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Abstract 

Conventional data analytics often fail to capture the intricate context of additive 
manufacturing (AM) processes, leading to pointed solutions and suboptimal analytics outcomes. 
The performance of generative artificial intelligence (GenAI) models, such as large language 
models (LLMs), largely depends on their ability to integrate and contextualize the vast data they 
are trained on.  However, contextualizing is often directly driven by the data consumed, and not 
necessarily grounded in the fundamental truths. To address this issue, an ontology-based retrieval 
augmented generation (RAG) approach is proposed to enhance GenAI's capability to generate 
pertinent prompts and answers. The GenAI recognizes and applies relevant context by leveraging 
structured ontology, resulting in accurate and insightful interpretations. A use case showcases how 
the proposed ontology-based RAG framework operates to provide context-aware AM data 
analytics that promote analytical transparency through fundamental truths when executing AM 
data analytics. 

1. Introduction

Additive manufacturing (AM) is an emerging field with significant potential, yet it faces 
several challenges, from design to process optimization. These challenges include designing the 
optimal CAD model, selecting appropriate materials, and dealing with defects. Such issues can 
impact the accuracy and quality of the final product, reducing its strength, lifespan, and 
performance [1]. Machine learning (ML) models play a vital role in addressing these challenges, 
but each ML model is typically specialized to solve specific problems. Consequently, a single ML 
model cannot address all AM-related issues. 

In this context, generative artificial intelligence (GenAI) offers a promising solution. 
GenAI refers to algorithms that generate multimodal content such as text, images, or designs based 
on learned data patterns, and replicating real data distributions [2], [3]. GenAI models are trained 
on diverse datasets, capable of handling multimodal data, and can address multiple tasks within 
AM if adequately trained. Therefore, GenAI can potentially replace multiple specialized models 
with a single model [4]. These models provide various applications and opportunities in AM, from 
design to process optimization and beyond, leading to innovative and efficient solutions [5]. 
Furthermore, using GenAI effectively can help organize and utilize AM-specific data and insights 
systematically, enhancing the overall data analytics process.  
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 However, the complexity of AM presents significant challenges for the effective use of 
GenAI, as general GenAI often struggles to capture the intricate context of AM process, data, and 
materials, which is essential for accurate data analytics. Furthermore, GenAI models are prone to 
hallucinations, generating irrelevant or unreliable content, leading to misinformation [6]. These 
hallucinations can result in responses that appear correct but are factually incorrect or even produce 
fictitious information and fake images. The need for more context awareness and the risk of 
generating inaccurate information highlights the importance of advanced techniques like prompt 
engineering [2]. 
 
 Prompt engineering refers to strategically designing and formulating prompts to align with 
the model's training and capabilities to improve the accuracy and relevance of the generated 
answers. By crafting clear, specific, and contextually appropriate questions that match the model's 
strengths, prompt engineering enhances GenAI model responses. This method optimizes 
performance without retraining or modifying the model, making it an efficient and cost-effective 
approach [7].  
 
 Building on the concept of prompt engineering, retrieval augmented generation (RAG) is 
a promising technique for enhancing the generating capabilities of GenAI models by incorporating 
external knowledge sources as input prompts [6]. By leveraging RAG within prompt engineering, 
it becomes possible to enhance the accuracy and contextual relevance of GenAI outputs, making 
GenAI more effective in the complex domain of AM.  
 
 This research explores an ontology-based RAG technique that provides effective prompts 
to enhance GenAI's effectiveness in solving AM data analytics tasks. This approach aims to 
improve the contextual relevance and accuracy of GenAI-generated responses by integrating AM-
specific knowledge into GenAI's processing workflow. By systematically incorporating external 
knowledge sources through ontology-based RAG, more effective prompts for GenAI will be 
provided, thereby enhancing its performance in AM data analytics. 
 
 The remainder of this paper is organized as follows. Section 2 provides the background of 
our method, discussing GenAI for data analytics, the application of data analytics in AM, and the 
role of ontologies for AM. Section 3 explores prompt engineering for GenAI, explaining how well-
crafted prompts enhance the performance of GenAI models. Section 4 details the proposed method 
for applying ontology-based RAG in GenAI-supported AM, describing its components and 
functionality. Section 5 presents a case study demonstrating the effectiveness of the proposed 
method. Finally, Section 6 concludes the paper, summarizing our research contributions and 
outlining potential directions for future work. 
 

