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Abstract 
As laser powder bed fusion (LPBF) technology has transitioned from prototyping to end-

use parts, understanding the role of the powder properties needed to reliably produce parts of 
acceptable quality becomes critical. In this study, different alloy powders from different 
manufacturers are tested for flowability, spreadability, tapped density, particle size distribution, 
and morphology using scanning electron microscopy (SEM). The tested alloys include stainless-
steel 316L, Nickel-based super alloy 625 (IN625), M300 maraging steel (also known as Tool Steel 
1.2709 and 18Ni300), and AlSi10Mg. These powders were then used as feedstock in the Area 
Printing process to print density cubes with a wide range of laser parameters to correlate the 
powder characteristics with part density. The results suggest a strong correlation between these 
characteristics and the density of the parts as well as among the powder characteristics themselves. 
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1. Introduction  
 
Laser-based Powder Bed Fusion (LPBF), also referred to as Selective Laser Melting (SLM) 

or Direct Metal Laser Sintering (DMLS), is among the most prevalent methods of metal additive 
manufacturing (AM). This technique involves the selective melting of metal powders in a layer-
by-layer process using a high-intensity laser beam, guided by a segmented computer-aided design 
(CAD) model. LPBF finds extensive applications across several industries, such as medical, 
automotive, and aerospace sectors [1]. The widespread adoption of this manufacturing technique 
in these industries is attributed to its numerous advantages, including design flexibility, shortened 
production times, minimized material waste, and sustainability benefits. However, the limited 
production rate of LPBF, along with its high capital and operational costs, has hindered its broader 
adoption compared to traditional manufacturing methods. To overcome this limitation, Seurat 
Technologies has introduced Large-Area Pulsed Laser Powder Bed Fusion (LAPBF), also known 
as "Area Printing." This innovative approach replaces the conventional point laser with a large-
area pulsed laser, capable of melting metal over several millimeters in a single pulse, with a 
repetition rate of up to 40 Hz. This advancement can significantly reduce manufacturing time and 
lower final production costs. Additionally, the large-area laser beam mitigates spattering issues 
common in conventional LPBF by avoiding the creation of a deep, turbulent melt pool (keyhole) 
that generates strong recoil pressures and ejects spatters [2]. 

One of the most critical factors determining the quality of the manufactured components 
in both the LPBF process and the Area Printing process is the properties of the powder feedstock 
[3]. Brika et al. [4] reported that Ti6Al4V powder characteristics, including size distribution and 
sphericity, significantly affect the rheological behavior and packing density of the feedstock. 
Consequently, these characteristics influence the quality of the built parts, including density, 
surface finish, and dimensional accuracy. Similarly, for 316L stainless steel, Groarke et al. [5] 
unveiled the strong correlation between the particle size and shape parameters and the powder 
rheology. The authors in [5] also reported the effects of powder size distribution on the 
microstructure and the mechanical properties of the fabricated parts. Furthermore, Mussatto et al. 
[6] demonstrated that powder rheological properties, particularly spreadability, play a crucial role 
in determining both the thickness of the powder layer and the parameters governing spreading, 
such as mechanism and speed. Spurek et al. [7] studied the impact of powder particle sizes on melt 
pool dimensions and part density. The authors observed an inverse relationship between the 
median particle size and part density, although they found no correlation with the distribution 
width. It is likely that fluctuations in melt pool depth and width significantly influence part density 
[7]. Specifically, increasing the median particle size tends to decrease melt pool depth while 
increasing width fluctuations [7]. Regarding the effects of particle sizes in the LPBF process of 
IN625, Pleass et al. [8] concluded that an increase in the number of particles with diameters less 
than 10 µm negatively impacts the spreadability of the feedstock. This is attributed to the 
overwhelming cohesive forces when the D90 is less than 10 µm [8]. To elucidate the correlation 
between powder flowability and the spreadability of Ti6Al4V powder, Mehrabi et al. [9] 
conducted both flowability and spreadability tests for two different grades of powders. The authors 
reported that a higher spreadability index can be quantitatively achieved with increased 
flowability. Averardi et al. [10] emphasized that the density of the built part can be significantly 
improved by increasing the powder bed packing density using various powder size distributions 
and shapes for the powder feedstock. 
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In this study, various alloy powders sourced from different manufacturers were 
systematically evaluated for their flowability, spreadability, particle size distribution, and 
morphology. Scanning electron microscopy (SEM) was employed to analyze the morphology of 
the powders. The alloys tested in this investigation included stainless-steel 316L, Nickel-based 
superalloy 625 (Inconel 625), M300 maraging steel (also referred to as Tool Steel 1.2709 and 
18Ni300), AlSi10Mg, and Ti6Al4V. Subsequently, these powders were utilized as feedstock in 
the Area Printing process to fabricate density cubes. A wide range of laser parameters was 
employed during the printing process to establish a correlation between the inherent characteristics 
of the powders and the resulting density of the printed parts. By examining the interplay between 
powder properties and part density, this study aims to provide valuable insights into optimizing 
additive manufacturing processes for enhanced material performance and structural integrity. In 
addition, the effects of powder recyclability on the quality and properties of the feedstock and the 
built parts density are also investigated. 

