
Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US
Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will
provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

Fundamental Path Optimization Strategies for Extrusion-based Additive

Manufacturing

Alex Roschli1,2, Liam White2, Michael Borish2, Cameron Adkins2, Ashley Gannon2, Adam Stevens2, Thomas

A. Feldhausen1,2, Brian Post2, Eric MacDonald1,2

1 University of Texas at El Paso

2 Oak Ridge National Laboratory, Manufacturing Science Division

Abstract

Extrusion-based additive manufacturing processes begin with a software program, called a slicer, that

generates layer geometry and fits toolpaths to each layer to define where material is to be extruded or

deposited. Before the toolpaths are output as g-code for the additive manufacturing system to execute,

the toolpaths should be optimized. Many complex optimization approaches using graph theory, Chinese

postman problem, and other complex mathematical models exist, but these approaches are rarely used

in daily printing operations and are not available through common slicing programs such as Cura and

PrusaSlicer. Instead, path planning and optimization typically revolves around simpler, fully automated

approaches such as inside out and next closest. This paper will explore the fundamental optimization

strategies for toolpath planning and document a new implementation, available via open-source slicing

software, that allows for greater control of the path planning process.

Keywords: Slicing, toolpath generation, path planning, path optimization, g-code

Introduction
Slicing is the title given to the entire software process of going from a CAD (computer aided

design) model to g-code instructions that a 3D printer can read and execute to build a part. This title is

given even though slicing is just one step of the process, and often one of the fastest computational steps.

The slicing step is where the CAD model is “sliced” into layers through a process called cross-sectioning

[1]. After the slicing step, toolpaths are fit to the layer, then optimization steps are applied to order the

printing operations. Finally, the toolpaths are converted to g-code instructions formatted specifically for

the machine that will read and execute the g-code.

The optimization step can be broken down into many parts including ordering and travel insertion

[2]. Simple strategies for ordering allow definition of the start and stop position on the outermost path,

called the seam, and path order such as inside out or outside in. Prusa Slicer, a common open-source slicer

[3], allows for seam optimization including random, aligned, nearest, rear, and user defined via a UI

Solid Freeform Fabrication 2024: Proceedings of the 35th Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

Reviewed Paper

1666

http://energy.gov/downloads/doe-public-access-plan

painting tool. Cura, another common open-source slicer [4], also allows similar seam optimization settings

and adds a custom point path optimization strategy applicable to first path of the layer.

 Advanced optimization strategies for path planning have been popular topic of research for years

in the truck driving industry [5-8] and for guiding tractors around farms [9-12]. However, additive

manufacturing is a relatively young industry, and the slicing and toolpathing operations are not well

researched or documented at this time including the standard path optimization strategies. However,

there is some university research showcasing advanced mathematical approaches for path optimization.

Dreifus showed the application of the Chinese Postman Problem (CPP) to create pathing along a lattice

that minimized print time [13]. Kim applied a complex stress analysis to generate a graded infill structure

and traversed the pathing using CPP [14]. Lechowicz proposed two hybrid path optimization strategies:

Greedy Two Opt and Greedy Annealing to reduce path length and decrease print time for 3D printing [15].

Many authors used an ant colony algorithm to optimize pathing and reduce print time [16-21] whereas

Liu used the traveling salesman approach [22]. Dong showcases the use of a Hopfield Neural Network for

filament-based printing [23]

 What all of these optimization and pathing approaches have in common is that none of them are

in use outside of university and research environments. Industrial manufacturing environments and other

end users don’t make use of these advanced pathing strategies because of the complexity of

implementation and the limited use cases. Millions of desktop 3D printers are in use [24], but none of the

software programs including Cura, PrusaSlicer, Simplify3D, KiSSSlicer, MatterControl, and OrcaSlicer

include any means of path optimization or planning based on graph theory, traveling salesman, Chinese

Postman, ant colony, or any other complex mathematical model.

 Some of these strategies may be computationally efficient and only add negligible time to the

slicing process for an average geometry, but the easy ability to make use of them still hasn’t been

implemented commercially or transitioned to industry. Instead, these slicing programs and users rely on

much simpler algorithms that are calculated efficiently and effectively for a wide variety of geometries.

This paper will explore these fundamental, automated optimization and path planning strategies, then

show a restructuring and new implementation, via open-source software, that allows users more control

of the path planning process. This new implementation is in use today in industrial environments and

seeing commercial adoption.

