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Abstract 

Extrusion-based additive manufacturing processes begin with a software program, called a slicer, that 

generates layer geometry and fits toolpaths to each layer to define where material is to be extruded or 

deposited. Before the toolpaths are output as g-code for the additive manufacturing system to execute, 

the toolpaths should be optimized. Many complex optimization approaches using graph theory, Chinese 

postman problem, and other complex mathematical models exist, but these approaches are rarely used 

in daily printing operations and are not available through common slicing programs such as Cura and 

PrusaSlicer. Instead, path planning and optimization typically revolves around simpler, fully automated 

approaches such as inside out and next closest. This paper will explore the fundamental optimization 

strategies for toolpath planning and document a new implementation, available via open-source slicing 

software, that allows for greater control of the path planning process. 
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Introduction 
Slicing is the title given to the entire software process of going from a CAD (computer aided 

design) model to g-code instructions that a 3D printer can read and execute to build a part. This title is 

given even though slicing is just one step of the process, and often one of the fastest computational steps. 

The slicing step is where the CAD model is “sliced” into layers through a process called cross-sectioning 

[1]. After the slicing step, toolpaths are fit to the layer, then optimization steps are applied to order the 

printing operations. Finally, the toolpaths are converted to g-code instructions formatted specifically for 

the machine that will read and execute the g-code. 

The optimization step can be broken down into many parts including ordering and travel insertion 

[2]. Simple strategies for ordering allow definition of the start and stop position on the outermost path, 

called the seam, and path order such as inside out or outside in. Prusa Slicer, a common open-source slicer 

[3], allows for seam optimization including random, aligned, nearest, rear, and user defined via a UI 
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painting tool. Cura, another common open-source slicer [4], also allows similar seam optimization settings 

and adds a custom point path optimization strategy applicable to first path of the layer.  

 Advanced optimization strategies for path planning have been popular topic of research for years 

in the truck driving industry [5-8] and for guiding tractors around farms [9-12]. However, additive 

manufacturing is a relatively young industry, and the slicing and toolpathing operations are not well 

researched or documented at this time including the standard path optimization strategies. However, 

there is some university research showcasing advanced mathematical approaches for path optimization. 

Dreifus showed the application of the Chinese Postman Problem (CPP) to create pathing along a lattice 

that minimized print time [13]. Kim applied a complex stress analysis to generate a graded infill structure 

and traversed the pathing using CPP [14]. Lechowicz proposed two hybrid path optimization strategies: 

Greedy Two Opt and Greedy Annealing to reduce path length and decrease print time for 3D printing [15]. 

Many authors used an ant colony algorithm to optimize pathing and reduce print time [16-21] whereas 

Liu used the traveling salesman approach [22]. Dong showcases the use of a Hopfield Neural Network for 

filament-based printing [23] 

 What all of these optimization and pathing approaches have in common is that none of them are 

in use outside of university and research environments. Industrial manufacturing environments and other 

end users don’t make use of these advanced pathing strategies because of the complexity of 

implementation and the limited use cases. Millions of desktop 3D printers are in use [24], but none of the 

software programs including Cura, PrusaSlicer, Simplify3D, KiSSSlicer, MatterControl, and OrcaSlicer 

include any means of path optimization or planning based on graph theory, traveling salesman, Chinese 

Postman, ant colony, or any other complex mathematical model.  

 Some of these strategies may be computationally efficient and only add negligible time to the 

slicing process for an average geometry, but the easy ability to make use of them still hasn’t been 

implemented commercially or transitioned to industry. Instead, these slicing programs and users rely on 

much simpler algorithms that are calculated efficiently and effectively for a wide variety of geometries. 

This paper will explore these fundamental, automated optimization and path planning strategies, then 

show a restructuring and new implementation, via open-source software, that allows users more control 

of the path planning process. This new implementation is in use today in industrial environments and 

seeing commercial adoption. 

Creating Toolpaths for a Layer 
 When a mesh, typically an STL for 3D printing applications, is sliced into layers, a polygon is 

generated to represent the bounds of the layer. Complex geometries can create multiple distinct printable 

areas within a layer, each represented by a separate polygon called an island. Multiple islands also occur 

when multiple parts are printed at one time. Once the islands, or island, for a layer have been found, 

toolpaths can be fit to each island within the layer. 