 
2. Materials and Methods 

 

Different alloy powders from various manufacturers were tested and then used as feedstock 
in the Area Printing process to print density cubes using a wide range of laser parameters. This 
approach aimed to correlate powder characteristics with part density. Each density build included 
49 cubes. To develop a material-independent methodology, this study included a variety of 
materials based on availability. The tested powders comprised stainless-steel 316L from nine 
different suppliers, Nickel-based super alloy 625 (Inconel 625) from eight different suppliers, 
M300 maraging steel (also known as Tool Steel 1.2709 and 18Ni300) from seven different 
suppliers, and AlSi10Mg from six different suppliers. The following sub-sections detail the testing 
and fabrication processes. 

 
2.1.Powder Characterizations  

 

The elemental compositions of the powders were determined using energy dispersive 
spectroscopy (EDS) with a TESCAN LYRA3 GMU SEM. Particle size distribution (PSD) and 
morphology were analyzed using a Microtrac MRB. Spreadability-related properties, including 
the cohesive index, roughness index, aeration, and dynamic angle of repose, were measured using 
a GranuDrum. The GranuDrum operates by rotating a drum filled with powders, analyzing their 
flowability and rheological properties through image capture and processing of the material's 
behavior during rotation. Tapped density and the Hausner ratio were measured and calculated 
using an Autotap tapped density tester. Additionally, Hall and Carney funnels were employed to 
measure the powders’ flowability. Figure 1 shows some of the powder testing equipment. 

 

 
Figure 1. From left to right: Microtrac MRB, GranuDrum, and Autotap tapped density tester. 
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2.2. Area Printing  
 

Each batch of powders from each material was used separately to fabricate density cubes 
using Area Printing. In this process, two types of lasers are utilized to melt metal powder layers 
and fuse them to the area below it, manufacturing entire renderings at once in a single defined area. 
A set of diode lasers is used to preheat and sinter the powder bed before a single Nd:YAG pulsed 
laser performs the final melting of the area. Figure 2 illustrates a schematic of the pulsed laser 
beam from the source to the powder bed. Once the laser is created, it is shaped into a homogeneous 
square field called a "tile". A blue light projector then generates a projection of the area pattern the 
same size as the square laser beam, which is aligned with the laser beam. An Optically Addressable 
Light Valve (OALV) receives this light and horizontally polarizes the laser beam where blue and 
IR light pixels overlap and vertically polarizes them where they do not overlap. The vertically and 
horizontally polarized laser beams are then split, and the resulting area pattern is sent through a 
scanner system to the powder bed to melt the patterned field.  

 

 

Figure 2. Schematic of the pulsed laser beam used in the Area Printing process [11]. 