Creating Toolpaths for a Layer
 When a mesh, typically an STL for 3D printing applications, is sliced into layers, a polygon is

generated to represent the bounds of the layer. Complex geometries can create multiple distinct printable

areas within a layer, each represented by a separate polygon called an island. Multiple islands also occur

when multiple parts are printed at one time. Once the islands, or island, for a layer have been found,

toolpaths can be fit to each island within the layer.

 The toolpath creation process for an island is done by toolpath region. The most common regions

are perimeter, inset, skin, infill, skeleton, and support. Not all regions are used on each print, and not each

region will have toolpaths on each layer. A region can and often will have multiple paths for the same

layer. Perimeter and inset always generate closed-loop paths, which is a path that has the same start and

end point. Skeleton paths are always open loop, meaning a path that has different start and end points.

1667

Infill, skin, and support can generate both open loop and closed-loop paths depending on the slice

settings.

Optimizing the Layer
 Once the paths are planned for every region in every island, optimization strategies can be

implemented to define how to execute the paths. These optimization strategies can be divided into three

main categories including ordering of the islands, ordering of the paths within the regions, and ordering

of the points within the paths. Ordering of the regions within the islands is also something that can be

modified, but no slicer currently offers anything beyond outside in and inside out. This is partly because

some slicers don’t separate paths by regions, and because some slicers treat path and region optimization

as the same optimization by applying the same strategy to each. Because of this, ordering of the regions

will not be a sub-section and will instead be discussed in more detail in the next section, where a new

solution based on user preference will be introduced. The following sub-sections will define the existing

optimization strategies for the three main categories and introduce a few other strategies that can easily

be applied.

Island Optimization Strategies
 The first optimization strategy is to determine the order of the islands. Optimization strategies for

islands include next closest, next farthest, random, custom location, and least recently visited. With the

exception of least recently visited, these strategies are shared with path optimization strategies and will

be defined in the next section.

Least recently visited is useful for thermal processes to help evenly distribute heat among all

islands by always going to the least recently visited island, which would typically imply going to the coldest

island for processes that involve deposition of hot material. When a new island appears, typically when

an existing island splits into multiple islands, this new island is at the beginning of the list and gets printed

first. More robust implementations can detect an island splitting into multiple islands and keep the new

islands at the same order as the original island. Because island order optimization isn’t necessary for a lot

of builds, and because the optimization strategies are shared with the path optimization strategies, the

remainder of this paper will focus on single island optimization strategies for both path order and point

order.

Path Optimization Strategies
 There exist several common path optimization strategies which serve to define the order of the

paths within a region. Typically, slicers order paths in one of two ways: outside in and inside out. Other

methods of optimization include random, next closest, next farthest, and custom point. The following

path optimization strategies will share a common region order: perimeter, inset, infill, and skeleton.

Outside In and Inside Out
 Outside in and inside out are very simple strategies that work as expected. For outside in, paths

on the outer edge of the region are printed first, then the next path towards the center of the layer is

printed and so on until all paths within the region are printed. For instances when multiple paths exist

towards the center, the path closest to the current path is printed next. Inside out is simply the opposite,

the path within the region that is closest to the center of the layer is printed first and then the next path

1668

outwards is printed next and so on. Figure 1 shows the toolpathing for a square with perimeter (dark

blue), inset (light blue), and infill (green) paths printed outside in and inside out.

Figure 1: A square shape showing outside in (A) and inside out (B) pathing. The numbers indicate the print order for the paths.

 Notice that Figure 1b, inside out, still prints the three perimeter contours first rather than infill

first. The layer itself isn’t being printed inside out, just the paths within each region. For some slicing

packages, selecting inside out forces not only paths but also regions to be printed inside out; however,

this section is focusing on path optimization on a per-region basis. An upcoming section will talk about

the potential to re-order the regions to allow for all regions and paths to be printed inside out.

Outside in and inside out get more complicated for objects that have multiple “outsides”. Take

for example the hollow square shape shown in Figure 2a. For a configuration with just perimeter and infill

paths, the typical implementation of outside in starts by printing the outermost square perimeter and

working inwards toward the infill. Next, the pathing does the outermost perimeter for the inner square

and begins working inward. Finally, the infill is printed. This pathing is illustrated in Figure 2b.

1669

Figure 2: A hollow square (A) and the resultant pathing from outside in (B).

