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Abstract 

Metal Additive Manufacturing (AM) is poised to revolutionize industrial production but 

faces challenges in scaling to large-scale operations due to the complexity of managing part quality 

for top-tier component production. Advanced in-process monitoring techniques not only track AM 

process stability for quality control, but also provide datasets crucial for enhancing material, 

process, and product development and optimizing supply chains. Yet, real-time integration and 

processing of this multivariate data for feedback control and process optimization remains 

challenging. To address these issues, the NIST AM Data Integration Testbench was developed, 

utilizing an ISA-95-based framework, to facilitate secured data integration and sharing, 

manufacturing intelligence, and decision-making. This platform includes in-situ monitoring 

emulators, high-speed data streaming, automated metadata curation, and cloud-based data 

archiving, alongside an open edge-computing system for real-time data analysis and a 

Manufacturing Execution System (MES) to support AM industrialization and improve efficiency 

and part quality. 

1. Introduction

Metal Additive Manufacturing (AM) is promising for transforming industrial production 

processes. Despite advances over the past decade, it has yet to reach widespread production using 

AM technology. To qualify the production of top-tier components, advanced in-process 

monitoring techniques are applied to meticulously track the stability of AM processes. These 

techniques not only enable timely control measures to ensure the part quality, but also provide 

valuable datasets to advance AM technology and optimize supply chain efficiency. However, 

integrating and managing high-speed, high-volume AM in-process data during production is 

challenging and predominantly done manually after the build processes are complete. Processing 

multivariate, multi-modality, and high-dimensional in-process observations in real-time is even 

more difficult for feedback control. In addition, there is a growing demand to integrate processes 

and systems with manufacturing operations, enterprise applications, and supply chain management 

for scaling up the AM technology. To address these challenges, both industrial practitioners and 

researchers from academic or government institutes are working on AM integration standards, 
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advanced in-process data analytics, and data management methods. However, the applications are 

rarely reported, and standard practices have not been established and shared due to a lack of a test 

platform to measure and validate the effectiveness of the information models, monitoring and 

control algorithms, and integration methods [1].   

 

The NIST team has leveraged the ISA 95 model and developed a 3-level reference 

integration architecture that identifies the key components and major information flows for AM 

industrialization [2].  Provisions of common functions, standardized integration methods, and 

information models minimize engineering costs, shortens time-to-market, and increases flexibility 

[3]. A lot of AM systems are equipped with connectivity for integration and support industrial 

automation. While most of the integrations are proprietary, few vendors adopt standard protocols 

such as OPC-UA, RESTful and MQTT, etc. Data-driven solutions are also emerging to monitor 

the process stability and part quality in real-time. The AM software industry offers real-time 

advanced data analytics for detailed process insights and enhanced factory monitoring. In parallel, 

academia has been committed to developing sophisticated machine learning algorithms for AM 

process anomaly detection and part quality estimation. Unfortunately, most of the results are 

validated offline and lack implement ability for on-the-fly applications. For example, the 

computation requirements of deep learning-based melt-pool anomaly detection make it 

challenging for implementation due to the high speed. The NIST AM Data Integration Testbench 

is proposed and developed for AM researchers and practitioners to explore and validate various 

data integration strategies and the computational feasibility for real-time data analytics algorithms.  

 

In addition to manufacturing operations, the integration of AM data and the means for data 

availability through the development lifecycle play a crucial role in advancing AM technology, 

including material development, process planning, and part design.  Consistent data management 

and global standards are important to make data findable, accessible, interoperable, and reusable 

(FAIR). The testbench is also designed to test comprehensive data management capabilities, 

focusing on automated metadata curation for in-process data integration. The rich metadata 

associated with AM data, along with the ability to track the source and history of the data, allows 

researchers to confidently reuse the data for various purposes, such as process optimization, quality 

control, and predictive modeling [4].  

 

Another important feature is AM-MES integration. MES software is the key to AM 

industrialization. Traditional MES software is highly limited in its ability to manage the unique 

requirements of AM. This has led to the rise of AM specialized MES systems that enables 

manufacturers to successfully manage their AM workflows and scale up their operations, 

ultimately harnessing the full potential of the technology. Hence, integrating AM systems with 

AM-MES software requires a radically new approach as well as enhanced information models 

compared to that defined in ISA 95 and ISA 88. Because most of the AM-MES are deployed in 

the cloud, the security concern has to be addressed. 