 

2.3. Part Density Measurements  
 

Experiments were conducted using stainless steel 316L, IN625, M300 maraging steel, and 
AlSi10Mg powders with varying particle size distributions. Each print job consisted of a seven-
by-seven grid of cubes with the following dimensions printed on an Area Printing Prototype 
System. The dimensions are 10 mm x 10 mm x 10 mm for 316L, IN625, and M300 alloys and 12 
mm x 12 mm x 25 mm for AlSi10Mg. The consideration of larger AlSi10Mg samples aims to 
compensate for the material's lower density and ensure sufficient mass to maintain measurement 
accuracy. Figure 3 shows a batch of SS316L density cubes fabricated by the Seurat prototype 
printer. Upon completion, the build plate was removed, and the samples were cut from it using a 
horizontal band saw. The samples were then soaked in isopropanol in an ultrasonic cleaner for 30 
minutes prior to density measurements. Density measurements were performed using the 
Archimedes method with an Ohaus Explorer™ Precision density kit.  

 

 
Figure 3. SS316L cubes for density measurement on the Seurat prototype machine build plate. 
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2.4.Data Analysis 
 
The data analysis consists of two main components: identifying correlations among 

different powder characteristics and predicting the response, specifically porosity, using machine 
learning (ML) methods. Spearman Rank Correlation was employed to identify two-way 
correlations among powder characteristics and determine the most significant parameters for 
predicting porosity. Due to the varying ranges of values among some predictors, normalization 
was performed before model training. Given the relatively small dataset, Bootstrap Sampling was 
applied to increase the number of observations and enhance model accuracy. This method involves 
repeatedly sampling from the original dataset with replacement to estimate population properties 
and create multiple bootstrap samples. This technique exposed the model to various data 
distributions, reducing overfitting and improving generalization to unseen data. The Gradient 
Boosting ML technique was then employed using the bootstrapped dataset for porosity prediction. 
In this regression method, an ensemble model is built by sequentially adding weak learners, such 
as decision trees, to correct errors made by previous models. In this study, the model was 
configured with 500 estimators (decision trees), each with a maximum depth of 5 and a learning 
rate of 1.0. Gradient descent optimization was employed to minimize the mean squared error 
(Friedman MSE) loss function. All data analysis was conducted using Python. 

 
3. Results and Discussions 

 
All the experimental results are summarized in Table 1, with the data organized into 

columns according to the category of properties. Note that EDS analysis was not performed on 
IN625 powder samples, as indicated by "n/a" in the corresponding cells of the table. Figure 4 
illustrates the two-way correlations among powder properties using a Spearman correlation matrix. 
Due to significant differences in elemental compositions across some alloys and numerous missing 
data points, reasonable correlations using elemental compositions as predictors could not be 
achieved in the tested ML models; thus, this category was excluded from the model. On the 
Spearman correlation matrix, the correlation between every two parameters can be found in the 
row-column intersection of those two parameters and compared to the other correlations. For 
instance, PSD parameters, i.e., D10, D50, and D90, are negatively correlated with bulk density, 
tapped density, Hall, and Carney. It means increasing the powder particle size will decrease the 
powder density (both bulk and tapped) by introducing larger void spaces in between the particles. 
It also decreases the flowability values, i.e., the time it takes for 50 grams of powder to flow, which 
results in increasing the powder flowability, which is consistent with findings in the literature [12]. 
Another notable example is sphericity, which negatively correlates with the Hausner ratio, where 
lower Hausner ratios indicate higher compactibility of particles (closer values of bulk and tapped 
densities). Thus, higher sphericity results in greater compactness of powder particles. Sphericity 
also negatively correlates with GranuDrum parameters, showing that increased sphericity reduces 
powder cohesiveness and enhances flowability and spreadability. Additionally, there are strong 
positive correlations among parameters within the same category, such as Hall and Carney flow 
rates, and D10, D50, and D90 particle sizes. 
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Table 1. Dataset obtained by various powder testing and density measurements. 