 The toolpath creation process for an island is done by toolpath region. The most common regions 

are perimeter, inset, skin, infill, skeleton, and support. Not all regions are used on each print, and not each 

region will have toolpaths on each layer. A region can and often will have multiple paths for the same 

layer. Perimeter and inset always generate closed-loop paths, which is a path that has the same start and 

end point. Skeleton paths are always open loop, meaning a path that has different start and end points. 
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Infill, skin, and support can generate both open loop and closed-loop paths depending on the slice 

settings. 

Optimizing the Layer 
 Once the paths are planned for every region in every island, optimization strategies can be 

implemented to define how to execute the paths. These optimization strategies can be divided into three 

main categories including ordering of the islands, ordering of the paths within the regions, and ordering 

of the points within the paths. Ordering of the regions within the islands is also something that can be 

modified, but no slicer currently offers anything beyond outside in and inside out. This is partly because 

some slicers don’t separate paths by regions, and because some slicers treat path and region optimization 

as the same optimization by applying the same strategy to each. Because of this, ordering of the regions 

will not be a sub-section and will instead be discussed in more detail in the next section, where a new 

solution based on user preference will be introduced. The following sub-sections will define the existing 

optimization strategies for the three main categories and introduce a few other strategies that can easily 

be applied. 

Island Optimization Strategies 
 The first optimization strategy is to determine the order of the islands. Optimization strategies for 

islands include next closest, next farthest, random, custom location, and least recently visited. With the 

exception of least recently visited, these strategies are shared with path optimization strategies and will 

be defined in the next section.  

Least recently visited is useful for thermal processes to help evenly distribute heat among all 

islands by always going to the least recently visited island, which would typically imply going to the coldest 

island for processes that involve deposition of hot material. When a new island appears, typically when 

an existing island splits into multiple islands, this new island is at the beginning of the list and gets printed 

first. More robust implementations can detect an island splitting into multiple islands and keep the new 

islands at the same order as the original island. Because island order optimization isn’t necessary for a lot 

of builds, and because the optimization strategies are shared with the path optimization strategies, the 

remainder of this paper will focus on single island optimization strategies for both path order and point 

order. 

Path Optimization Strategies 
 There exist several common path optimization strategies which serve to define the order of the 

paths within a region. Typically, slicers order paths in one of two ways: outside in and inside out. Other 

methods of optimization include random, next closest, next farthest, and custom point. The following 

path optimization strategies will share a common region order: perimeter, inset, infill, and skeleton. 

Outside In and Inside Out 
 Outside in and inside out are very simple strategies that work as expected. For outside in, paths 

on the outer edge of the region are printed first, then the next path towards the center of the layer is 

printed and so on until all paths within the region are printed. For instances when multiple paths exist 

towards the center, the path closest to the current path is printed next. Inside out is simply the opposite, 

the path within the region that is closest to the center of the layer is printed first and then the next path 
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outwards is printed next and so on. Figure 1 shows the toolpathing for a square with perimeter (dark 

blue), inset (light blue), and infill (green) paths printed outside in and inside out.  

 

Figure 1: A square shape showing outside in (A) and inside out (B) pathing. The numbers indicate the print order for the paths. 

 Notice that Figure 1b, inside out, still prints the three perimeter contours first rather than infill 

first. The layer itself isn’t being printed inside out, just the paths within each region. For some slicing 

packages, selecting inside out forces not only paths but also regions to be printed inside out; however, 

this section is focusing on path optimization on a per-region basis. An upcoming section will talk about 

the potential to re-order the regions to allow for all regions and paths to be printed inside out. 

Outside in and inside out get more complicated for objects that have multiple “outsides”. Take 

for example the hollow square shape shown in Figure 2a. For a configuration with just perimeter and infill 

paths, the typical implementation of outside in starts by printing the outermost square perimeter and 

working inwards toward the infill. Next, the pathing does the outermost perimeter for the inner square 

and begins working inward. Finally, the infill is printed. This pathing is illustrated in Figure 2b. 
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Figure 2: A hollow square (A) and the resultant pathing from outside in (B). 

