positives = TP/(TP + FP). 

• Recall, R – The ratio of true positives to class instances = TP/(TP+FN). 

• Mean Average Precision, mAP – The mean of the average precision, area under P-R curve. 

• F1-score, F1 – The harmonic mean between precision and recall.  

 

Where TP= True Positive, FP= False Positive and FN = False Negative. Two different mAP metrics 

were calculated, mAP@50 = the mAP at the 0.5 IoU thresholds, and mAP@50-95 = the mAP at a 

range of IoU thresholds between 50-95%.  

Laser Measurement system 

 The Laser Measurement system was introduced to evaluate over extrusions. Measurements 

were taken when the YOLO model detected solely over extrusions. A flowchart outlining the 

combined monitoring procedure is given in Figure 3. Once a scan was captured, the data was 

filtered to remove any non-numeric values or erroneous points that appeared below the build plate 

resulting from the occlusion of the laser. Simultaneously, the python script processed the gcode of 

the part, creating a series of polygons representing the outline of the part geometry, including 

external perimeters or internal features such as holes. Polygons were stored as point clouds (PCs) 

and passed through a multiple polygon filtering (MPF) algorithm to extract definitive inlier points. 

This novel algorithm operated on two base principles:  

1. A polygon representing a hole had an area less than the polygon representing the outline of 

the material surrounding it.  

2. The area in-between two nested polygons alternate between a hole (outlier) or an extrusion 

(inlier).  

However, gcode coordinates refer the centerpoint of an extruded raster, meaning the outer part of 

the extrudates were absent from the MPF algorithm. This was addressed by extracting all remaining 

points greater than a lower limit, which was calculated by: 

 

𝐿𝑜𝑤𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 =  𝜇𝑖 − 𝜎𝑖 × 𝑆𝐷𝑚𝑢𝑙𝑡𝑖  

 

where 𝜇𝑖 = inlier point cloud mean, 𝜎𝑖 = inlier standard deviation and 𝑆𝐷𝑚𝑢𝑙𝑡𝑖 = standard deviation 

multiplier. This correction enabled the algorithm to dynamically adjust the acceptable deviation of 

additional points depending on the variation measured in the print, ensuring the lowest number of 

points to attain a good layer representation were extracted. These additional points were combined 
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with the inlier points previously extracted. During testing, two further checks were implemented 

to the lower limit calculation: 

 

1. A minimum deviation value was set at 0.2mm, one third of a layer height. This ensured the 

algorithm would always extract some number of points irrespective of layer quality. 

2. A grounding value was introduced to prevent the algorithm extracting previous layers or 

build plate points. This was achieved by expanding the gcode polygon to remove points 

representing an extrusion, leaving only points on the build plate. A grounding value of 

0.15mm was selected, which fell within the build plate PCs deviation, and enabled severe 

under extrusions to be extracted.  

 

𝑟𝑎𝑛𝑔𝑒 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 + (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 × 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟) 

 

𝐿𝑜𝑤𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 = {
𝑔𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒, if 𝑟𝑎𝑛𝑔𝑒 < 𝑔𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒

 𝑟𝑎𝑛𝑔𝑒,         otherwise.               
 

 

 Once PCs were created, they were segmented into over and under extrusions based on the 

mean point cloud height, and Euclidean clustering was applied to group points into defect regions. 

From this the area and height deviation of defective clusters were calculated. The laser and point 

cloud clustering algorithm was evaluated by printing intentionally under extruded and over 

extruded tiles, as well as unaltered bracket part. An ideal PC was manually created for each layer 

to obtain all defect regions and serve as a ground-truth to compare the algorithm to. An F-score 

was calculated from the difference between the ground truth and algorithm results. An F-score is 

the harmonic mean of precision and recall, and is a statistical measure of predictive performance, 

a score of 1 indicating perfect performance.   

 The proposed repair processes were simple; if a layer contains voids, it is defective and 

must be removed and reprinted. If a layer contains solely over extrusions that were deemed 

significant, then that layer would be planarized prior to depositing a subsequent layer to remove 

excess material that may interfere with additional layers.  

 

 

 

Figure 3: Flowchart outline of the combined in-situ monitoring process 
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Results and discussion 

YOLO Model 

 The results from the YOLO model against unseen test data are given in Table 1. The model 

performed well on the under extrusion class, achieving a precision of 89.5%. However, the 

performance at detecting over extrusions was worse against all metrics, further highlighted in the 

F1-Confidence Curve in Figure 4. The maximum F1 score of 0.75 was achieved at a confidence 

level of 0.425, and the curve shows that the detection of under extrusions is better across a range 

of confidence thresholds. Under extrusions impact the properties of final parts and can also lead to 

a print failing. Over extrusions are not always significant, but multiple instances in one layer, or 

significant Z deviation can cause issues printing subsequent layers. The models lower performance 

against over extrusions likely stems from both a labelling inconsistency in the training data, and 

the low contrast between over extrusion locations and the rest of the part. When labelling the data, 

it was difficult to determine when small debris should be considered an over extrusion or ignored. 