2. Background 
 
2.1 GenAI for Data Analytics 
 GenAI refers to algorithms capable of generating novel, creative, and realistic content, such 
as images, audio, video, and 3D models, by replicating real data distributions [8]. GenAI can be 
used in data analytics in various ways, including data processing and cleaning, synthetic data 
generation, pattern recognition, prediction, structuring text documents, and analyzing images and 
videos for anomaly detection [9]. Consequently, GenAI plays a vital role in data analytics. 
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 However, the effective use of GenAI depends largely on guiding the models to the correct 
solution space. These models require extensive training on large datasets, and the effectiveness of 
this training can vary based on the selected data. Moreover, even with well-trained models, 
variations in query formulation can significantly influence the quality of the results. Therefore, 
before enhancing the capabilities of GenAI models through fine-tuning or retraining, it is crucial 
to understand what these models are currently capable of by effectively querying them. In this 
context, the concept of prompt engineering becomes essential. 
 
 Prompt engineering is a powerful technique that enhances the quality of responses from 
GenAI models by crafting the "right questions" effectively. It involves strategically designing and 
phrasing prompts to align with the model's training and capabilities, thereby improving the 
accuracy and relevance of the generated answers. By formulating clear, specific, and contextually 
appropriate queries, prompt engineering helps guide GenAI tools toward producing more precise 
and valuable responses, addressing the complexities and nuances of the issues at hand. This 
approach focuses on refining how queries are structured to elicit the most accurate and relevant 
outputs from the models. By carefully crafting prompts, users can effectively leverage the model's 
existing knowledge and capabilities, optimizing its performance for specific tasks. This method of 
enhancing model utility is particularly valuable as it avoids the need for retraining or modifying 
the model's architecture, making it a cost-effective and efficient way to improve outcomes [10]. 
 
2.2 Data Analytics in Additive Manufacturing  
 AM data analytics uses advanced tools and techniques to optimize and control the AM 
process from design to final product. These analytics are widely applied because they provide 
actionable insights that improve design, predict material properties, estimate costs, and detect 
defects, enhancing overall efficiency and quality [11]. However, despite their effectiveness, these 
data analytics methods often fail to address the complexities of AM projects, where interpreting 
the intricate relationships and dependencies within AM processes is essential [12].  
 
 Understanding the context in which AM data is generated is crucial for more accurate 
interpretation and analysis. Contextual knowledge, such as machine settings, environmental 
conditions, and material properties, helps uncover deeper insights and reveals interrelationships 
within the data, leading to better decision-making. By incorporating contextual information, AM 
data analytics becomes more precise and reliable, ultimately resulting in more effective and 
informed outcomes [13].  
 
2.3 Ontologies for Additive Manufacturing 
 An ontology is a formal and explicit description of concepts within a domain, including 
classes, properties of each class, and restrictions on these properties. It provides a structured 
framework to organize knowledge, allowing for the definition of relationships between concepts, 
and serves as a foundation for creating a comprehensive knowledge base by defining individual 
instances of these classes. Ontologies are used to share a common understanding of the structure 
of information, enable the reuse of domain knowledge, make domain assumptions explicit, and 
analyze domain knowledge [14].  
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 Ontologies have been utilized to develop AM knowledge bases that provide context for 
AM tasks by structuring AM-specific domain knowledge. This structured knowledge makes 
context explicit, enabling more accurate interpretation and analysis of AM context. Recently, 
ontologies have been increasingly applied in AM for knowledge representation and management, 
encompassing areas such as process plans, AM process parameters, product lifecycle, and sensor 
data [15]. Advanced data analytics tools, including machine learning and knowledge graphs, have 
been used to develop ontology-based knowledge representations, such as the DfAM ontology [16]. 
Additionally, ontologies are employed to address specific data analytics tasks in AM, enhancing 
collaborative knowledge management and providing structured frameworks for more accurate and 
efficient problem-solving [17]. Furthermore, ontologies can serve as an external knowledge base 
for RAG models, improving prompts for GenAI and enhancing its performance and reliability in 
addressing complex AM tasks. 
 