 The path ordering from Figure 2 changes if the regions for the closed contours changes. In Figure

2, all closed contours are perimeters (dark blue). If the pathing is implemented with perimeters and insets

(light blue), the order changes so that all of the perimeter paths are printed first and then the inset paths

are printed (Figure 3). This is because the paths for one region, perimeters, are printed and then the paths

for the next region are printed. The motivation for making the inner closed contours insets rather than

perimeters is to print these insets with different parameters, typically a faster speed, than the perimeter

contours which will be exposed.

Figure 3: Changing the third perimeter in Figure 2B to an inset alters the printing order.

 While outside in and inside out seem quite simple, many complex edge cases can be encountered

that make it complicated to determine which path to print next. For example, the figure-eight shape

shown in Figure 4a has two closed contours (A&B) inside of the large outermost closed contour. After

1670

printing the outermost contour, both remaining interior contours are equally close to the center of the

layer. To decide which contour to print next, a next closest calculation is implemented to select the closer

path to print followed by the remaining path. The distance to point A is less than the distance to point B,

so path A gets printed first (Figure 4b).

Figure 4: Figure eight shaping pathing where both interior perimeters are equal distance from the center (A), and the next
closest calculation to determine whether path A or path B is printed next (B).

 Outside in and inside out pathing are used depending on the needed geometric accuracy. For

example, outside in is used when the geometric accuracy of the outer bounds is most important. The

downside of this approach is that while printing moves toward the centroid, any excess extrusion has

nowhere to go and ultimately causes overfilling that exceeds the top of the layer as seen in Figure 5.

Figure 5: A 25mm square printed concentrically from outside in causing center overfill (A), and the same 25mm square printed
inside out (B). Notice that the outside in version has clean outer lines but appears rough in the center while the inside out version

is rough on the outer lines and smooth in the center.

 Inside out isn’t as likely to have the bulging and overfill issue seen in Figure 5 because excess

material can be pushed outwards. However, because excess material is pushed out, the result can cause

the outermost perimeter bead to miss the defined outer boundary of the layer. Figure 6 shows a

measurement of the outer dimensions for both outside in and inside out pathing for the same shape.

1671

Figure 6: A 25mm square printed outside in (left) and inside out (right). Notice that the outside in square (left) perfectly matches
the dimensions while the inside out version (right) is oversized because of the material being pushed outward during printing.

Random Path Optimization
Random path optimization is exactly like it sounds paths placed in an unspecific, unrepeatable

order. Once the toolpaths are created for a layer, an algorithm is used to randomly order the paths. The

benefit of this strategy is that it helps prevent buildup issues from one layer to the next by causing paths

to print in a different order each time. Because of the bulging of beads mentioned during Outside In and

Inside Out, the space where a path lies during random optimization can slightly shift and therefore have

a higher chance of success. The downside is that material properties can be inconsistent from the random

distribution of paths that causes a random distribution of heat. Figure 7 shows a random path order for

the same toolpaths seen in Figure 1.

Figure 7: A square shape where the paths within each region are randomly ordered.

1672

Next Closest
As the name implies, the next closest path optimization works by finding the closest path to the

current location. This is often done with a Greedy Algorithm [25] to speed up the computation time. At

the beginning of a build, the current location is assumed to be the origin of the workspace, though a

custom point can be defined which will be explained in a further section. Once a path has been printed,

the end point of the path is used as the current location for the purposes of calculating the next closest

path.

Two different methods of calculating the next closest can be used. A point-to-point calculation

can be used to compare the current location to every point on every remaining path, ultimately defining

the path with the closest point as the next path. That closest point isn’t necessarily used as the starting

point for the next path, which will be explained in the next section. The second method involves creating

a convex hull from each remaining path such that the center of the hull can be used to calculate a distance

from the current point. The path with the shortest distance from center point to current location is chosen

as the next path. The issue with the latter implementation is that concentric paths may generate a convex

hull with the same center point. When this happens, a different calculation must be used to determine

which path to print. This often means using the first calculation method of comparing every point on each

path to the current location. Figure 8 shows the next closest path implementation for the same paths in

Figure 1, using a next closest implementation based on comparing all remaining points on all remaining

paths.

Figure 8: Next closest path optimization for a square.

The path order shown in Figure 8 is identical to that of Figure 1a. This is because the outside in

and inside out pathing optimizations use a next closest calculation to find the next path when moving

towards or away from the center of the part. By using outside in and inside out, the user can define which

direction to order the pathing. Certain implementations of next closest pathing can also be used to ignore

region order and instead find the next closest path of any type within the layer.

