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Abstract 

The fatigue behavior of additively manufactured (AM) Ti-6Al-4V has been widely investigated 

under axial loading, with limited analysis of its performance under bending conditions. Internal 

defects in AM parts can detrimentally affect the integrity of 3D-printed specimens, impacting their 

fatigue performance. Researchers have previously implemented the Hot Isostatic Pressure (HIP) 

post-processing method to address the presence of defects. This study explores the fatigue life of 

Laser Powder Bed Fusion (L-PBF) Ti-6Al-4V after three HIP treatments: standard, low 

temperature/high pressure (LTHP), and super beta HIP, alongside annealed heat treatment. Optical 

techniques were utilized to assess microstructure, while tensile and hardness testing examined 

mechanical properties. Fracture morphologies and stress-life (S-N) curves were analyzed to 

understand fatigue behavior. Initial findings indicate that specific HIP post-processing can enhance 

the fatigue performance of Ti-6Al-4V under 4-point bending. 

1. Introduction

Additive Manufacturing (AM), commonly known as 3D printing, has become a widely used

technology in the last years. Several fields of applications including aerospace, industrial, 

automotive, and biomedical, have used the advances and advantages of this technology to fulfill 

their goals [1–7]. Across the different laser-based AM technologies, Laser Powder Bed Fusion (L-

PBF) also know as Selective Laser Sintering (SLM) or Direct Metal Laser Sintering (DMLS), has 

become one of the most popular approaches. L-PBF is defined as an AM process in which thermal 

energy selectively fuses regions of a powder bed on a layer-by-layer basis [8–10]. L-PBF can 

provide a wide range of advantages in comparison to other AM technologies, for example, new 

degrees of freedom in design, higher resolution than other laser-based systems, creation of detailed 

and fine features, reduced surface roughness, reduction of manufacturing time, mass production, 

and the presence of high cooling rates that can lead to refined microstructure and enhancement of 

mechanical properties [9,11–13].  

There are still some limitations with the use of AM technologies such as L-PBF, for example 

the presence of internal defects and porosity. Porosity can be present in different ways, for example 

bubble gas entrapment, which is directly related to the precursor powder particles, keyhole, and 

even lack-of-fusion (LoF) porosity directly related to a poor selection of process parameters 
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[14,15]. However, even though the selected printing parameters fall under the process window 

region of a material, also known as nominal parameters, still the presence of porosity can be present 

on the 3d printed specimens. It has been well reported [16–19] that the presence of defects and 

porosity can detrimentally affect the integrity of the 3d printed specimens and can lead to an earlier 

failure especially if mechanical testing such as fatigue is taking place by acting as stress 

concentrators and initiation sites. Because of this, it is important to develop 3D printed specimens 

without the presence of these anomalies.  

  

The use of Hot Isostatic Pressing (HIP) type of heat treatment that involves heating a metal 

component at a high temperature under continuous isostatic pressure can be implemented to 

enhance densification and reduce porosity in AM builds [20,21]. In the same way, the use of HIP 

post-processing not only increases density and eliminates porosity, but also literature has shown 

promising results in which this improves the fatigue strength and mechanical properties of 

specimens. For example, in a recent study, Hills et al. [22], investigated the effects of chemical 

etching on the fatigue failure of L-PBF Ti-6Al-4V specimens subjected to either heat treatment or 

HIP. The results revealed that HIP treatment effectively closed most internal pores, significantly 

enhancing fatigue behavior. The HIP treated specimens exhibited fatigue performance comparable 

to that of wrought Ti-6Al-4V. Zhao et al. [23], compared the microstructures and mechanical 

properties, including the fatigue performance, of Ti-6Al-4V fabricated by selective laser melting 

(SLM) and electron-beam melting (EBM). They found that HIP treatment significantly improved 

the fatigue performance of both laser-based technologies compared to as-built specimens. The 

study also reported that HIP treatment not only closed most internal pores but also altered the 

microstructure of Ti-6Al-4V, affecting its mechanical properties such as strength and ductility. Yu 

et al. [24] also investigated the impact of surface finishing, HIP, and heat treatments on the fatigue 

performance of SLM Ti-6Al-4V. They found that reducing or eliminating pores through HIP 

treatment significantly extended the fatigue crack initiation period and increased the specimens' 

fatigue limit, obtaining a superior performance compared to as built and heat-treated specimens. 