 The path ordering from Figure 2 changes if the regions for the closed contours changes. In Figure 

2, all closed contours are perimeters (dark blue). If the pathing is implemented with perimeters and insets 

(light blue), the order changes so that all of the perimeter paths are printed first and then the inset paths 

are printed (Figure 3). This is because the paths for one region, perimeters, are printed and then the paths 

for the next region are printed. The motivation for making the inner closed contours insets rather than 

perimeters is to print these insets with different parameters, typically a faster speed, than the perimeter 

contours which will be exposed. 

 

Figure 3: Changing the third perimeter in Figure 2B to an inset alters the printing order. 

 While outside in and inside out seem quite simple, many complex edge cases can be encountered 

that make it complicated to determine which path to print next. For example, the figure-eight shape 

shown in Figure 4a has two closed contours (A&B) inside of the large outermost closed contour. After 
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printing the outermost contour, both remaining interior contours are equally close to the center of the 

layer. To decide which contour to print next, a next closest calculation is implemented to select the closer 

path to print followed by the remaining path. The distance to point A is less than the distance to point B, 

so path A gets printed first (Figure 4b). 

 

Figure 4: Figure eight shaping pathing where both interior perimeters are equal distance from the center (A), and the next 
closest calculation to determine whether path A or path B is printed next (B). 

 Outside in and inside out pathing are used depending on the needed geometric accuracy. For 

example, outside in is used when the geometric accuracy of the outer bounds is most important. The 

downside of this approach is that while printing moves toward the centroid, any excess extrusion has 

nowhere to go and ultimately causes overfilling that exceeds the top of the layer as seen in Figure 5. 

 

Figure 5: A 25mm square printed concentrically from outside in causing center overfill (A), and the same 25mm square printed 
inside out (B). Notice that the outside in version has clean outer lines but appears rough in the center while the inside out version 

is rough on the outer lines and smooth in the center. 

 Inside out isn’t as likely to have the bulging and overfill issue seen in Figure 5 because excess 

material can be pushed outwards. However, because excess material is pushed out, the result can cause 

the outermost perimeter bead to miss the defined outer boundary of the layer. Figure 6 shows a 

measurement of the outer dimensions for both outside in and inside out pathing for the same shape. 
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Figure 6: A 25mm square printed outside in (left) and inside out (right). Notice that the outside in square (left) perfectly matches 
the dimensions while the inside out version (right) is oversized because of the material being pushed outward during printing. 

Random Path Optimization 
Random path optimization is exactly like it sounds paths placed in an unspecific, unrepeatable 

order. Once the toolpaths are created for a layer, an algorithm is used to randomly order the paths. The 

benefit of this strategy is that it helps prevent buildup issues from one layer to the next by causing paths 

to print in a different order each time. Because of the bulging of beads mentioned during Outside In and 

Inside Out, the space where a path lies during random optimization can slightly shift and therefore have 

a higher chance of success. The downside is that material properties can be inconsistent from the random 

distribution of paths that causes a random distribution of heat. Figure 7 shows a random path order for 

the same toolpaths seen in Figure 1. 

 

Figure 7: A square shape where the paths within each region are randomly ordered. 
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Next Closest 
As the name implies, the next closest path optimization works by finding the closest path to the 

current location. This is often done with a Greedy Algorithm [25] to speed up the computation time. At 

the beginning of a build, the current location is assumed to be the origin of the workspace, though a 

custom point can be defined which will be explained in a further section. Once a path has been printed, 

the end point of the path is used as the current location for the purposes of calculating the next closest 

path.  

Two different methods of calculating the next closest can be used. A point-to-point calculation 

can be used to compare the current location to every point on every remaining path, ultimately defining 

the path with the closest point as the next path. That closest point isn’t necessarily used as the starting 

point for the next path, which will be explained in the next section. The second method involves creating 

a convex hull from each remaining path such that the center of the hull can be used to calculate a distance 

from the current point. The path with the shortest distance from center point to current location is chosen 

as the next path. The issue with the latter implementation is that concentric paths may generate a convex 

hull with the same center point. When this happens, a different calculation must be used to determine 

which path to print. This often means using the first calculation method of comparing every point on each 

path to the current location. Figure 8 shows the next closest path implementation for the same paths in 

Figure 1, using a next closest implementation based on comparing all remaining points on all remaining 

paths. 