1673

Next Farthest
In contrast to the next closest strategy is the next farthest strategy. Next farthest is implemented

using the same Greedy Algorithm calculations as next closest but instead selects the path or point along

a path that generates the largest distance [26]. Next farthest isn’t often used, but it is helpful for systems

where the material being deposited needs time to cool and solidify before another bead is printed

alongside. The result of implementing the next farthest optimization can be seen in Figure 9.

Figure 9: Next farthest path ordering for a square.

Custom Point
The last path optimization strategy is the custom point method. This approach requires the user

to define a custom point, typically just an X and Y location, as the location to feed into the next closest

algorithm rather than the current location. After each path is completed, the next closest path to the

optimization point is calculated and printed. Figure 10 shows the result of two different custom point

optimizations for the same toolpaths used in Figure 1. Notice that the second implementation, Figure 10b,

causes the perimeter to print inside out and the insets to print outside in.

1674

Figure 10: Two scenarios for custom point path order optimization.

Point Optimization Strategies
 There exist several common point optimization strategies which are implemented to define the

start point of the path. These optimization strategies are sometimes referred to as seam selection or seam

optimization because they are used to define where the seam is on the exterior of the part. The seam is

typically the name given for the start/stop point on the outermost path which can visibly be seen as a

minor defect.

 For closed-loop paths, the point optimization strategies can also be used to define the order of

the points within the path, or the direction of traversal. Because open loop paths have two distinct ends,

the optimization strategies are used to determine which end point is the start point, but traversal direction

cannot be modified. The following sections will define point optimization strategies that can be used to

determine start point and point order.

Next Closest and Next Farthest
 These two strategies were previously defined for path optimization, but a similar implementation

can also be used for determining the start point. For an open-loop path, the implementation works by

comparing the current location to the two end points of the open loop path that is next in the path order.

Whichever end point is closer, or farther depending on whether next closest or next farthest is being

implemented, is selected as the start point. This may result in the list of points for the path being printed

in their existing order, or it may require the list of points to be reversed. Figure 11a shows the

implementation for an open-loop path inside of a closed-loop path. In this scenario, point A is used for

next closest, and C is used for next farthest. Figure 11b shows how the order of points changes for the

open-loop path based on using next closest or next farthest.

1675

Figure 11: Finding the point order for a red skeleton path inside a blue closed loop path (A) and showing how the order of points
changes based on the distance calculation (B).

 For a closed-loop path, the distance is calculated between the current point and all points on the

next closed-loop path. Whichever point is determined to be the shortest distance, or farthest distance if

using the next farthest implementation, becomes the start point. Programmatically, this can be

implemented by rotating the list or array of points that define the path so that the desired start point is

the first item in the array. The order of points in the path is not changed during this rotation. Additional

modifications can be used such as clockwise versus counterclockwise to change the order of points and

will be discussed in an upcoming section. Figure 12a shows the implementation for a closed-loop path

nested within another closed-loop path. The outer path is calculated and printed first, and then the start

point for the nested closed-loop path can be defined. Figure 12b shows how the order of points changes

for each implementation.

Figure 12: A red closed loop contour is added inside the outer blue contour (A). To find the start point using shortest distance,
the distance from each point on the red contour to the current location is calculated. The distance B is shortest, so that point

becomes first in the print order (B).

1676

 The previous examples assume that the start and end point of the path are the same point, shown

as the current location. However, thermoplastic pellet extrusion systems often implement path modifiers,

such as tip wipes, that add additional moves to the end of the path such that the end point is not shared

with the start point [2]. This could cause the point optimization to move to a different vertex on each path

because the end point of the tip wipe, rather than the end point of the print path, is used for the next

closest calculation. Figure 13 adds a pink tip wipe to the blue outer contour causing the current location

to be altered which generates a new result for next closest.

Figure 13: Adding a pink tip wipe to the paths from Figure 12 causes the shortest distance calculation to change.

Random
 As previously defined in the path order optimization, random optimizations work by arbitrarily

selecting an index among the list of available points. For point order optimization, this means randomly

selecting a point along the path to be the first point of the path. Programmatically, this is implemented

by randomly selecting an index in the array of points on the path, then rotating the array until the

randomly selected point is the first index of the array. The random point optimization doesn’t change the

direction of the printing, or the order of the points, it just modifies where the path starts and ends printing.

Figure 14 shows the random path optimization applied to an object with many vertices.

1677

Figure 14: An eight-sided polygon with labeled start points (A). Point A is initially designated the start point, but point E gets
randomly selected as the first point. This table shows the updated point order (B).