3. Prompt Engineering for GenAI 
 
 Prompt engineering encompasses a wide range of skills and techniques essential for 
effectively interacting with and developing GenAI models. It involves more than just designing 
prompts; it requires configuring various parameters, such as temperature, top-p, and max length, 
to achieve desirable and reliable responses. This process often involves experimentation to 
determine the optimal settings for specific use cases. When crafting prompts, several key elements 
are considered: instructions (specific tasks for the model), context (additional information to guide 
responses), input data (questions or topics of interest), and output indicators (desired format or 
type of response). By understanding and utilizing these components, prompts can be tailored to 
perform various tasks, including text summarization, information extraction, question answering, 
text classification, conversation, code generation, and reasoning. Learning these concepts is best 
achieved through practical examples, which demonstrate how well-crafted prompts can effectively 
address different tasks [18]. 
       
         However, for more complex and knowledge-intensive tasks, particularly in the field of AM, 
GenAI models can produce irrelevant responses even with specific parameter settings and well-
crafted prompts. These inconsistencies can lead to misinformation, decreased trust in AI systems, 
and suboptimal decision-making, particularly in complex fields like AM. Therefore, it is important 
to build a GenAI system that accesses external knowledge sources to complete these tasks. This 
approach enhances factual consistency, improves the reliability of the generated responses, and 
helps mitigate the problem of hallucinations [6], [19]. RAG technology, introduced by Meta AI 
researchers, is a type of GenAI system that enhances prompts for GenAI [2].  
 
 RAG enhances GenAI's capabilities by integrating external knowledge sources into the 
generation process. RAG takes input and retrieves a set of relevant supporting documents from an 
external knowledge source. These documents are concatenated as context with the original input 
prompt and fed to the text generator, which produces the final output. This makes RAG adaptive 
to situations where facts could evolve over time, which is particularly useful given that GenAIs' 
parametric knowledge is static. RAG allows language models to bypass retraining, enabling access 
to the latest information for generating reliable outputs via retrieval-based generation. 
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 The general RAG model consists of three main steps: indexing, retrieval, and generation, 
as shown in Figure 1. In the indexing step, raw data from the external knowledge source is cleaned, 
segmented into chunks, encoded into vectors, and stored in a vector database. In the retrieval phase, 
a user query is transformed into a vector and matched with the most similar chunks, which are then 
used as context in the generation phase to generate a response based on the query and retrieved 
documents [15]. This approach is particularly useful for addressing knowledge-intensive tasks. 
RAG can be fine-tuned, and its internal knowledge can be efficiently modified without the need 
to retrain the entire model [20]. 
 
 

 
Figure 1. General RAG Model 

 
 RAG allows GenAI models to access and utilize up-to-date, domain-specific information, 
reducing the likelihood of generating hallucinations or incorrect data [2]. In the context of AM, 
where precision and reliability are important, RAG can significantly enhance the quality of data 
analytics and decision-making processes. Applying RAG with GenAI ultimately leads to more 
consistent, reliable, and trustworthy GenAI responses, improving their overall effectiveness in 
specialized domains like AM. 
 
 Ontology-based RAG is one of the RAG techniques that enhances GenAI's generating 
capability by integrating structured domain knowledge into the retrieval and generation process. 
Incorporating ontology into RAG enhances the accuracy of retrieved information, ensures 
consistency in responses, and enables complex queries to be handled by structuring and managing 
domain knowledge effectively, allowing GenAI to access comprehensive and precise information. 
Unlike general RAG methods that typically focus solely on text-based entity retrieval, this 
approach maintains a keen awareness of graph topology, which is essential for generating 
contextually and factually coherent responses [21]. Therefore, ontology-based RAG enhances the 
precision and relevance of the generated responses, making it particularly suitable for complex 
fields such as AM.  
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4. Ontology-based RAG for GenAI-supported Additive Manufacturing 
 
 The proposed method uses the AM data analytics (AMDA) ontology as an external 
knowledge source to enhance AM data analytics by providing structured and contextually rich 
information into the GenAI model [12]. Figure 2 shows this method has four main functions: 
Ontology-to-Graph Converter, Entity Extractor, Graph Retriever, and Prompt Generator. The 
Ontology-to-Graph Converter transforms the AMDA ontology into a comprehensive knowledge 
graph, structuring the context of AMDA-specific information, as a graph enables efficient 
querying and relationship mapping for the RAG model. The Entity Extractor processes user 
queries to identify relevant AM concepts within the query. The Graph Retriever searches the 
knowledge graph to find and extract the most pertinent subgraphs, providing the necessary context 
for the query. Finally, the Prompt Generator uses these subgraphs and the query to generate 
detailed and contextually rich prompts for the GenAI model, enabling it to generate contextually 
appropriate responses for AM data analytics. 
 