 

This paper presents the design and implementation of the NIST AM Data Integration 

Testbench, along with a successful test case scenario. In section 2, we outline the testbench design 

based on requirements, detailing the implementation of the architecture and components. In section 

3, we present a test case which monitors the performance of integrating data streaming and 

archiving data with metadata within the testbench. Section 4 discusses the potential utilization of 

586



 

the AM-MES for enhancing production management. After that, we summarize the progress and 

future work in section 5. 

 

2. Testbench Design 

 

In this section, we describe how we leverage the AM Integration Framework (AMIF) to 

design the testbench architecture and list the required features that we want to test. We demonstrate 

what specific hardware, software, and functions we are using for the current testbench 

implementation [2]. 

 

2.1 NIST AM Data Integration Testbench Requirements 

 

To design the testbench, several key elements are required to ensure a completely 

integrated AM ecosystem, which also aligns with the goal to make AM data FAIR and facilitate 

the AM industrialization. By addressing these key requirements, the NIST AM Data Integration 

Testbench can be a versatile platform to drive the advancement and adoption of AM technologies.  

 

2.1.1 Constructing an AM Emulator 

 

 We need this testbench to be non-disruptive to the current system so that when testing the 

data integration, we do not need to interfere with a real AM machine. To satisfy this requirement, 

we need an AM Emulator, which can provide the information just like an AM machine to the edge 

system, such as publishing the machine status by standard communication protocols, sending out 

the sensor data, receiving the decision-making command, etc. 

 

2.1.2 In-Process Data Integration 

 

Another critical requirement is capturing and integrating data in real-time during the 

building process. The testbench needs to handle the high-speed, high-volume data enabling 

effective monitoring, anomaly detection, and feedback control. Common sensors for process 

environment monitoring include temperature, pressure, and humidity. Common sensors for 

building behavior monitoring include laser beam position, actual laser power, melt-pool 

temperature, melt-pool images, and building overview images, which are all in different data 

formats, transfer rates, dimensions, and protocols making data integration a challenge [5]. 

 

2.1.3 Metadata Management 

 

Capturing the complex relationships and dependencies within the data can make AM data 

FAIR to accelerate the sharing and collaboration within the AM community. The testbench should 

be designed with the capability to test the various information models for integration with metadata 

management tools. 

 

2.1.4 AM-MES Integration 

 

To automate the production order, scheduling, and planning for resource management, the   

MES is needed for mass production. Build preparation, process optimization, and quality control 
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can be provided by AM-MES. The AM-MES integration requires bi-directional data exchange 

with communication protocols to function properly, which would be tested using the testbench and 

the commercial AM-MES. 

 

2.1.5 Security Concerns 

 

AM production machines for high value products are sophisticated Operational 

Technology (OT) systems and are typically expensive. As such, their components are expected to 

have a longer lifespan than lower-cost commodity hardware and software found in IT systems 

providing cloud services. This means that the AM machine is more likely to have legacy 

components lacking protection against recently discovered vulnerabilities. Therefore, integrating 

an AM machine with cloud-based MES and ERP systems introduces threats to intellectual property 

confidentiality, integrity of printed parts, and availability of the materials and hardware needed to 

ensure continuity and consistency of the manufacturing process. Judicious selection and 

implementation of security controls such as encryption, access control, and intrusion detection can 

lower these risks. Protecting the AM machine and process from attacks originating from the cloud 

is of particular concern. NIST’s Guide to OT Security (Special Publication 800-82) [6] 

recommends that organizations develop and deploy a security architecture providing network 

segmentation and isolation to protect OT systems from such attacks. One implementation approach 

is to use unidirectional gateways—data diodes, for example—combined with automated 

verification of all information from the cloud to the OT. Only traffic permitted by the verification 

rules is allowed through. This approach was utilized in a recent pilot implementation of the 

NAMUR Open Architecture, a reference security architecture for decoupling IT and OT 

component life cycles [7]. 

 

2.1.6 Evaluate Computational Performance 

 

Some AM in-process analytical functions are time-sensitive and require high-speed 

computation. For example, if we want to implement anomaly detection for in-situ monitoring or 

real-time feedback control to reduce process variability or generate datasets using generative 

models at high frequency, can data processing algorithms catch up with the AM processing speed 

without causing process delays? If the computational performance is inadequate, how far or what 

gaps remain, and what advancements are needed? A testbench can help evaluate the performance 

of these functions to determine if they are ideal for practical use in AM. 