 The advantage of random ordering is that the seam is constantly moving to a new location which

helps distribute the weak interface created by the seam. The downside is that the seam isn’t quite as

hidden since it’s distributed everywhere and visible from every angle. This effect is more drastic on round

objects where a corner isn’t available to help hide the seam. Figure 15 shows a cylinder shape with random

seam optimization.

Figure 15: FDM printed cylinder with random seams showing like "zits" around the exterior surface.

Consecutive
 The consecutive point order is helpful for objects that have the same or similar layer geometries

from one layer to the next because it allows the start point to move or rotate among vertexes layer to

layer. For example, a hexagon could be configured so that each layer starts from a different vertex. With

a hexagon, as shown in Figure 16, this could mean starting layer 1 at vertex A, layer 2 at vertex B, and so

on until layer 7 is back to vertex A.

1678

Figure 16: A hexagon using consecutive start point (A) to rotate among the start points from layer to layer (B).

 The amount of distance to move/rotate along the path from layer to layer can be a user

configurable setting so that each layer doesn’t move to the next vertex. The rotation could instead skip 1

or more vertices. For more complex objects, this rotation distance could be configured as a minimum

distance so that it’s not necessarily jumping by the same number of vertices each time, and instead it is

moving a set distance away from the previous object. Figure 17 shows an example of a complex polygon

where the minimum consecutive rotation distance means moving by a different number of vertices each

time.

Figure 17: An eight-sided polygon with distances shown for the length of each side (A). The resulting start point for each layer
based on a consecutive point minimum rotation distance of 4 (B).

Custom Point
 The custom point implementation uses the next closest implementation, but the current location

used for the distance calculation is replaced by a user defined point such that after every path, the point

on the next path closest to the optimization point is selected as the start point. The custom point location

can be defined as an X/Y value via textbox. The custom point approach is often used to define the seam

as being in one certain area of the part for the entire build, ideally somewhere that is less noticeable or

1679

hidden. Figure 18 shows custom point being implemented on a hexagon shape to define the start point

of the first path of the layer.

Figure 18: The blue outer contour of a hexagon with a green optimization point showing the basis for the distance calculation to
be used for the next closest algorithm (A). The black dashed lines represent the distance to each point from the optimization point.
The table shows the original point order and the updated order based on the optimization point (B).

 The custom point approach can be implemented with two user defined custom points to allow

the start/stop point to alternate between two locations from layer to layer. This is useful for situations

where the continued buildup of material at the seam could cause a print failure on a long build. It is also

helpful to distribute the weak joint caused by the seam to two separate locations. Figure 19 shows the

hexagon from Figure 18 with a second optimization point added. In this scenario, the first optimization

point is used for all odd numbered layers, and the second point is used for all even numbered layers.

Figure 19: Adding a second optimization point, orange, to the hexagon from Figure 18 (A) causes a different point order for even
and odd layers (B).

 It should be noted that custom point, and all other point optimization strategies discussed in this

section, cannot create or modify points within the path. The defined custom point may be very close to

the path, but farther from an existing point on the path, but it cannot create a point on the path to serve

as the new start point. Figure 20 shows a square where the custom point is close to the side of the square,

but the algorithm must pick one of the four blue vertexes to be the start/stop point of the path. The

1680

orange created point shows the shortest distance from the optimization point to the path, but a point

does not exist at that location and cannot be created to use as a start point.

Figure 20: In this instance, a point along the line (shown as the orange created point), is the closest to the optimization point.
However, this point isn't one of the polygon vertices and therefore can't be used as the start/stop point. In this scenario, point A

will be the start/stop point.

 For many objects, after the first path has been ordered, the next closest point using the current

location yields the same result as the custom location point. This can be seen in Figure 8 and Figure 10a.

The pathing result for the interior path when using next closest and custom point is the same. However,

certain geometries can yield a different result based on the location of the custom point. Figure 21 shows

one such instance where the start point of the interior path would not be the same with custom point and

next closest. Similarly, the custom point strategy, unlike next closest, can be used to ensure that the

start/stop for an object always stays in the same location regardless of path modifiers being added.

Figure 21: In this instance, the current location is closer to B meaning that point B would be used for the next closest
optimization strategy. However, point A is closer to the optimization point and is therefore used for the custom point

optimization strategy.

1681

Clockwise and Counterclockwise
 For a closed-loop path, the order of the points along the path, called the winding order, is either

clockwise or counterclockwise. It can be useful to change the direction of the printing by adjusting the

order of the points so that the material flows in a different direction through corners and starts/stops.