The false positive predictions stemming from this inconsistency were penalized during training, 

reducing performance on this defect class. In the case of large over extrusions there was a small 

shadow cast on the rest of the part, increasing contrast, which was included within the labelled 

region. Smaller over extrusions were less pronounced, cast no shadows and therefore had lower 

contrast. Combined with the expected texture of the layers, this posed challenges during data 

labelling and subsequent training of the network. 

Table 1: Results of the YOLOv8s model on unseen test data. 
 

 

 

 

This could be addressed by increasing the amount of training data to average out these 

inconsistencies. An emphasis should be placed on increasing the number of over extrusion 

Defect class mAP@50-95 mAP@50 Precision Recall 

Both classes 0.4520 0.7808 0.8055 0.7039 

Under extrusion 0.4879 0.8452 0.8953 0.7241 

Over extrusion 0.4160 0.7164 0.7156 0.6837 

Figure 4: F1-Confidence Curve, indicating the optimum performance at confidence level 0.425 
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examples, as well as samples with no defects, so that the model might better distinguish between 

acceptable surface texture and defects. However, generating and processing this data is time 

consuming; alternatively, the laser measurement system could be used to evaluate the severity of 

over extrusion defects and determine if a correction is required.  

 

Laser system 

 The results of the laser and PC clustering algorithms performance of the 3 parts for a range 

of standard deviation multipliers are given in Table 2. The standard deviation multiplier was 

increased in 0.5 intervals from 0.5 to 2. In this coarse study, the algorithm demonstrated excellent 

performance on all 3 parts, figure 5. The high F-scores across the range of standard deviation 

multipliers indicate the extraction algorithm is effectively extracting layer geometry information 

regardless of layer quality. Existing point cloud extraction algorithms are typically demonstrated 

on layers from the middle of the part, likely due to difficulties encountered separating the features 

from the build plate. We demonstrate here an approach that works effectively irrespective of layer 

number and quality.  

Table 2:Performance of the extraction algorithm across a range of standard deviation multipliers. 

 

 

 

  

 

As the algorithm effectively clustered defective regions, and calculated defect area and Z deviation, 

it could be used to support the results of the YOLO model. For example, the model could detect an 

over extrusion across the entire surface of the part. Due to the size of this detection, a laser 

measurement is undertaken. The laser measurement determines that the Z deviation is small, and 

therefore the defect is unlikely to affect subsequent layers. Whilst the time taken to confirm this 

with the laser scan is longer than solely the YOLO model, it would alleviate an unnecessary 

corrective operation, improving overall process efficiency.  

Conclusions 

 In-situ monitoring has become a significant feature of many modern manufacturing 

processes, aiding in process optimization to create better products with fewer defects. With high 

𝑺𝑫𝒎𝒖𝒍𝒕𝒊 
F-score 

Under extruded Bracket Over extruded 

0.5 0.9961 0.9992 0.9834 

1.0 0.9961 0.9997 0.9873 

1.5 0.9961 0.9999 0.9907 

2.0 0.9961 1.0000 0.9957 

2.5 0.9961 0.9999 0.9980 

Figure 5: Visualization of the algorithm’s deviation calculation across the three parts 
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quality sensors becoming widely available, multi-modal sensing has become increasingly common, 

offering a higher level of machine intelligence and a more comprehensive evaluation of process 

defects.  

 

 This work presents preliminary research into a vision-based deep learning system for 

identifying defects in ceramic parts. This system identified under extrusions with around 90% 

precision, but performed worse on over extrusions, and so an additional sensing method in the form 

of a laser scanner was introduced. This laser data provided a 3D evaluation of the layer quality to 

support the detection from the YOLO model before a decision on repair was made. The clustering 

algorithm reliably segmented deviated regions, with a minimum F-score of 0.98 across the 3 case 

studies. This would ensure that an operator would not be instructed to repair over extrusions that 

were unlikely to lead to further defects, improving manufacturing efficiency.  

 

 As this work was incorporated into a hybrid manufacturing system, there exists the 

possibility to add and remove material. Future work will focus on establishing a feedback loop 

between the monitoring system and the manufacturing platform. Using this feedback loop, with 

improved toolpath generation, there is an opportunity to repair the defects mid-process. This would 

highlight the full potential of hybrid manufacturing combined with multi-modal sensing for the 

creation of high-value, defect-free parts.  
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