 

2.2 AM Data Integration Testbench Architecture 

 

To meet the requirements, a three-tier testbench architecture is designed based on the NIST 

AM Data Integration Framework [2], as shown in Figure 2. The AM Emulator PC hosts an AM 

Process Event Generator to simulate the operation status of an AM machine and multiple In-Situ 

Sensor Data Generators to mimic the real data collecting sensors. The Edge PC uses 

Communication Protocols and In-situ Sensor Data Acquisition to receive machine status and 

sensor data respectively. At the Edge level, we can implement various functions to achieve Real-

Time Analysis and Process Control. These include the Data Streaming Gateway for streaming 

data, Analytics Configuration for setting up the tools or parameters necessary for conducting 

analytics, and the MES Adapter, which acts as an interactive intermediary between the Edge PC 
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and MES. The Cloud level contains three services. A Big Data Repository serves as a data lake to 

store high-volume data. AI Model Generation is used to develop and train AI models in the cloud 

before deploying them to the edge. MES and ERP indicate the software for production 

management, quality assurance, and enterprise applications like supply chain management. 

 

 
Figure 2. Testbench Design 

 

2.3 Current NIST AM Data Integration Testbench Implementation 

 

We decided to make incremental implementations based on the three-tier architecture. The 

current implementation is shown in Figure 3 and the modules currently implemented are indicated 

by the colored blocks. 

 

 
Figure 3. Current Implementation  

 

2.3.1 AM Emulator PC 
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We are using a commercial Camera Simulator, which has the CoaXPress high-speed 

camera interface to transmit images from its on-board memory [8]. Those images could be 

archived images from a real AM in-situ monitoring system. An alternative method to generating 

raw images is an AI-based Image Generator. The CoaXPress is a common protocol adopted by 

high-speed camera manufacturers enabling the testbench to evaluate the performance of vision and 

imaging systems used for in-situ monitoring and control. To synchronize the camera data with the 

AM process events, as shown in the lowest stack in Figure 4, the AM Process Event Generator 

incorporates a Socket for triggering the Camera Simulator. This mechanism triggers a camera 

based on the occurrence of specific events, which are published by the MQTT Server [9].  

 

The MQTT Server plays a crucial role in the event-driven architecture of the testbench, 

serving as the communication hub for the AM Emulator PC, Edge PC, and Cloud PC components. 

By publishing AM process events through the MQTT server, the testbench ensures that the Edge 

and Cloud functions can receive and respond to these events in real-time. This event-driven 

approach is essential for enabling timely monitoring and decision-making for real time control 

during the AM process. 

 

2.3.2 Edge PC 

 

The Frame Grabber shown in Figure 3 is also based on the CoaXPress [10]. This 

component can receive and process the high-speed camera data streams generated from the AM 

Emulator PC. The Frame Grabber contains an on-board FPGA, which has the potential to perform 

real-time image processing and feature extraction. This capability enables advanced in-situ 

monitoring and control functionalities, allowing for the detection of anomalies or defects during 

AM process to generate timely feedback for process adjustments. 

 

The Edge PC has the Streaming Function leveraging the Amazon Boto3 API to 

automatically upload the camera data and other relevant process information to the cloud-based 

data lake. By minimizing the data backlog and ensuring timely data availability, the Streaming 

Function plays a crucial role in supporting the data sharing and process analytics.  

 

The cloud-based MES system we are using has the RESTful API as its communication 

interface. To enable seamless integration with the Edge PC, we implemented an MQTT-RESTful 

Adapter allowing our Edge PC to interact with this MES. 

 

2.3.3 Cloud 

 

We use Amazon S3 as a scalable data lake for archiving the raw data generated during the 

AM process. In addition, the Cloud also integrates a graph-based metadata management system, 

DeepLynx [11], to capture the complex relationships and dependencies within AM data. The 

automated metadata curation process is needed for future analysis and research. AI Model 

Generation can use the data with metadata stored in the Amazon S3 bucket to develop and train 

the AI models. Commercial MES would be used to test various data models and functions that can 

benefit and facilitate the AM industrialization.  

 

3. Testbench Test Case – Melt Pool Image Streaming and Archiving with Metadata 
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To achieve the objective of automatic process flow, the testbench underwent stress testing 

methods. We implemented automatic high-speed data streaming from AM machines to cloud 

storage services to increase the data flow efficiency. By simulating AM in-situ process monitoring 

and measuring the duration of each function, we gained insight into the current capabilities and 

limitations of rapid data transfer. The present implementation of streaming and storing data allows 

quicker data availability, which can enable improved research and more opportunities to 

accomplish crucial AM data analytics. 