This is a simple modification that takes the list of points and reverses the order as necessary, but does not

change which point is the start point. Figure 22 shows a square with clockwise and counterclockwise point

order.

Figure 22: A square illustrating clockwise and counterclockwise print directions (A). The resultant point order for the two print
directions (B). Note that point A remains the first point for both directions.

New Optimization Strategies Implementation
 The previous sections outlined a variety of optimization strategies for islands, paths, and points

and talked about how they are implemented or could be implemented. Some of these are available as

settings in various slicing packages, some are hard coded as the default operation, and others aren’t

available at all. To give users full control and flexibility with the optimization of their path planning, a new

implementation has been developed that encompasses all of the previous strategies and more. This

includes configurable island optimization strategy, region order, path optimization strategy, point

optimization strategy, and point direction (CW vs CCW). All of the following implementations are

immediately available via ORNL Slicer 2, an open-source slicing software developed by Oak Ridge National

Laboratory (ORNL) [27].

Region Order
The typical slicing approach generates pathing by region but doesn’t allow the user to define the

printing order for the regions. For example, Cura allows inside out and outside in, but that can create

confusion if multiple regions, such as skin and infill, exist on the same layer and are equidistant from the

center. A more robust and customizable solution allows a user to define the order of the regions as well

as individual optimization strategies for island order, path order, and point order. Figure 23 shows a list

box that allows the user to rearrange the path printing order. This setting has no impact on the order of

path generation, which still begins with perimeter and ends with infill, but instead impacts the order of

pathing when output to the g-code which ultimately defines the order of printing.

1682

Figure 23: A rearrangeable list of regions to configure the path printing order.

Island, Path, and Point Optimization
 The crux of the issue with most slicing implementations is a lack of customization and separation

for the optimization settings. For example, an inside out region order can’t be implemented with an

outside in path order because selecting inside out for these programs means printing paths and regions

from inside out. By separating region and path order so that paths are outside in and regions are inside

out, the amount of overfill in the center of the part can be minimized, but the outermost bead can still be

printed in the proper position to maintain geometric accuracy. Other combinations such as a custom start

stop point with a random path order or next closest path with next farthest point cannot be achieved.

These issues can all be overcome by adding more settings and user configuration such that

different strategies can simultaneously be applied to island, path, and point optimization. Figure 24 shows

the new implementation with the addition of drop-down settings menus for each of island order

optimization, path order optimization, and point order optimization. Island order optimization options

include next closest, next farthest, least recently visited, random, and custom point. Path order

optimization options include next closest, next farthest, random, outside in, inside out, and custom point.

Point order optimization strategies include next closest, next farthest, consecutive, random, and custom

point. For each of the optimization categories, a custom point X and Y value can be defined. With the point

optimization, a checkbox is available to enable a second custom point location. When two path points are

enabled, the first point is used for all odd numbered layers and the second point is used for all even

numbered layers. A setting is also available for the consecutive distance threshold for point optimization.

1683

Figure 24: List of settings for the new implementation of optimization strategies.

 The various custom point location settings allow the user to define an X and Y location within the

build area to use as the optimization point. While this is effective, it can be hard for some users to

understand where that point is in space with respect to the object being printed. To overcome this, a

visualization element has been added such that a small sphere appears within the build area that can be

positioned near the object (Figure 25). One sphere is available for each of the four optimization points:

island point (dark blue), path point (dark green), first path point (light blue), and second path point (light

green).

Figure 25: Hexagon object to be printed with four spherical optimization point markers positioned around the object.

 One new setting not previously mentioned also exists for the next closest optimization: minimum

distance threshold. The minimum distance is only available when the next closest path optimization

1684

strategy is being used, and it allows the user to define a minimum distance from the current distance to

start the next path. This is implemented by drawing a circle, with radius equal to the minimum distance

threshold, around the current position (typically the end point of the current path) and finding the next

closest point on the next path where the point is outside the circle. Figure 26 shows an example of the

minimum distance threshold where the next closest point falls within the threshold and is therefore not

used as the start point for the interior path.

Figure 26: A circular toolpath showing the implementation of minimum distance threshold.

Point Direction (CW vs CCW)
 The last missing optimization strategy is defining the print direction for closed loop paths. This is

particularly important for perimeters and insets, and less so for closed loop infill such as the concentric

pattern. By default, the order of points for a polygon boundary, the winding order, will be

counterclockwise. For an interior hole, the order will be clockwise. It can be desirable to change this order

to allow the material to extrude over the seam in a different direction. This is implemented by reversing

the list of points in the closed loop path so that they print in the opposite direction. To allow the user to

select this, two drop-down menus have been added: one for perimeters and one for insets (Figure 27).