Alloy Batch 
Elemental Composition 

Tapped Density 
(g/cm3) 

Powder Size Distribution GranuDrum 
Flowability 

(s/50g) Porosity 
(%) 

Fe Cr Ni Mo Mn Si Co Ti Al Mg 
Bulk 
Den. 

Tap 
Den. 

Hausner 
D10 
(µm) 

D50 
(µm) 

D90 
(µm) 

Sphericity Skewness Aeration Angle Cohesive Roughness Hall Carney 

SS
31

6L
 

A 62.5 18.7 12.9 2.8 2.2 0.9 0 0 0 0 4.3 4.933 1.147 23.87 36.4 47.31 0.966 0.83 0.92 37.36 11.76 1.17 28.62 4.99 0.05 

B 66.5 16.8 12.3 2.7 1.1 0.7 0 0 0 0 4.132 4.717 1.142 20.53 34.34 45.73 0.964 0.91 1.06 42.74 22.29 1.24 19 4.00 n/a 

C 64.4 17.1 12.9 2.5 2.1 1.0 0 0 0 0 4.467 4.905 1.098 26.22 43.3 59.44 0.965 0.94 1.01 33.89 9.34 1.12 14.89 2.92 0.54 

D 65.0 17.8 12.8 2.1 1.6 0.7 0 0 0 0 4.59 5.105 1.112 17.82 30.12 45.91 0.970 0.59 0.93 35.43 14.01 1.14 18.36 3.2 0.68 

E 66.1 16.7 11.6 2.3 2.2 1.0 0 0 0 0 4.613 5.079 1.101 14 23.91 44.8 0.96 0.70 0.99 32.92 13.8 1.14 18.05 3.09 0.74 

F 65.4 18.2 11.9 1.8 2.3 0.5 0 0 0 0 4.321 4.914 1.137 20.94 33.24 47.17 0.972 0.78 1.00 33.41 12.98 1.14 15.28 3.01 0.38 

G 68.2 17.0 10.5 2.1 1.8 0.4 0 0 0 0 4.097 4.94 1.206 24.6 36.76 50.82 0.944 1.49 0.99 46.82 20.54 1.27 19 4.00 n/a 

H 69.1 16.3 10.6 2.0 1.2 0.7 0 0 0 0 4.287 4.87 1.136 17.49 33.95 53.26 0.967 0.60 0.98 33.66 11.61 1.14 17.97 3.33 0.64 

I n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 4.351 4.933 1.134 27.08 39.58 50.32 0.967 1.25 0.92 36.35 18.8 1.17 17.75 2.97 n/a 