Alternatively, Moran et al. [25] examined the fatigue behavior of various HIP cycle treatments. 

Their findings suggested that neither microstructure nor the presence of defects primarily governs 

the fatigue performance of AM Ti-6Al-4V. However, they did not address the effects of HIP on 

the material's mechanical properties.  

 

Research into the fatigue performance of Ti-6Al-4V has been extensive, primarily conducted 

under conventional uniaxial conditions [16,26–32], which are generally considered conservative. 

In contrast, there is a notable scarcity of literature on Ti-6Al-4V fatigue testing using the 4-point 

bending method. The 4-point bending approach offers a more realistic simulation for complex 

engineering system designs. Therefore, it is crucial to investigate and analyze this fatigue 

mechanism. Unlike the uniform stress distribution in uniaxial testing, 4-point bending concentrates 

maximum stress at the bottom surface of the beam between the inner support pins, as illustrated in 

Figure 1. As a result of these considerations, the primary objective of this study is to investigate 

the influence of three distinct HIP cycles on the fatigue characteristics of AM Ti-6Al-4V subjected 

to 4-point bending conditions.  
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Figure 1. 4-point bending and uniaxial testing designs.  

 

2. Materials & Methods 

2.1. Powder Feedstock  

In this study, commercial gas-atomized Ti-6Al-4V powder provided by Allegheny 

Technologies (ATI) was used. Figure 2 illustrates the powder's morphology, revealing regular 

spheres along with some irregular blocks. In the same way, the initial powder showed an 

average powder size distribution (PSD) with particle diameters of D10: 25 μm, D50: 37 μm, 

and D90: 49 μm. Additionally, the powder exhibited minimal porosity as can be seen in the as-

polished image (Figure 3).  

Figure 2. Gas-atomized ATI Ti-6Al-4V powder and particle size distribution curve.  

 

 

 

 

 

 

 

 

 

  
Figure 3. As-polished ATI Ti-6Al-4V powder optical image.   
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2.2. Process Parameters 

The specimens in this study were fabricated using the commercial L-PBF system EOS 

M290, utilizing EOS nominal parameters: a laser power of 280 W and a scanning speed of 

1200 mm/s. To prevent oxidation, the printing process was conducted in an argon-inert 

environment. Rectangular bars were first printed and then machined into 4-point bending 

specimens with a square cross-section (5 mm per side) and a height of 45 mm, featuring 45-

degree chamfers. Machining is essential for L-PBF specimens, as as-printed surfaces often 

contain imperfections, defects, and residual stresses that can negatively impact fatigue 

performance. Therefore, machining is critical to achieve a high-quality surface finish, relieve 

residual stresses, and ensure consistent, accurate geometry in the specimens. 

 

2.3. Heat Treatments  

The 4-point bending specimens underwent the following heat treatments: Annealed, 

standard HIP, low temperature/high pressure (LTHP) HIP, and super beta HIP. For the 

standard HIP process, the parameters were set to 900°C and 100 MPa for 2 hours with natural 

cooling. The LTHP process used 815°C and 190 MPa for 2 hours, also followed by natural 

cooling. The super beta HIP process involved heating at 1050°C and 100 MPa for 1.5 hours, 

followed by rapid quench cooling. This was then followed by martensitic tempering within the 

HIP at 800°C for 2 hours under pressure, with natural cooling. Before any HIP treatments, all 

specimens were annealed at 600°C for 2 hours. All heat treatments were performed prior to 

final machining.  