 

Figure 8: Next closest path optimization for a square. 

The path order shown in Figure 8 is identical to that of Figure 1a. This is because the outside in 

and inside out pathing optimizations use a next closest calculation to find the next path when moving 

towards or away from the center of the part. By using outside in and inside out, the user can define which 

direction to order the pathing. Certain implementations of next closest pathing can also be used to ignore 

region order and instead find the next closest path of any type within the layer. 
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Next Farthest 
In contrast to the next closest strategy is the next farthest strategy. Next farthest is implemented 

using the same Greedy Algorithm calculations as next closest but instead selects the path or point along 

a path that generates the largest distance [26]. Next farthest isn’t often used, but it is helpful for systems 

where the material being deposited needs time to cool and solidify before another bead is printed 

alongside. The result of implementing the next farthest optimization can be seen in Figure 9. 

 

Figure 9: Next farthest path ordering for a square. 

Custom Point 
The last path optimization strategy is the custom point method. This approach requires the user 

to define a custom point, typically just an X and Y location, as the location to feed into the next closest 

algorithm rather than the current location. After each path is completed, the next closest path to the 

optimization point is calculated and printed. Figure 10 shows the result of two different custom point 

optimizations for the same toolpaths used in Figure 1. Notice that the second implementation, Figure 10b, 

causes the perimeter to print inside out and the insets to print outside in. 
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Figure 10: Two scenarios for custom point path order optimization. 

Point Optimization Strategies 
 There exist several common point optimization strategies which are implemented to define the 

start point of the path. These optimization strategies are sometimes referred to as seam selection or seam 

optimization because they are used to define where the seam is on the exterior of the part. The seam is 

typically the name given for the start/stop point on the outermost path which can visibly be seen as a 

minor defect.  

 For closed-loop paths, the point optimization strategies can also be used to define the order of 

the points within the path, or the direction of traversal. Because open loop paths have two distinct ends, 

the optimization strategies are used to determine which end point is the start point, but traversal direction 

cannot be modified. The following sections will define point optimization strategies that can be used to 

determine start point and point order. 

Next Closest and Next Farthest 
 These two strategies were previously defined for path optimization, but a similar implementation 

can also be used for determining the start point. For an open-loop path, the implementation works by 

comparing the current location to the two end points of the open loop path that is next in the path order. 

Whichever end point is closer, or farther depending on whether next closest or next farthest is being 

implemented, is selected as the start point. This may result in the list of points for the path being printed 

in their existing order, or it may require the list of points to be reversed. Figure 11a shows the 

implementation for an open-loop path inside of a closed-loop path. In this scenario, point A is used for 

next closest, and C is used for next farthest. Figure 11b shows how the order of points changes for the 

open-loop path based on using next closest or next farthest. 
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Figure 11: Finding the point order for a red skeleton path inside a blue closed loop path (A) and showing how the order of points 
changes based on the distance calculation (B). 

 For a closed-loop path, the distance is calculated between the current point and all points on the 

next closed-loop path. Whichever point is determined to be the shortest distance, or farthest distance if 

using the next farthest implementation, becomes the start point. Programmatically, this can be 

implemented by rotating the list or array of points that define the path so that the desired start point is 

the first item in the array. The order of points in the path is not changed during this rotation. Additional 

modifications can be used such as clockwise versus counterclockwise to change the order of points and 

will be discussed in an upcoming section. Figure 12a shows the implementation for a closed-loop path 

nested within another closed-loop path. The outer path is calculated and printed first, and then the start 

point for the nested closed-loop path can be defined. Figure 12b shows how the order of points changes 

for each implementation. 

 

Figure 12: A red closed loop contour is added inside the outer blue contour (A). To find the start point using shortest distance, 
the distance from each point on the red contour to the current location is calculated. The distance B is shortest, so that point 

becomes first in the print order (B). 
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 The previous examples assume that the start and end point of the path are the same point, shown 

as the current location. However, thermoplastic pellet extrusion systems often implement path modifiers, 

such as tip wipes, that add additional moves to the end of the path such that the end point is not shared 

with the start point [2]. This could cause the point optimization to move to a different vertex on each path 

because the end point of the tip wipe, rather than the end point of the print path, is used for the next 

closest calculation. Figure 13 adds a pink tip wipe to the blue outer contour causing the current location 

to be altered which generates a new result for next closest. 