 
Figure 2. The Framework of Ontology-based RAG for GenAI-supported AM 

 
4.1 Ontology Design for RAG 
 To integrate an ontology into the RAG framework, the ontology should first be transformed 
into a graph structure, requiring consideration of the differences between ontology and graph 
representations during the design phase. As explained in Section 2.3, an ontology consists of 
classes, properties, and restrictions, which provide a structured representation of concepts and their 
interrelationships. However, a graph is primarily composed of nodes and edges, where nodes 
represent concepts and edges represent relationships between these nodes. Each node and edge 
have defined attributes that provide additional context and detail. Therefore, when converting an 
ontology to a graph, it is crucial to ensure that the necessary context is accurately reflected in the 
graph representation. This requires designing the ontology with a focus on graph conversion, 
ensuring that all relevant information is preserved and effectively utilized in the graph structure. 
 
 In an ontology, relationships are captured through properties that require traversing 
multiple connections of classes and instances to gather the full context of an entity. In contrast, 
graphs benefit from having nodes with direct edges, which reduces the complexity of data retrieval 
of an entity. Therefore, when converting an ontology to a graph for RAG applications, it is crucial 
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to design the structure to maximize contextual connections around key entities. This ensures that 
the context within the ontology is accurately transformed and effectively utilized in the graph, 
enhancing the RAG's ability to deliver accurate and contextually relevant information to the 
generator. 
 

 
Figure 3. a) Structure of General Hierarchical Ontology,  

b) Structure of Ontology for RAG Application   
 
 RAG requires searching for specific entities, making it advantageous for each entity to be 
highly connected to its relevant context. As previously discussed, having more direct edges in a 
graph ensures that all relevant information is easily accessible. This high level of connectivity 
allows for efficient retrieval of comprehensive context about an entity, facilitating more informed 
generations. This differs from an ontology, where relationships might be more abstract and 
hierarchical, potentially requiring additional steps to interpret fully and retrieve all relevant 
information. As shown in Figure 3, the differences between the two ontology design structures are 
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clear. Figure 3 a) illustrates the ontology with a hierarchical structure, where relationships are 
abstract and require traversing multiple connections to gather the full context of an entity, making 
it less efficient for quick data retrieval. In contrast, Figure 3 b) depicts the ontology structure 
optimized for RAG application, with entities like “Structure Optimization” having direct 
connections to related nodes such as “Load Angle,” “Load Location,” “Build Plate Side,” and 
“Structure”. This ensures that all pertinent data is quickly accessible, enabling the framework to 
provide better responses.   
 
4.2 Ontology-to-Graph Converter  
 The Ontology-to-Graph Converter transforms the structured knowledge from the AMDA 
ontology into a comprehensive knowledge graph. It begins by extracting classes and individuals 
from the ontology and representing them as nodes. Each class is identified by its name and is added 
to the graph only once to avoid duplication. Similarly, individuals are extracted and associated 
with their respective class types, ensuring the graph captures the complete classification hierarchy. 
Relationships between classes, such as subclass hierarchies, and object properties between 
individuals are converted into edges. This representation allows for efficient querying and retrieval 
of domain-specific information. The resulting knowledge graph serves as a foundation for 
subsequent steps in the framework, enabling precise and contextually enriched data analytics.  
 
 As shown in Figure 4, the knowledge graph contains nodes representing various entities 
such as “StructureOptimization”, “LoadLocation”, “MSE” (Mean Squared Error), and 
“Normalization”. Each node is detailed with its properties and relationships to other nodes, 
illustrating the interconnected nature of the information. For example, the node for “MSE” has 
properties such as “Data Analytics,” “Data Science Context,” and “Model Evaluation,” explaining 
the context of “MSE.” It also connects to multiple relevant entities, such as “Structure 
Optimization” and “cGAN”. This highly connected structure allows for comprehensive context 
retrieval, enhancing the ability of the framework to generate accurate and relevant responses for 
AM data analytics tasks. 
 