The default is to print with the standard winding order, but an optimization to reverse the order is

available, and a third option exists to reverse the order on every other layer.

Figure 27: Drop-down menus for reversing the print direction on perimeters and insets.

Conclusion
 This paper reviews many of the common path optimization and ordering strategies available in

existing slicing packages such as inside out, custom point, CW vs CCW, and more. It also outlines some

fundamental additions to these strategies to add more versatility. While not all edge cases can be covered

1685

in path optimization due to the unlimited number of geometries that can be created for 3D printing, this

paper aims to cover all standard examples with a few of the more common edge cases.

 Further, an implementation was created, via the open-source slicing package ORNL Slicer 2, that

adds significant flexibility and capability improvements for the user to have complete control over path

ordering and optimization. This includes breaking out optimization strategies into three major categories:

island order optimization, path order optimization, and point order optimization. Each of these

optimization strategies comes with many options and some additional settings such as custom point

locations and a minimum distance threshold. The new implementation also adds a region order

optimization where the user can click and drag to rearrange the print order of the regions.

 All strategies implemented in this paper are designed to run as part of the slicing process. The

calculation for the optimizations is all automated, based purely on the geometry already within the slicer,

and requires no human input beyond defining slicing settings. The strategies are designed to work with

all geometries and not be limited to one-off use cases. The results of this work are immediately available

via GitHub.

Future Work
 This paper focused on defining a new approach to optimization settings within the slicing process.

Future work will focus on different implementations of these optimization approaches, including how the

different approaches can be combined to construct objects. This future work will also investigate how the

optimization strategies impact print time by modifying total path distance, with an emphasis on non-

extrusion path distance, called travel paths. Additional work will explore the impact of different

optimization approaches on heat distribution and cooling rate. Work will also look at the computational

expense of the strategies for various geometries.

References
1. Borish, Michael, et al. "Cross-Sectioning." Motion and Path Planning for Additive

Manufacturing (2023): 71.

2. Borish, Michael, et al. "Travels, optimizations, and ordering." Motion and Path Planning for

Additive Manufacturing (2023): 149.

3. “PRUSA3D/Prusaslicer: G-Code Generator for 3D Printers (RepRap, Makerbot, Ultimaker Etc..).”

GitHub, Prusa Research, github.com/prusa3d/PrusaSlicer. Accessed 10 Feb. 2024.

4. “Ultimaker/CuraEngine: Powerful, Fast and Robust Engine for Converting 3D Models into G-Code

Instructions for 3D Printers. It Is Part of the Larger Open Source Project Cura.” GitHub, Ultimaker,

github.com/Ultimaker/CuraEngine. Accessed 10 Feb. 2024.

5. Li, Bai, Kexin Wang, and Zhijiang Shao. "Time-optimal trajectory planning for tractor-trailer

vehicles via simultaneous dynamic optimization." 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2015.

6. Li, Bai, and Zhijiang Shao. "An incremental strategy for tractor-trailer vehicle global trajectory

optimization in the presence of obstacles." 2015 IEEE International Conference on Robotics and

Biomimetics (ROBIO). IEEE, 2015.

7. Li, Bai, et al. "Optimization-based maneuver planning for a tractor-trailer vehicle in a curvy tunnel:

A weak reliance on sampling and search." IEEE Robotics and Automation Letters 7.2 (2021):

706-713.

1686

8. Oliveira, Rui, et al. "Optimization-based on-road path planning for articulated vehicles." IFAC-

PapersOnLine 53.2 (2020): 15572-15579.

9. Liang, Chuandong, et al. "Multi-node path planning of electric tractor based on improved whale

optimization algorithm and ant colony algorithm." Agriculture 13.3 (2023): 586.

10. Wang, Liang, et al. "Path tracking control of an autonomous tractor using improved Stanley

controller optimized with multiple-population genetic algorithm." Actuators. Vol. 11. No. 1. MDPI,

2022.

11. Zhao, Xin, et al. "An obstacle avoidance path planner for an autonomous tractor using the

minimum snap algorithm." Computers and Electronics in Agriculture 207 (2023): 107738.

12. Han, Xiao, Yanliang Lai, and Huarui Wu. "A path optimization algorithm for multiple unmanned

tractors in peach orchard management." Agronomy 12.4 (2022): 856.