 

Figure 13: Adding a pink tip wipe to the paths from Figure 12 causes the shortest distance calculation to change. 

Random 
 As previously defined in the path order optimization, random optimizations work by arbitrarily 

selecting an index among the list of available points. For point order optimization, this means randomly 

selecting a point along the path to be the first point of the path. Programmatically, this is implemented 

by randomly selecting an index in the array of points on the path, then rotating the array until the 

randomly selected point is the first index of the array. The random point optimization doesn’t change the 

direction of the printing, or the order of the points, it just modifies where the path starts and ends printing. 

Figure 14 shows the random path optimization applied to an object with many vertices. 
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Figure 14: An eight-sided polygon with labeled start points (A). Point A is initially designated the start point, but point E gets 
randomly selected as the first point. This table shows the updated point order (B). 

 The advantage of random ordering is that the seam is constantly moving to a new location which 

helps distribute the weak interface created by the seam. The downside is that the seam isn’t quite as 

hidden since it’s distributed everywhere and visible from every angle. This effect is more drastic on round 

objects where a corner isn’t available to help hide the seam. Figure 15 shows a cylinder shape with random 

seam optimization. 

 

Figure 15: FDM printed cylinder with random seams showing like "zits" around the exterior surface. 

Consecutive 
 The consecutive point order is helpful for objects that have the same or similar layer geometries 

from one layer to the next because it allows the start point to move or rotate among vertexes layer to 

layer. For example, a hexagon could be configured so that each layer starts from a different vertex. With 

a hexagon, as shown in Figure 16, this could mean starting layer 1 at vertex A, layer 2 at vertex B, and so 

on until layer 7 is back to vertex A.  
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Figure 16: A hexagon using consecutive start point (A) to rotate among the start points from layer to layer (B). 

 The amount of distance to move/rotate along the path from layer to layer can be a user 

configurable setting so that each layer doesn’t move to the next vertex. The rotation could instead skip 1 

or more vertices. For more complex objects, this rotation distance could be configured as a minimum 

distance so that it’s not necessarily jumping by the same number of vertices each time, and instead it is 

moving a set distance away from the previous object. Figure 17 shows an example of a complex polygon 

where the minimum consecutive rotation distance means moving by a different number of vertices each 

time. 

 

Figure 17: An eight-sided polygon with distances shown for the length of each side (A). The resulting start point for each layer 
based on a consecutive point minimum rotation distance of 4 (B). 

Custom Point 
 The custom point implementation uses the next closest implementation, but the current location 

used for the distance calculation is replaced by a user defined point such that after every path, the point 

on the next path closest to the optimization point is selected as the start point. The custom point location 

can be defined as an X/Y value via textbox. The custom point approach is often used to define the seam 

as being in one certain area of the part for the entire build, ideally somewhere that is less noticeable or 
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hidden. Figure 18 shows custom point being implemented on a hexagon shape to define the start point 

of the first path of the layer. 

 

Figure 18: The blue outer contour of a hexagon with a green optimization point showing the basis for the distance calculation to 
be used for the next closest algorithm (A). The black dashed lines represent the distance to each point from the optimization point. 
The table shows the original point order and the updated order based on the optimization point (B). 

 The custom point approach can be implemented with two user defined custom points to allow 

the start/stop point to alternate between two locations from layer to layer. This is useful for situations 

where the continued buildup of material at the seam could cause a print failure on a long build. It is also 

helpful to distribute the weak joint caused by the seam to two separate locations. Figure 19 shows the 

hexagon from Figure 18 with a second optimization point added. In this scenario, the first optimization 

point is used for all odd numbered layers, and the second point is used for all even numbered layers. 

 

Figure 19: Adding a second optimization point, orange, to the hexagon from Figure 18 (A) causes a different point order for even 
and odd layers (B). 