 
Figure 4. Knowledge Graph (Partial) 
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4.3 Entity Extractor 
 The Entity Extractor processes user queries to identify and extract relevant AM concepts 
and entities. Utilizing GenAI, the extractor recognizes key terms related to AM, such as “material 
properties”, “process parameters”, and “machine settings”, and accurately captures them from the 
query text. Once the entities are identified, they can be utilized as an input for the Graph Retriever.  
 
 A prompt template is designed to guide this extraction process, ensuring consistency and 
accuracy in the extraction. This template sets the context for GenAI, instructing it to extract AM-
specific entities from the given query text. The prompt template includes both system and human 
messages to facilitate this process. The system message directs GenAI to extract “additive 
manufacturing”, “data analytics”, and “additive manufacturing data analytics” entities from the 
text. The human message provides the format of the query to extract informatiom. The extractor 
processes the query text, identifies the relevant entities, and formats the output into a list of 
extracted entities. This approach allows for efficient processing of user queries, ensuring that the 
extracted entities are both accurate and contextually relevant, thereby enhancing the overall 
performance of the framework. 
 
4.4 Graph Retriever 
 The Graph Retriever searches the knowledge graph to find and extract relevant subgraphs 
to the user query. It begins by processing the input query to create a full-text search query, which 
involves splitting the query into individual words and allowing for minor misspellings. This 
ensures the search can tolerate some errors in the input, enhancing the robustness of the retrieval 
process. After extracting entities from the user query, the retriever generates a full-text search for 
each entity on the knowledge graph. This involves searching for nodes in the graph that match the 
entities and identifying nodes and their scores based on relevance. The retriever then examines the 
relationships of these nodes, identifying connected nodes through both incoming and outgoing 
relationships, thereby mapping out the neighborhood of each identified entity. 
 
 By identifying and extracting the subgraphs that best match the query, the Graph Retriever 
provides the necessary context for generating accurate responses. This approach ensures that the 
retrieved information is both relevant and comprehensive. By efficiently mapping the query 
entities to the knowledge graph, the Graph Retriever bridges the gap between user queries and the 
structured knowledge graph. This process enhances the overall performance of the framework by 
ensuring that the retrieved information is contextually relevant and accurately reflects the 
relationships within the knowledge graph. 
 
4.5 Prompt Generator 
 The Prompt Generator combines the extracted subgraphs and the user query to create 
detailed and contextually rich prompts for the GenAI. A predefined template is used to integrate 
the extracted subgraphs and the user query into a structured prompt. This structured prompt is then 
presented to the GenAI, which uses the detailed context to generate a response. This prompt 
includes both the user's query and the context provided by the knowledge graph, ensuring that the 
GenAI model has all the necessary information to generate accurate responses. By incorporating 
structured knowledge into the prompts, the Prompt Generator enhances the GenAI's ability to 
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provide precise and contextually appropriate answers. This step is essential for leveraging the full 
potential of the ontology-based RAG framework. 
 
4.6 Implementation of the proposed method 
 Implementing the proposed method involves integrating the Ontology-to-Graph Converter, 
Entity Extractor, Graph Retriever, and Prompt Generator into a cohesive system. First, the AMDA 
ontology is developed and maintained using Protégé, a widely-used ontology editor [22]. The 
ontology is then converted into a comprehensive knowledge graph using Neo4j, which provides 
robust graph database capabilities for managing and querying complex graph data [23]. User 
queries are processed by the entity extractor, which is implemented using LangChain. This 
component is designed to identify and extract relevant concepts from the user input, ensuring that 
the key terms and phrases are accurately captured. These identified concepts are then utilized by 
the Graph Retriever, also implemented using LangChain, to search the Neo4j knowledge graph for 
the most relevant subgraphs [24]. The extracted subgraphs and the original user query are then 
input into the Prompt Generator. This component creates detailed and contextually rich prompts 
tailored for the GenAI model, powered by OpenAI’s GPT-4-turbo [25]. Finally, the GenAI model 
uses these prompts to generate accurate and contextually appropriate responses, enhancing AM 
data analytics.  
 

5. Case Study 
 
 In the case study, the proposed ontology-based RAG framework was implemented and 
demonstrated through step-by-step operation using the “structure optimization” use case to create 
the AMDA ontology [13], [26]. This framework was implemented, and its responses were 
compared to a general GenAI model. Specifically, the performance of handling a query related to 
AM data analytics was assessed and compared to that of a general GenAI model. The general 
GenAI system uses OpenAI's GPT-4-turbo model without additional contextual information, while 
our proposed framework leverages structured domain knowledge from the AMDA ontology to 
provide more accurate and relevant responses [25].  
 