 

2.4. Metallographic Specimen Preparation and Microstructure Characterization 

Metallographic specimens were mounted in a thermosetting mixture of black epoxy and 

phenolic powders in a 1:2 ratio. The preparation process began with grinding using P320 and 

P600 Sillicon Carbide (SiC) papers each for 3 minutes at a force of 25 N. This was then 

followed by pre-polishing with a 9 μm diamond suspension for 5 minutes at a force of 30 N, 

and concluded with a final mirror polishing using a solution of 0.1 μm eposil fumed colloidal 

silica for 10 minutes with the last 30 s using only water at a force of 40 N. The microstructure 

of the specimens was revealed by using Kroll's etchant consisting of a mixture of 91% 

deionized water, 6% nitric acid (HNO3), and 3% hydrofluoric acid (HF). In addition to optical 

microscopy, advanced techniques like electron backscatter diffraction (EBSD) were employed 

to analyze the microstructure of the specimens. 

 

2.5. Tensile & Hardness Testing  

One specimen from each group was machined and tensile tested per ASTM E8-22 to 

provide a summary of the mechanical properties. 

A micro-indentation hardness test was conducted according to ASTM E384 using the 

Vickers (HV) scale on a Qatm - Qness 30 CHD Master+. The measurements were taken with 

a load of one kgf (HV1), producing five indentations spaced three millimeters apart on the 

specimen surfaces. Each indentation had a dwell time of 15 seconds at room temperature. 

 

2.6. Fatigue Testing  

The 4-point bending fatigue testing was conducted using Minnesota, USA's MTS 

Landmark servo-hydraulic apparatus. This machine was equipped with a 10kN load cell and 

included a stainless-steel, adjustable 4-point bending unit provided by Material Testing 
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Technologies, Illinois, USA. Figure 4 presents a detailed setup of the MTS Landmark paired 

with the MTT's 4-point bending module. The testing parameters include a testing frequency of 

10 Hz, maximum cycles up to 106, stress ratio (R) of 0.1, and inner and outer support distances 

of 10 mm and 30 mm, respectively. 

 

Five different stress levels, including 100, 90, 80, 70, and 60% of the specimens' yield 

strength (reported in Table 2), were chosen to develop stress vs. fatigue life (S-N) curves 

ranging from 10,000 to 7,000,000 cycles. Implementing different stress levels provides a 

comprehensive understanding of the material's fatigue behavior, offering a more accurate 

representation of real-world service conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.  4-point bending fatigue testing setup.  

 

2.7. Fractography Analysis 

The specimens' fracture surfaces were further analyzed with a JEOL JSM-IT500 Scanning 

Electron Microscope (SEM) to identify the fatigue crack initiation site (FCI), as well as the 

propagation and catastrophic rupture regions.  

 

3. Results & Discussion 

3.1. Microstructure 

Figures 5 and 6 illustrate the microstructures of the different heat treatments in the XY and 

XZ planes. Looking first into the XZ planes (Figure 5), the annealed, standard HIP, and LTHP 

HIP specimens (Figures 5(a), 5(b), and 5(c)) display prior-β grains oriented along the build 

direction with epitaxial growth. In contrast, the super beta HIP specimen (Figure 5(d)) does 

not exhibit these elongated grains along the build direction. Instead, it shows coarse prior-β 

grains with an equiaxed morphology. A closer examination of the XY plane (Figure 6) reveals 

bundles of columnar grains in the annealed, standard HIP, and LTHP HIP specimens. Similar 

to the XZ plane, the super beta HIP specimen exhibits the presence of coarse prior-β grains.  

 

 A closer inspection of the annealed specimen (Figure 6(a)) reveals fine black lamellae, 

known as α’ martensite, within the elongated and bundles of columnar grains. This 

microstructure forms due to the high cooling rates during the L-PBF process, which transforms 

756



most of the β phase into the α’ metastable phase [26,33,34]. Additionally, this microstructure 

is influenced by the annealing temperature; higher annealing temperatures can result in the 

formation of coarse α platelets [35]. This distinctive microstructure aligns with previous 

studies on L-PBF Ti-6Al-4V, highlighting the significant impact of high solidification rates 

[33,36–38]. 