 It should be noted that custom point, and all other point optimization strategies discussed in this 

section, cannot create or modify points within the path. The defined custom point may be very close to 

the path, but farther from an existing point on the path, but it cannot create a point on the path to serve 

as the new start point. Figure 20 shows a square where the custom point is close to the side of the square, 

but the algorithm must pick one of the four blue vertexes to be the start/stop point of the path. The 
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orange created point shows the shortest distance from the optimization point to the path, but a point 

does not exist at that location and cannot be created to use as a start point. 

 

Figure 20: In this instance, a point along the line (shown as the orange created point), is the closest to the optimization point. 
However, this point isn't one of the polygon vertices and therefore can't be used as the start/stop point. In this scenario, point A 

will be the start/stop point. 

 

 For many objects, after the first path has been ordered, the next closest point using the current 

location yields the same result as the custom location point. This can be seen in Figure 8 and Figure 10a. 

The pathing result for the interior path when using next closest and custom point is the same. However, 

certain geometries can yield a different result based on the location of the custom point. Figure 21 shows 

one such instance where the start point of the interior path would not be the same with custom point and 

next closest. Similarly, the custom point strategy, unlike next closest, can be used to ensure that the 

start/stop for an object always stays in the same location regardless of path modifiers being added. 

 

Figure 21: In this instance, the current location is closer to B meaning that point B would be used for the next closest 
optimization strategy. However, point A is closer to the optimization point and is therefore used for the custom point 

optimization strategy. 
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Clockwise and Counterclockwise 
 For a closed-loop path, the order of the points along the path, called the winding order, is either 

clockwise or counterclockwise. It can be useful to change the direction of the printing by adjusting the 

order of the points so that the material flows in a different direction through corners and starts/stops. 

This is a simple modification that takes the list of points and reverses the order as necessary, but does not 

change which point is the start point. Figure 22 shows a square with clockwise and counterclockwise point 

order. 

 

Figure 22: A square illustrating clockwise and counterclockwise print directions (A). The resultant point order for the two print 
directions (B). Note that point A remains the first point for both directions. 

New Optimization Strategies Implementation 
 The previous sections outlined a variety of optimization strategies for islands, paths, and points 

and talked about how they are implemented or could be implemented. Some of these are available as 

settings in various slicing packages, some are hard coded as the default operation, and others aren’t 

available at all. To give users full control and flexibility with the optimization of their path planning, a new 

implementation has been developed that encompasses all of the previous strategies and more. This 

includes configurable island optimization strategy, region order, path optimization strategy, point 

optimization strategy, and point direction (CW vs CCW). All of the following implementations are 

immediately available via ORNL Slicer 2, an open-source slicing software developed by Oak Ridge National 

Laboratory (ORNL) [27]. 

Region Order 
The typical slicing approach generates pathing by region but doesn’t allow the user to define the 

printing order for the regions. For example, Cura allows inside out and outside in, but that can create 

confusion if multiple regions, such as skin and infill, exist on the same layer and are equidistant from the 

center. A more robust and customizable solution allows a user to define the order of the regions as well 

as individual optimization strategies for island order, path order, and point order. Figure 23 shows a list 

box that allows the user to rearrange the path printing order. This setting has no impact on the order of 

path generation, which still begins with perimeter and ends with infill, but instead impacts the order of 

pathing when output to the g-code which ultimately defines the order of printing. 
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Figure 23: A rearrangeable list of regions to configure the path printing order. 

Island, Path, and Point Optimization 
 The crux of the issue with most slicing implementations is a lack of customization and separation 

for the optimization settings. For example, an inside out region order can’t be implemented with an 

outside in path order because selecting inside out for these programs means printing paths and regions 

from inside out. By separating region and path order so that paths are outside in and regions are inside 

out, the amount of overfill in the center of the part can be minimized, but the outermost bead can still be 

printed in the proper position to maintain geometric accuracy. Other combinations such as a custom start 

stop point with a random path order or next closest path with next farthest point cannot be achieved. 

These issues can all be overcome by adding more settings and user configuration such that 

different strategies can simultaneously be applied to island, path, and point optimization. Figure 24 shows 

the new implementation with the addition of drop-down settings menus for each of island order 

optimization, path order optimization, and point order optimization. Island order optimization options 

include next closest, next farthest, least recently visited, random, and custom point. Path order 

optimization options include next closest, next farthest, random, outside in, inside out, and custom point. 