 Both systems were implemented to conduct the case study, and a query relevant to specific 
AM data analytics tasks was formulated. The query used was "How to implement a data analytics 
model for structure optimization?".  The Entity Extractor then identified key concepts from the 
query: 'data analytics' and 'structure optimization'. Using these concepts, the Graph Retriever 
searched the knowledge graph and extracted related subgraphs for each entity.  
 
 As shown in Figure 5, the extracted subgraphs provide a detailed map of relevant entities 
and their relationships. The subgraphs include nodes related to data analytics, structure 
optimization, and their properties. The format of expression used is (subject node) - (Relations)-
>(object node) or (object node) <- (Relations) <- (subject node) or (node) - (node property). For 
example, the subgraph includes relationships such as Data Analytics – SUBCLASS OF -> Data 
Science Context and Structure Optimization – USES DATA ANALYTICS MODEL -> GAN. Node 
properties such as Data Analytics - Class and MSE – Error Metrics are also detailed. 
 
 The extracted subgraphs and the user query were then input into the Prompt Generator. The 
GenAI model used these prompts to generate accurate and contextually appropriate responses. For 
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the query "How to implement a data analytics model for structure optimization?", the GenAI 
suggested data analytics models, model evaluation methods, and specific parameters and features 
that are relevant to the structure optimization task. The case study demonstrated how the system 
effectively contextualizes and retrieves pertinent information, leading to more accurate and 
relevant responses. 
 

 
Figure 5. Retrieved Subgraphs from Graph Retriever 

 
 Additionally, the responses to the query from the general GenAI model and the proposed 
framework were compared. As shown in Table 1, The general GPT-4-turbo model provided a 
broad and less detailed response. It suggested general steps like gathering data, preprocessing, and 
selecting models without specific recommendations. The response did not reference any particular 
data analytics models, evaluation metrics, or parameters and lacked context-specific advice 
tailored to AM data analytics tasks.  
 
 In contrast, our proposed framework provided a more detailed and contextually rich 
response. It suggested specific data analytics models such as GANs, AutoEncoders, CNNs, and 
cGANs, which are known for handling complex spatial data and generating optimized designs. 
The framework recommended data processing techniques like normalization to prepare the dataset 
for analysis, ensuring the input data is scaled and formatted correctly for model training. It also 
provided model evaluation metrics such as binary cross-entropy, relative compliance error, and 
mean squared error for assessing model performance. Moreover, our framework included specific 
parameters and features relevant to the structure optimization task, such as load angle, build plate, 
load location, and boundary conditions. This detailed and context-aware answer demonstrated the 
effectiveness of the ontology-based RAG framework in enhancing AM data analytics by 
leveraging structured domain knowledge, leading to more accurate and relevant responses. 
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Table 1. Responses from the General GenAI and Our Proposed Framework 

 
 

6. Conclusion 
 
 This research demonstrates the effectiveness of integrating ontology-based RAG with 
GenAI models to enhance data analytics in AM. By leveraging structured domain knowledge from 
the AMDA ontology, our proposed framework improves the contextual relevance and accuracy of 
generated responses compared to the general GenAI model. The case study highlighted the 
framework's ability to provide detailed, context-aware answers, suggesting domain-specific 
responses for an AM data analytics task. The proposed framework addresses the limitations of 
general GenAI systems by incorporating comprehensive, domain-specific information, thereby 
enhancing the utility of GenAI in complex and knowledge-intensive domains like AM. 
 
 Despite the promising results, this research has several limitations. The current ontology 
may not comprehensively cover all aspects of AM processes, potentially limiting the framework's 
applicability in diverse AM scenarios. Additionally, the performance of the GenAI model depends 
on the accuracy and completeness of the AMDA ontology, as any gaps or inaccuracies could 
negatively impact its effectiveness.  
 
 Future work will focus on refining the ontology, expanding its coverage to include more 
aspects of AM processes, and integrating additional external knowledge sources to further improve 
the framework's capabilities. Additionally, comprehensive evaluations of various RAG technique 
will be conducted to better understand its strengths and limitations across different contexts and 
tasks. Furthermore, handling complex, multi-hop questions within the framework will also be 
addressed to show its effectiveness in managing intricate queries.  
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