Contrary to the annealed specimen, the HIP groups do not show the presence of the α’ 

metastable phase in their microstructure. Instead, their microstructure primarily consists of the 

α + β dual phase. An important aspect to consider regarding the microstructure of the HIP 

groups is the temperature parameters and cooling rates involved during the specimens' thermal 

history. It is well-known that titanium, as an allotropic element, can exist in two different 

crystal structures depending on the β-transus temperature (~950˚C). Below this temperature, 

titanium is in the hexagonal close-packed (HCP) α-Ti phase, while above it, titanium is in the 

body-centered cubic (BCC) β-Ti phase [39]. Given the above, the phase transformation in Ti-

6Al-4V is highly dependent on the temperature history and cooling rates induced by the 

fabrication process [39]. Examining the standard and LTHP HIP microstructures (Figures 5(b), 

(c) and 6(b), (c)), it is evident that their HIP cycles occurred below the β-transus temperature 

of Ti-6Al-4V (~950˚C). Literature suggests that HIP treatments below this temperature 

typically involve slow cooling rates, which prevent the formation of metastable α’ martensite 

and instead lead to the formation of the α + β dual phase [40]. A closer examination of their 

microstructures (Figures 6(b) and (c)) reveals what appears to be the α + β Widmanstätten 

microstructure, characterized by a basket weave appearance. Additionally, the presence of α 

platelets (white regions), retained β matrix (dark lines), and α colonies is visible. A notable 

distinction between these two microstructures is the width of the α platelets. The standard HIP 

specimen displays wider α platelets, whereas the LTHP HIP specimen exhibits a finer 

microstructure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Ti-6Al-4V microstructures after heat treatments in plane XZ. a) Annealed. b) Standard HIP. c) 

LTHP HIP. d) Super Beta HIP.  
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Among the four different heat treatments, the most distinctive microstructure is observed 

in the super beta HIP specimen. For this specimen, the HIP temperature exceeds the β-transus 

temperature of Ti-6Al-4V (~950˚C), and its HIP cycle includes rapid quench cooling, resulting in 

fast cooling rates during its thermal history. Consequently, the super beta HIP microstructure is 

fully equiaxed with coarse β grains and features thin α platelets. This indicates recrystallization 

and the shearing of long columnar grains due to treatment above the β-transus [40–42].  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Ti-6Al-4V microstructures after heat treatments in plane XZ. a) Annealed. b) Standard HIP. c) LTHP 

HIP. d) Super Beta HIP. 

 

Figure 7 shows the microstructure of the specimens after heat treatments analyzed by EBSD 

at the XZ planes of the 4PB specimens. The EBSD results confirmed the previously shown 

microstructural evolution of the heat treatments. The annealed specimen (Figure 8(a)) shows a 

well-defined α’ martensite phase. Both standard and LTHP HIP specimens show (Figures 8(b) and 

(c)) refined α platelets. On the other hand, the super beta HIP (Figure 8(d)) reveals a more complex 

grain structure, where the transformation of β grains to coarse equiaxed instead of columnar can 

be evident, evidencing the effects of the HIP treatment cycle. It is important to mention that among 

the different heat treatments, the LTHP HIP specimen resulted in the highest percentage of low-

angle grain boundaries (LAGB), indicating sub-grain formation in the microstructure. Literature 

has suggested that the presence of sub-grains can enhance fatigue performance by impeding crack 

initiation and propagation [43]. Table 1 summarizes the heat treatment specimens' low- and high-

angle grain boundaries (HAGB). 
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Heat Treatment Low-angle grain 

boundaries (LAGB) (%) 

High-angle grain 

boundaries (HAGB) (%) 

Annealed 2.07 97.9 

Standard HIP 4.88 95.1 

LTHP HIP  6.41 93.6 

Super Beta HIP 1.46 98.5 

 

Table 1. Low- and High-angle grain boundaries of heat-treated specimens from EBSD results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7. EBSD images showing the microstructure of the specimens after heat treatment. a) Annealed. b) 

Standard HIP. c) LTHP HIP. d) Super Beta HIP.  