Point order optimization strategies include next closest, next farthest, consecutive, random, and custom 

point. For each of the optimization categories, a custom point X and Y value can be defined. With the point 

optimization, a checkbox is available to enable a second custom point location. When two path points are 

enabled, the first point is used for all odd numbered layers and the second point is used for all even 

numbered layers. A setting is also available for the consecutive distance threshold for point optimization. 
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Figure 24: List of settings for the new implementation of optimization strategies. 

 The various custom point location settings allow the user to define an X and Y location within the 

build area to use as the optimization point. While this is effective, it can be hard for some users to 

understand where that point is in space with respect to the object being printed. To overcome this, a 

visualization element has been added such that a small sphere appears within the build area that can be 

positioned near the object (Figure 25). One sphere is available for each of the four optimization points: 

island point (dark blue), path point (dark green), first path point (light blue), and second path point (light 

green). 

 

Figure 25: Hexagon object to be printed with four spherical optimization point markers positioned around the object. 

 One new setting not previously mentioned also exists for the next closest optimization: minimum 

distance threshold. The minimum distance is only available when the next closest path optimization 
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strategy is being used, and it allows the user to define a minimum distance from the current distance to 

start the next path. This is implemented by drawing a circle, with radius equal to the minimum distance 

threshold, around the current position (typically the end point of the current path) and finding the next 

closest point on the next path where the point is outside the circle. Figure 26 shows an example of the 

minimum distance threshold where the next closest point falls within the threshold and is therefore not 

used as the start point for the interior path. 

 

Figure 26: A circular toolpath showing the implementation of minimum distance threshold. 

Point Direction (CW vs CCW) 
 The last missing optimization strategy is defining the print direction for closed loop paths. This is 

particularly important for perimeters and insets, and less so for closed loop infill such as the concentric 

pattern. By default, the order of points for a polygon boundary, the winding order, will be 

counterclockwise. For an interior hole, the order will be clockwise. It can be desirable to change this order 

to allow the material to extrude over the seam in a different direction. This is implemented by reversing 

the list of points in the closed loop path so that they print in the opposite direction. To allow the user to 

select this, two drop-down menus have been added: one for perimeters and one for insets (Figure 27). 

The default is to print with the standard winding order, but an optimization to reverse the order is 

available, and a third option exists to reverse the order on every other layer. 

 

Figure 27: Drop-down menus for reversing the print direction on perimeters and insets. 

Conclusion 
 This paper reviews many of the common path optimization and ordering strategies available in 

existing slicing packages such as inside out, custom point, CW vs CCW, and more. It also outlines some 

fundamental additions to these strategies to add more versatility. While not all edge cases can be covered 
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in path optimization due to the unlimited number of geometries that can be created for 3D printing, this 

paper aims to cover all standard examples with a few of the more common edge cases.  

 Further, an implementation was created, via the open-source slicing package ORNL Slicer 2, that 

adds significant flexibility and capability improvements for the user to have complete control over path 

ordering and optimization. This includes breaking out optimization strategies into three major categories: 

island order optimization, path order optimization, and point order optimization. Each of these 

optimization strategies comes with many options and some additional settings such as custom point 

locations and a minimum distance threshold. The new implementation also adds a region order 

optimization where the user can click and drag to rearrange the print order of the regions. 

 All strategies implemented in this paper are designed to run as part of the slicing process. The 

calculation for the optimizations is all automated, based purely on the geometry already within the slicer, 

and requires no human input beyond defining slicing settings. The strategies are designed to work with 

all geometries and not be limited to one-off use cases. The results of this work are immediately available 

via GitHub. 

Future Work 
 This paper focused on defining a new approach to optimization settings within the slicing process. 

Future work will focus on different implementations of these optimization approaches, including how the 

different approaches can be combined to construct objects. This future work will also investigate how the 

optimization strategies impact print time by modifying total path distance, with an emphasis on non-

extrusion path distance, called travel paths. Additional work will explore the impact of different 

optimization approaches on heat distribution and cooling rate. Work will also look at the computational 

expense of the strategies for various geometries. 
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