 

3.1 Testing Configuration 

 

The conducted test case was modeled from our previous accomplishments [2] and used an 

existing melt-pool image (MPI) dataset alongside estimated pre-testing parameters, which 

simulate AM processing events and internet configurations. The overhang part X4  from NIST 

Additive Manufacturing Metrology Testbed (AMMT) [12] is the selected dataset to supply melt-

pool image data for swift data upload from local to S3 cloud storage. This build consists of 4 

identical parts each constructed up to 250 layers total. 

 

The overhang part X4 dataset size per layer is estimated around 200 - 370 MB and for 150 

layers the average data size per layer is 259.705 MB. For this test case, the testbench utilizes an 

RJ45 ethernet cable for internet connectivity and each of the 4 parts are consolidated into 1 dataset 

file per layer. A total AM process event time to complete one layer of an AM build is estimated to 

be 12 seconds. The process time per layer portrays an estimated duration of AM data generation 

and serves to set a minimum required time to finish the dataset cloud upload. An upload that takes 

longer than the approximate 12 seconds would indicate that AM data transfer from local to cloud 

would be too slow to keep up with AM process events. 

 

3.2 Function Time Sequence 

 

The AM emulator, edge, and cloud functions work in parallel; however, the functions of 

all three modules perform asynchronously and do not follow a linear pathway from the beginning 

of melt-pool image generation to the end of the dataset and metadata storage. This optimizes the 

data streaming process but increases the potential for in-process streaming errors, for example, a 

significantly slower upload process and faster data generation process. Due to strict timing 

constraints, establishing a punctual workflow schedule will lower the possible failure risks. In 

Figure 4, the process and function flow graph demonstrate the multiple AM processes performed 

in real-time. The purpose of the figure is to obtain an idea about the timing measurement of AM 

data transfer speed based on our current configuration, and also represents an ideal flow scenario 

when every function executes tasks on schedule. 
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Figure 4. Function Time Sequence 

 

3.3 Test Result 

 

To achieve ideal process and function flow of AM data, Table 1 displays the result of the 

test case which must be higher than the estimated minimum required upload speed. AM data 

upload speed is calculated by Avg Data Size per Layer / Avg Upload Time per Layer. 

 

Table 1. Test Case Upload Speed Minimum Requirement vs. Test Result 

 Minimum Requirement Test Result 

Avg Data Size per Layer 259.705 MB 259.705 MB 

Avg Upload Time per Layer 12 sec 3.584 sec 

Avg Data Upload Speed 21.727 MB/sec 72.584 MB/sec 

 

Results of the test case display approximately triple the upload speed compared to the 

minimum required upload speed. Streaming MPI data from local to cloud is able to keep up with 

local MPI data generation for this test case configuration; however, changes to the testing set up 

may yield different results. Many factors contribute to the end result of the upload speed which 

include data size, file quantity, internet connectivity, and the volume of testbench processes. Our 

current test case contains MPI data for 4 parts, but in future tests, the size of the dataset may 

increase. For example, we must determine if generating 16 parts with each part containing the 

same size of data per part as overhang part X4 can maintain a higher average data upload speed 

than the minimum requirement. Additionally, a dual ethernet connection may improve network 

bandwidth and can result with a higher average data upload speed; however, dual connections have 

not been proven effective due to the current limitations of the test case and laboratory 

configuration. 

 

4. Data Interoperability for AM-MES Integration 

 

Among all the challenges, data interoperability is the primary concern when integrating 

AM with manufacturing operations or enterprise applications. In this context, “Interoperability” 

refers to MES software’s ability to work alongside and communicate with AM systems from 
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different Original Equipment Manufacturer (OEMs). Interoperability can be specified at different 

levels. At a lower level, data can be transferred using communication protocols, for example, 

MQTT, AMQP or Apache Kafka. However, sending and receiving data are not the only 

requirements for interoperability. The semantic level interoperability allows data to be reused 

correctly, which is essential for decision making. 