13. Dreifus, Gregory, et al. "Path optimization along lattices in additive manufacturing using the

chinese postman problem." 3D Printing and Additive Manufacturing 4.2 (2017): 98-104.

14. Kim, Seokpum, et al. Graded infill structure of wind turbine blade accounting for internal stress in

big area additive manufacturing. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United

States), 2018.

15. Lechowicz, Piotr, et al. "Path optimization in 3D printer: algorithms and experimentation

system." 2016 4th International Symposium on Computational and Business Intelligence (ISCBI).

IEEE, 2016.

16. Ma, Zongfang, et al. "an approach of path optimization algorithm for 3D concrete printing based

on graph theory." Applied Sciences 12.22 (2022): 11315.

17. Fok, Kai-Yin, et al. "An ACO-based tool-path optimizer for 3-D printing applications." IEEE

Transactions on Industrial Informatics 15.4 (2018): 2277-2287.

18. Fok, Kai-Yin, et al. "Accelerating 3D printing process using an extended ant colony optimization

algorithm." 2018 IEEE international symposium on circuits and systems (ISCAS). IEEE, 2018.

19. Cheong, Kah Jun. Path Optimization For Cooperative Multi-Head 3d Printing. Diss. UTAR, 2020.

20. Hashim, Saipul Azmi Mohd, Mohd Zaki Abdul Manap, and Mohd Kamarul Ariffin Salaudin.

"OPTIMIZATION IN CONTROLLING EXTRUDATE SWELL 3D PRINTING OF TISSUE

ENGINEERING SCAFFOLD USING ANT COLONY OPTIMIZATION." Young 25: 3.

21. Sridhar, Sundarraj, et al. "A bioinspired optimization strategy: to minimize the travel segment of

the nozzle to accelerate the fused deposition modeling process." Bulletin of the Polish Academy

of Sciences. Technical Sciences 71.4 (2023).

22. Liu, Hao, et al. "Minimizing the number of transitions of 3d printing nozzles using a traveling-

salesman-problem optimization model." International Journal of Precision Engineering and

Manufacturing 22 (2021): 1617-1637.

23. Dong, Yuwei, and Bo Hu. "Optimized Control Method for Fused Deposition 3D Printing Slice

Contour Path Based on Improved Hopfield Neural Network." Applied Artificial Intelligence 37.1

(2023): 2219946.

24. “3D Printing Market: 10 Million 3D Printers to Sold by 2030 Thanks to Declining Cost and

Advancing Technology.” GlobeNewswire News Room, SkyQuest Technology Consulting Pvt.

Ltd., 8 Aug. 2022, www.globenewswire.com/en/news-release/2022/08/08/2494063/0/en/3D-

printing-Market-10-million-3D-Printers-to-Sold-by-2030-Thanks-to-Declining-Cost-and-Advancing-

Technology.html.

25. Furqan, Mhd, Rifki Mahsyaf Adha, and A. Armansyah. "Determination of The Closest Path Using

The Greedy Algorithm." IJISTECH (International Journal of Information System and

Technology) 7.5 (2024): 333-340.

26. Tao, Yufei, et al. "An efficient cost model for optimization of nearest neighbor search in low and

medium dimensional spaces." IEEE Transactions on Knowledge and Data Engineering 16.10

(2004): 1169-1184.

27. Roschli, Alex, Borish, Michael, Barnes, Abigail, Wade, Charles, Crockett, Breanne, White, Liam,

and Adkins, Cameron. ORNL Slicer 2 - Open Source Copyright. Computer Software.

https://github.com/ORNLSlicer/Slicer-2. USDOE Office of Energy Efficiency and Renewable

1687

http://www.globenewswire.com/en/news-release/2022/08/08/2494063/0/en/3D-printing-Market-10-million-3D-Printers-to-Sold-by-2030-Thanks-to-Declining-Cost-and-Advancing-Technology.html
http://www.globenewswire.com/en/news-release/2022/08/08/2494063/0/en/3D-printing-Market-10-million-3D-Printers-to-Sold-by-2030-Thanks-to-Declining-Cost-and-Advancing-Technology.html
http://www.globenewswire.com/en/news-release/2022/08/08/2494063/0/en/3D-printing-Market-10-million-3D-Printers-to-Sold-by-2030-Thanks-to-Declining-Cost-and-Advancing-Technology.html
https://github.com/ORNLSlicer/Slicer-2

Energy (EERE), Energy Efficiency Office. Advanced Materials & Manufacturing Technologies

Office (AMMTO). 06 May. 2024. Web. doi:10.11578/dc.20240520.1.

1688