 

3.2. Mechanical Properties 

Table 2 presents the mechanical properties of Ti-6Al-4V samples subjected to various heat 

treatments. The annealed sample exhibited the lowest elongation and modulus of elasticity, 

which can be attributed to the presence of α' martensite, known for its low ductility 

[26,33,42,44,45]. However, the same α' martensite also contributed to the annealed sample 

achieving the highest ultimate tensile strength (UTS), yield strength (σy), and Vickers hardness 

(HV) values, measuring 1298 MPa, 1227 MPa, and 395 HV1, respectively. In contrast, the 

hardness of the HIP-treated samples significantly decreased due to the presence of the softer α 

+ β and weaker microstructure [37]. Consistent with several studies, the β phase in titanium 

alloys has the lowest microhardness values, explaining the observed results [46,47]. Similarly, 

the HIP specimens demonstrated higher elongation results, primarily due to the absence of α' 

martensite and the presence of the more ductile α + β microstructure. The HIP post-processing 

also yielded superior results for the modulus of elasticity, particularly in the standard HIP 

group, indicating greater resistance to deformation. Tensile and yield strength values observed 

in HIP-treated samples can also be attributed to the increased volume fraction of the ductile β 

phase, however, further analysis will be needed to draw any specific conclusions. Additionally, 

within the HIP groups, the tensile and yield strength improved as the size of the α phase 

a) b) 

c) d) 
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decreased, as seen in the LTHP HIP specimen, which exhibited a finer microstructure (Figures 

(5c) & (6c)). 

  

 

  

  

  

  

 
 

 

Table 2. Tensile and hardness testing mechanical properties (0.2% offset yield strength). 

 

3.3. Stress vs Fatigue (S-N)  

The S-N results for the 4-point bending fatigue testing are presented in Figure 8. 

Throughout the testing, several specimens across the groups exhibited run-outs, indicating no 

evidence of fracture. Markers with arrows denote these run-outs after 7,000,000 cycles.  

 

Analyzing the S-N curves (Figure 8), the annealed group exhibits superior performance 

compared to the HIP groups. Contrary to expectations from literature [48,49], which suggest 

that the presence of α’ martensite reduces fatigue performance due to its propensity to promote 

fatigue crack initiation through high local stresses and brittleness, the annealed specimens 

performed better. A possible explanation for this superior performance than the HIP groups is 

attributed to the absence of defects serving as initiation sites. Additionally, these results align 

with previous studies, which indicate that harder specimens (395 HV1) with higher tensile 

strength exhibit improved fatigue performance [50].  

 

Among the HIP groups, the LTHP group demonstrated the best fatigue results, followed 

by the standard and super beta HIP groups, which obtained just a few cycles to failure, across 

all group specimens. Although the number of defects detected in the HIP groups was similar, 

these defects did not seem to significantly reduce fatigue performance, particularly in the 

LTHP HIP group. It has been reported [28,51] that applying additional post-processing, such 

as HIP, significantly reduces the size of defects or nearly eliminates them, consequently 

delaying crack propagation. This indicates that the presence of inclusions or anomalies in the 

HIP groups only moderately affects the fatigue life of the specimens, underscoring the 

effectiveness and importance of HIP treatments for fatigue testing.  

 

The fatigue results are consistent with the effects of the HIP cycles on the specimens' 

microstructures. Literature [25,52] indicates that HIP cycles above the β-transus temperature 

of Ti-6Al-4V result in a coarser microstructure, leading to poorer fatigue performance, as 

observed in the super beta HIP groups. Additionally, the high temperatures during the super 

beta HIP cycle may contribute to detrimental performance. 