A
lS

i1
0M

g 

A 0.2 0 0 0 0 9.4 0 0.1 89.3 1.0 1.442 1.654 1.148 27.46 44.95 61.95 0.965 1.16 1.02 36.2 21.08 1.2 15.32 2.82 0.28 

B 0.1 0 0 0 0 10.2 0 0.1 88.5 1.1 1.39 1.696 1.22 29.48 49.66 72.93 0.949 0.9 1.03 38.12 23.18 1.21 18.08 3.29 0.6 

C 0.2 0 0 0 0 8.9 0 0.1 89.7 1.1 1.451 1.697 1.169 32.21 49.99 67.8 0.963 1.14 0.97 34 12.95 1.16 16.34 3.05 0.67 

D 0.2 0 0 0 0 9.2 0 0.1 89.4 1.1 1.516 1.696 1.119 31.04 46.86 63.18 0.973 0.92 0.97 32.64 11.89 1.14 13.7 2.56 0.47 

E 0.1 0 0 0 0 12.4 0 0.3 86.0 1.2 1.496 1.671 1.117 39.46 59.07 75.87 0.977 1.4 0.98 31.14 11.12 1.13 16.09 3.01 0.8 

F 0.1 0 0 0 0 16.8 0 0.2 81.1 1.8 1.524 1.734 1.138 21.78 31.37 40.75 0.979 0.93 0.96 33.24 22.41 1.21 21.24 3.59 0.72 

M
30

0 

A 66.8 0 17.5 5 0 0 9.9 0.8 0 0 4.311 5.000 1.160 24.34 43.86 55.66 0.967 1.18 0.97 33.43 13.98 1.14 16.67 3.05 0.74 

B 67.0 0 17.6 4.4 0 0 10.1 0.9 0 0 10.200 4.159 1.196 12.87 22.99 42.16 0.957 0.46 1.03 36.29 15.38 1.16 22 2.82 0.26 

C 68.8 0 16.6 3.3 0 0 10.6 0.6 0 0 10.200 4.085 1.216 21.03 40.31 52.13 0.968 0.88 0.98 34.8 15.82 1.15 16.69 2.81 0.17 

D 66.4 0 18.4 5.2 0 0 9.3 0.7 0 0 10.000 4.334 1.160 22.4 37.6 48.4 0.968 0.72 0.99 32.59 11.72 1.13 86.08 11.98 0.38 

E 66.3 0 17.7 5.3 0 0 9.9 0.8 0 0 4.235 5.082 1.200 19.28 31.72 66.24 0.965 0.86 1.01 35.64 15.79 1.15 90 12.31 n/a 

IN
62

5 

A n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 4.664 5.359 1.149 25.54 38.59 51.89 0.973 1.09 1.00 40.66 11.91 1.23 63.92 11.94 0.88 

B n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 4.175 5.112 1.224 23.65 38.59 51.94 0.962 1.00 0.85 43.91 14.39 1.24 60.1 10.96 n/a 

C n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 4.285 5.159 1.204 22.77 37.94 50.75 0.968 1.05 0.94 41.67 17.04 1.24 49.46 8.36 0.82 

D n/a n/a n/a n/a n/a n/a n/a 
n/a 
  

n/a n/a 4.229 5.074 1.200 27.59 38.45 49.89 0.962 1.01 1.01 44.88 19.63 1.25 90 11.94 1.14 
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Figure 4. Spearman correlation matrix showing the two-way correlations among powder 
characteristics. 

 

After Bootstrap sampling was performed on the normalized dataset, it was used for training 
a gradient-boosting regression ML model. The model was able to predict the response with an 
accuracy of 87%. Figure 5 shows the comparison between the predicted and actual values for the 
testing data. The scatter plot showcases the model's predictive capability, where points lying close 
to the diagonal line (y = x) represent accurate predictions. The clustering of points around this line 
highlights the quantitative accuracy score, validating the effectiveness of the gradient-boosting 
regression model in this context. 
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Figure 5. Actual vs predicted responses by the gradient boosting regression model. 
 

4. Conclusions  
 
In this study, we examined alloy powders from various manufacturers to investigate the 

relationships among powder characteristics and to develop a predictive model for the properties of 
fabricated parts, specifically focusing on porosity. The characteristics measured included Hall and 
Carney flowabilities, elemental composition, cohesive index, dynamic angle of repose, roughness 
index, aeration, tapped density, particle size distribution, and morphology. The tested alloys 
comprised nine different stainless-steel 316L powders, eight different IN625 powders, seven 
different M300 maraging steel powders, and six different AlSi10Mg powders. Small cubes were 
Area Printed using a wide range of laser parameters, and their densities were measured to establish 
correlations between powder characteristics and part density. The findings revealed both positive 
and negative correlations between these characteristics and the density of the parts, as well as 
among the powder characteristics themselves. These correlations help identify the most significant 
powder properties influencing part properties, depending on the application. This knowledge can 
reduce the amount of powder testing and experimentation needed for qualification by allowing 
predictions of certain properties based on those that are highly correlated. Future work will expand 
the model to include pore morphology and mechanical properties as additional responses, thereby 
enhancing the robustness of the predictive model. Additionally, the recyclability of different 
powders will be examined and correlated with their other properties. 
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