 

Various existing standards are utilized in the AM industry for AM system and MES 

integration, including OPC-UA, RESTful API, and MQTT, etc. However, there lacks semantic 

interoperability standards that provide a common information model to represent the data 

exchanged between AM systems and AM-MES software. Some ongoing efforts generated 

preliminary results, including the extension of MTConnect and Umati data models from the 

machining industry to AM systems. In MTConnect, several new data items and information 

models were added for AM, including a high-frequency data display and new data types and 

subtypes, such as humidity which is a critical environmental control process variable [13].  Umati, 

representing universal machine technology interface, is an open standard based on OPC-UA for 

machine tool integration. OPC 40540 for AM, is intended to facilitate the exchange of information 

between an AM machine and software systems such as MES, SCADA, ERP, or data analysis 

systems. Based on the plan, AM-specific job and component characteristics, material and 

consumable properties, and the material cycle are likely to be available in these standards [14]. 

 

While at NIST, our AM-MES interaction data modeling approach is to leverage on ISA 

95, ISA 88, PACKML, as well as MTConnect data models. Our first test of AM-MES integration 

is based on the object types defined by the AM-MES software we acquired. In Table 2, we listed 

the data model from the AM-MES to the testbench. Part Information - This includes the CAD/3D 

model files that define the geometry and design of the part being manufactured in the AM process. 

Material Information - This includes details about the material being used, such as the material 

type and the batch number. This information is crucial for ensuring consistency and traceability in 

the manufacturing process. Process Parameters - This includes the key parameters that define the 

AM process, such as the layer thickness, laser power, scan speed, and build plate preheat 

temperature. These parameters directly impact the quality and performance of the final part. 

Quality Control Tolerance - This includes the acceptable tolerances for various quality metrics, 

such as density, coating homogeneity, and surface roughness. These tolerances are used to ensure 

that the final part meets the required specifications. Quality indicators should be adjusted 

according to requirement. 

 

Table 2. Data Model from AM-MES to Testbench 

Item Information 

Part Information CAD/3D Model Files 

Material Information 
Material Type 

Batch Number 

Process Parameters 

Layer Thickness 

Laser Power 

Scan Speed 

Build Plate Preheat Temperature 

Quality Control Tolerance 
Density 

Coating Homogeneity 
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Surface Roughness 

 

In Table 3, we listed the data model from the testbench to the AM-MES. Production 

Progress - This includes the layer number which provides the AM-MES with the current layer 

number being processed in the AM machine. Knowing the layer progress is crucial for monitoring 

the overall production status and ensuring the build is proceeding as expected.   Operation Status 

- This includes the powder coating, laser melting, and build plate descending, which are the critical 

steps in the LPBF AM process. Monitoring this status helps the MES understand the current state 

of the machine and identify any potential issues that could affect the quality of the final part. 

Scheduling Information - By receiving release time information from the AM machine, MES can 

effectively schedule other manufacturing timelines so that resources are allocated efficiently, and 

production processes are synchronized to meet production targets. Quality Estimation Result - 

This includes density, coating homogeneity, and surface roughness. MES can use this information 

to ensure that the part meets the design and requirement specifications. 

 

Table 3. Data Model from Testbench to AM-MES 

Item Information 

Production Progress Layer Number 

Operation Status 

Powder Coating 

Laser Melting 

Build Plate Descending  

Scheduling Information  Machine Release Time 

Quality Estimation Result 

Density 

Coating Homogeneity 

Surface Roughness 

 

In this section, we list critical information essential for status monitoring, scheduling, and 

quality assurance. Interoperability within AM and MES is crucial for achieving mass production. 

However, without standardized models, each system may interpret data differently, causing 

compatibility issues. Therefore, our team plans to develop a standardized data model based on the 

key requirements for integrating AM with MES. This will ensure seamless integration for 

enhanced efficiency and scalability for manufacturing operations. 

 

5. Conclusion 

 

We implemented the NIST data integration testbench, which is a platform to help 

researchers and collaborators assess various AM data integration scenarios and showcased the 

currently implemented components from our underlying integration framework. In the case study, 

we demonstrated the integration capability of the testbench to stream high-speed data, archive 

large volumes of raw data with metadata automatically, and assist researchers in evaluating its 

performance. We also listed the data essential for bidirectional message transfer between the AM-

MES and the AM machine. The testbench can be used to simulate and study the interaction 

between the data for automated production operation management. 

 

        In the future, we can include commercial emulators to work with this testbench for testing 

data interoperability. OPC-UA and MTConnect can also be included for testing purposes. 
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Additionally, investigating the computational performance or memory requirements for deep 

learning-based algorithms, whether at embedded or PC levels, is essential. Exploring various 

mechanisms that can protect the testbench from cyber threats will also be included. Researchers 

interested in data integration or system automation at any level are welcome to collaborate with us 

to foster the growth of AM ecology and facilitate industrialization. 
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