 

Conversely, HIP cycles below the β-transus temperature produce finer microstructures, 

improving fatigue life, as seen in the LTHP HIP group. Similar results have been reported in 

the literature [25,53,54], where low-temperature and high-pressure samples exhibit better 

fatigue behavior than other HIP cycles. The beneficial effect of temperature reduction and 

Heat  

Treatment 

UTS  

(MPa) 

σy  

(MPa) 

εf 

(%) 

HV1  

(kgf mm-2) 

Annealed 1298 1227 9 395 

Standard HIP 1032 959 14 346 

LTHP HIP 1124 1047 16 342 

Super Beta HIP 1041 942 14 347 
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increased pressure in enhancing fatigue life is evident. The presence of thin α platelets acts as 

barriers to dislocation movement, hindering crack propagation, thereby increasing strength and 

improving fatigue resistance. 

 

Figure 8. Stress vs Fatigue Life 4-point bending testing. Markers with arrows denote runoffs.  

 

3.4. Fractography  

Fracture morphologies of the 4-point bending are shown in Figure 9. In here, initiation 

sites, propagation regions, and catastrophic regions have been denoted within the fractography 

images. The annealed specimen (Figure 9(a) and (b)) shows an initiation site coming directly 

from the bottom surface. Fatigue striations can be seen spreading across the specimen. Figure 

9(c) displays a fatigue crack initiation (FCI) site near the surface of the standard HIP specimen. 

Upon closer microscopic examination of the highlighted region, striation marks are observed, 

indicating that a surface anomaly likely acted as the origin of failure (Figure 9(d)). Figures 9(e) 

and 9(g) depict the fracture surfaces of the LTHP and super beta HIP specimens, respectively. 

In these cases, fatigue striations are seen emanating directly from the chamfers. Fractography 

results have identified two distinct failure mechanisms. The first involves defects serving as 

fatigue crack initiation (FCI) sites. The second mechanism is characterized by the formation 

of facets within the α phase of titanium, a notable microstructural feature. According to 

literature [28,55], microstructural features such as the one mentioned above acting as FCI are 

directly related to the α + β microstructures produced by the HIP treatments.  

 

These findings suggest that the initiation and propagation of fatigue cracks in these 

specimens are influenced by the specific HIP cycle and its impact on the material's 

microstructure and surface features. The observations emphasize the role of HIP treatment in 

altering fatigue behavior by modifying defect characteristics and crack initiation sites. 

 

 

761



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. 4-point bending fatigue fracture morphology. a) Annealed. b) Standard HIP. c) LTHP HIP. d) Super 

Beta HIP.  
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4. Summary & Conclusion 

This study analyzed and compared the fatigue behavior of 4-point bending Ti-6Al-4V 

specimens manufactured by L-PBF and subjected to various heat treatments. Specimens were 

tested under different conditions, including annealed heat treatment and three HIP cycles: standard, 

low temperature/high pressure (LTHP), and super beta. Additionally, the study examined 

microstructural characterization, mechanical properties, fatigue behavior, and its corresponding 

fracture surfaces.  

 

Significant conclusions in this study include the following: 

 

• The microstructure evolved in response to different heat treatments, showing the presence 

of α’ martensite, thin and coarse α platelets, prior-β grains elongated along the build 

direction, and coarse equiaxed prior-β grains. 

• The annealed heat treatment group exhibited the highest values for yield strength, ultimate 

tensile strength, and hardness. The HIP treatment groups enhanced the ductility of the 

specimens. 

• Among the HIP treatment groups, the LTHP process demonstrated the best fatigue 

performance, followed by the standard and super beta HIP groups. 

• Both the microstructure and HIP cycle parameters significantly influence fatigue behavior. 

• Fractography results revealed two primary failure mechanisms at the FCI sites: defect-

related and microstructural feature-related, with the latter being more dominant. 
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